بررسی خشک شدن شلتوک به روش لایه‌نامک و تعیین ضخامت بهینه با به کارگیری یک خشک کن خورشیدی آزمایشگاهی با جریان جا به جایی آزاد

على زمرديان، و على رضا علامه

چکیده
برنج پس از گندم مهم‌ترین منبع غذایی مورد استفاده در ایران است. خشک کردن برنج پس از برداشت، به خاطر داشتن رطوبت بیش از حد مجاز در فراوری و با غذاری، لازم و ضروری است. در بیشتر مناطق برنج خیز ایران، این غله به صورت سنتی، با پهن کردن شلتوک در سطح کشت‌های میکروکه، و با اعمال کم در برای تاپیش خشک کردن شلتوک مستقیماً به سه می‌شود. بررسی شلتوک به‌طور میکروکه، و به مدت نسبتاً طولانی در اثر حمله برانگ‌های آن می‌شود. همچنین با استفاده از بررسی شلتوک، شناسایی و تعیین ضخامت بهینه با به کارگیری یک خشک‌کن خورشیدی (درجه یک) به‌روندهای مختلف شناسایی و تعیین ضخامت بهینه با به کارگیری یک خشک‌کن خورشیدی از تیره‌های معروف مورد استفاده قرار می‌گیرد. در این آزمایش، ثابت شد که نتایج بررسی شلتوک به روش‌های مختلف متفاوت می‌باشد.

واژه‌های کلیدی: خشک‌کن خورشیدی، لاپه‌نامک، شلتوک
مقدمه
برنچ پس از گندم یکی از مهم‌ترین غلاتی است که نهاد حساسی را در تغذیه مردم جهان و ایران افشا می‌کند. بر اساس گزارش‌های مختلف، خورشید‌گیر (F.A.O) در سال 1389 میلیون هکتار، مقدار تولید آن ۶۵۸ میلیون تن بوده است. در ایران، در فصول زراعی ۱۳۷۴-۷۵ تولید برنج در هکتار بوده است. در این زمینه در بهترین موارد تولید ۷۰۰ تا ۸۰۰ تن برنج را در هکتار می‌تواند تولید کنند.

در فصل پاییز و زمستان ۱۳۸۹، در ناحیه طالقان و کرمانشاه و کرمان گزارش‌هایی در مورد تولید برنج به روش‌های سنتی شده است. این تولید برنج با کیفیت بالا و با استفاده از فناوری ساده یا نیز در بخش صنعتی بهره‌مند شده است.

در ناحیه سه‌هیل، که یکی از مناطق کشاورزی در استان اصفهان است، برنج تولید می‌شود. در این منطقه، تولید برنج به روش سنتی و نیز در بخش صنعتی انجام می‌گیرد. در این منطقه، تولید برنج به روش سنتی و نیز در بخش صنعتی انجام می‌گیرد.

شکسته‌های کشاورزی و منابع طبیعی / جلد ششم / شماره جهان / زمستان ۱۳۸۱

۲۱۰
بررسی خشک شدن شلتوک بی روش لایه نازک و تعیین ضخامت هینه با به کارگیری...

سمتی خشک کردن نه به وسیله بمب گرمایی در دماهای کم کاهش می‌دهد.

استتوئن و شریف (11) به بررسی خشک شدن بی روش لایه نازک از نوع غیر فعال مستقیم پرداختند.

زمان و پالا (18) یک رشته معادلات تجربی برای خشک شدن خورشیدی شلتوک ارائه داده‌اند. آنها از سه روش خشک کردن استفاده کرده‌اند که عبارت‌بود از: خشک کردن غیر فعال مختلط، خشک کردن غیر فعال مستقیم و خشک کردن به روش مستقیم گردیده مختلط، خشک کردن غیر فعال مستقیم و خشک کردن به روش بستی. نتایج نشان داد که بیشترین سرعت خشک شدن با استفاده از خشک کردن غیر فعال مختلط و کمترین سرعت خشک شدن با استفاده از بی روش لایه نازک است.

یک گیروتین (جمع کندن) خورشیدی ماده هواپیمایی به کار رفته که از یک صفحه سبزه رنگ آلمانیمی به ضخامت 1/5 میلی‌متر به ابعاد 38×150 سانتی‌متر به عنوان ضخامت جایگزین با پوشش تک لایه شیشه‌ای تحقیق شده بود. روش تمرکز هوا در داخل گیرنده تحت نوری شناوری (جا به جای آزاد) صورت می‌ببرد و تخلیه هوای گرم از گیرنده به طرف ورودی هوا و به داخل محوزه شکمکان را می‌سازد (شکل 1).

عمل اصلی خشک کردن در محوزه شکمکان انجام می‌گیرد. هوای گرمی که به روش جا به جایی آزاد از گیرنده خارج می‌شود در این قسمت با گذشتن از بستر دانه (به روش آزاد) رطوبت موجود در آنها را خواهید بود. این قسمت یک محوزه چوبی به شکل مکعب مستطیل است که از پایین به خروجی گیرنده متصق است (شکل 1). جوان خشک کردن از نوع غیر فعال مختلط است. محصول می‌باشد در معرض پرتوهای مستقیم خورشیدی به قرار گیرید. به همین علت، در ناحیه بالایی محوزه شکمکان با یک پوششی شفاف (شیشه) به ضخامت چهار میلی‌متر قرار داده شد تا پرتوهای خورشیدی از آن گذر کرده و مستقیم برحسب بست دانه بپردازد.

یکی از قسمت‌هایی که تغییرات آن در یک خشک کردن خورشیدی لازم است خروجی هوا یا دود کردن است، که به وسیله مانند مسئول انگاج می‌گیرد.

الف) هواي مرطوب از ناحیه خشک کردن خارج شود.

مواد و روش‌ها

در مورد به کارگیری خشک کردن خورشیدی برای خشک شدن شلتوک پژوهش‌های بسیاری صورت پذیرفته است که همگی این خشک کردنها را برای نزدیک به سوخت لایه دهی داشته‌اند. پژوهش‌ها در نظر گرفته‌اند همچنین، پژوهشگان برای عمل لایه نازک تعریف مختلی ارائه داده‌اند. در در عمل لایه نازک را ضخامت یک دانه می‌دانند، و بعضاً عمل لایه نازک را آن

211
شکل ۱ تصویر شماتیک خشک‌کن خورشیدی

بنوان آن را به راحتی به صورت کشویی از محوطه خشک‌کن خارج کرد. خارج کردن طرف مزبور برای توزین شلنگ، و همچنین تنظیم عمق مناسب ابزاری محصول در طرف توری صورت می‌گیرد. تنظیم عمق بذر با دقت زیستی در ۱، ۲ و ۶ سانتی‌متر انجام می‌پذیرد.

پس از تکمیل محیط خشک‌کن به منظور جلوگیری از نفل شدن گرما از خشک‌کن به محیط خارج، بدن خشک‌کن با یاه‌هایی از پشم و شیشه به صورت اثر پوشانده شد. بازده در فاصله حدود ۲۶ سانتی‌متری از دهانه خروجی گیرنده در محیط خشک‌کن نصب شد. این فاصله به‌دنبال انتخاب

برای پایه پژوه‌های انگام شده، ارتفاع دودکش تأثیر چندانی
در عملکرد خشک‌کن ندارد، و تنها ناحیه‌ای برای خروج هوا کفایت می‌کند (۳) یا این روز در وجه پایه محیط خشک‌کن
شیبی به ابعاد ۳۶/۵ سانتی‌متر تعبیه شده است. همچنین
مرطوب از این قسمت خارج شود. برای ساختن بستر
مخصوص نگهداری شلنگ در داخل خشک‌کن از یک سازه
چوبی به ابعاد ۴۹/۸ سانتی‌متر استفاده شد. کف و لبه‌های این
سازه تا ارتفاع ۲۶ سانتی‌متر با نری ریز آلومینیومی پوشانده شد.
این قاب به گونه‌ای در داخل محیط خشک‌کن نصب گردید که

۲۱۲
بررسی خشک شدن شناور به روی لایه نازک و تعیین ضخامت بهبود با به کارگیری‌

گردد که هواي گرم شده توسط گیرنده و تحت نوری شنواری

به طور یکنواخت به استفاده وارد گردید. برای توزیع محسوس

در بستر خشک شدن تیزی (۴/۳۰۰ گرم) استفاده

گردد. به منظور به دقت و تطبیق زمانی، به همراه خشک کن طوری

در بستر خشک شدن، به دقت و تطبیق زمانی، به همراه خشک کن

در پایان هر دوره آزمایش، و برای هر عمق و هر تکرار، پنج

در پایان هر دوره آزمایش، و برای هر عمق و هر تکرار، پنج

نمونه به میزان های مختلف بستر نمونه برداری و تطبیق و رطوبت

شامل بازکردن آزمایش باین آزمایش.

اگاهی از درصد رطوبت تعاونی شناور به کارگیری

معادلات مختلف خشک کردن به طرفه لایه نازک لازم است.

ارتفاع یا نیاز به کار برده شده در محاسبه رطوبت

تعادل و تراز خشک شدن به میزان لایه نازک به صورت

زیر به کار رفت (۱۵): RH=exp [-K(t+C)(100M_r)^N]

که در آن

M_r=RC (به قدری (ارشماری) به و

C.K (درصد) + 1 می‌باشد.

به‌عنوان که برای محصولات مختلف متفاوت است. این ضریب

ثابت برای شناور به صورت زیر گزارش گردیده است (۶):

K=1.9187x10^5

C=51.161

N=2.4451

[۱]

[۲]

[۳]

[۴]

[۵]

[۶]

[۷]

[۸]

[۹]

[۱۰]

[۱۱]

[۱۲]

M_r=E-Fln [-t-(t+C) ln (RH)]

که در آن ضریب ثابت برای شناور به صورت زیر ارزیابی است (۵):

E=0.29394

F=0.046015

C=35.703

[۱۳]

[۱۴]

[۱۵]

[۱۶]

[۱۷]

[۱۸]

[۱۹]

[۲۰]

[۲۱]

[۲۲]

[۲۳]

[۲۴]

[۲۵]

[۲۶]

[۲۷]

[۲۸]

[۲۹]

[۳۰]

[۳۱]

[۳۲]

[۳۳]

[۳۴]

[۳۵]

[۳۶]

[۳۷]

[۳۸]

[۳۹]

[۴۰]

[۴۱]

[۴۲]

[۴۳]

[۴۴]

[۴۵]

[۴۶]

[۴۷]

[۴۸]

[۴۹]

[۵۰]

[۵۱]

[۵۲]

[۵۳]

[۵۴]

[۵۵]

[۵۶]

[۵۷]

[۵۸]

[۵۹]

[۶۰]

[۶۱]

[۶۲]

[۶۳]

[۶۴]

[۶۵]

[۶۶]

[۶۷]

[۶۸]

[۶۹]

[۷۰]

[۷۱]

[۷۲]

[۷۳]

[۷۴]

[۷۵]

[۷۶]

[۷۷]

[۷۸]

[۷۹]

[۸۰]

[۸۱]

[۸۲]

[۸۳]

[۸۴]

[۸۵]

[۸۶]

[۸۷]

[۸۸]

[۸۹]

[۹۰]

[۹۱]

[۹۲]

[۹۳]

[۹۴]

[۹۵]

[۹۶]

[۹۷]

[۹۸]

[۹۹]

[۱۰۰]
نتایج و بحث

برای یک کدام از مدل‌های خشک شدن (مدل نیوتن و مدل پیچ) به روش لایه‌ای نازک، با در نظر گرفتن سه معادله مهم مربوط به محاسبه درصد رطوبت، تعداد شلتوک، معادلات (5.1، 5.2) و (5.9) با استفاده از روش گواستون، به‌کارگیری ترم افزار SPSS می‌تواند در معادلات مربوط به شکل شدن به روش لایه‌ای نازک، بهترین ضرایب مربوط به معادلات حاکم بر یک نازک برند یک استفاده از این افزار SPSS می‌تواند با داشتین مقدار آزمایشی (مقدار رطوبت و زمان پیش‌رفت خشک شدن) و قرار دادن یک مقدار در معادلات فوق (معادلات 14 و 15) نتیجه گرفته شود که از آماده‌برای عمل در ساختن بستر در روش لایه‌ای نازک برای هر سه معادله درصد رطوبت تعادل همگونی خصایص یابی برای معادله‌های (محتیایی 0 و 1)، در صورتی که داده‌های آزمایشی برای معادله‌های 0 و 1 یافته نشده یا ابعاد برای معادله‌های 0 و 2 بالاست برای معادله‌های 0 و 2 بالاست نشده یا ابعاد برای معادله‌های 0 و 2 بالاست بستگی دارد.

به صورت دارد. ولی خطای استاندارد در محاسبات (استخراج شده از به کار گیری نرم‌افزار SPSS) معادله نیوتن به مراتب کمتر از خطای محاسبه شده از معادله پیچ است. همچنین، می‌توان نتیجه گرفت که یک داده‌های مربوط به ضخامت‌های 0 و 2 سانتی‌متری از معادلات لایه‌ای بیشتر مطمئن کنند. خشک شدن محسوس با یک ضخامت عمل می‌تواند در 0.2 متر برای بررسی روند خشک شدن در این ضخامت‌ها از معادلات مربوط به معادله‌های نازک برند یک است. به ترتیب Y و X نتایج کیه‌ای هستند که به ویژگی ماده مورد نظر بستگی دارند.

شکسته شده‌ها در کارگاه‌های بخش مکانیک ماشین‌های کشاورزی دانشگاه شیراز ساخته و تجهیز شده، و در محوطه باز پخته (واقع در باغچه)، در ماشین‌های مهر و آذر سال 1377 برای تعیین عمل بهینه خشک شدن به روش لایه‌ای نازک با استفاده از ارژی‌های خورشید آزمایش گردید. آزمایش‌ها در سه ضخامت بستر 0.2 و 0.4 سانتی‌متری انجام گردید. تا حالت‌هایی که به روش لایه‌ای نازک نودیک‌پذیر است تعیین شود، آزمایش‌ها به روز ساعت هص صبح آغاز و حدود ساعت سه
جدول 1. روابط به‌دست آمده برای خشک شدن لاپاپ نازک با استفاده از مدل‌های مختلف رطوبت تعادلی ویژه معادله پیچ

<table>
<thead>
<tr>
<th>مدل رطوبت تعادل</th>
<th>خطای</th>
<th>R^2 استاندارد</th>
</tr>
</thead>
<tbody>
<tr>
<td>جانگ و فاست (5) هندرسون (تصحیح شده)</td>
<td>$0.8617 \exp(-0.006110 t)$</td>
<td>0.9723</td>
</tr>
<tr>
<td>2</td>
<td>$0.8807 \exp(-0.007580 t)$</td>
<td>0.9715</td>
</tr>
<tr>
<td>3</td>
<td>$0.8751 \exp(-0.007030 t)$</td>
<td>0.9765</td>
</tr>
</tbody>
</table>

جدول 2. روابط به‌دست آمده برای خشک شدن لاپاپ نازک با استفاده از مدل‌های مختلف رطوبت تعادلی ویژه معادله پیچ

<table>
<thead>
<tr>
<th>مدل رطوبت تعادل</th>
<th>خطای</th>
<th>R^2 استاندارد</th>
</tr>
</thead>
<tbody>
<tr>
<td>جانگ و فاست (5) هندرسون (تصحیح شده)</td>
<td>$\exp(-0.0203950 t^{0.700555})$</td>
<td>0.9645</td>
</tr>
<tr>
<td>2</td>
<td>$\exp(-0.0176510 t^{0.859807})$</td>
<td>0.9475</td>
</tr>
<tr>
<td>3</td>
<td>$\exp(-0.0186450 t^{0.83748})$</td>
<td>0.9544</td>
</tr>
</tbody>
</table>

منحنی 7. تغییرات رطوبت بر حسب زمان داده‌های آزمایشی و مقدار پیشینی شده توسط معادله پیچ برای بستر شش سانتی‌متری گیبرنده به محفظه آرام کننده خشک‌کن در موقعیت قرار داشت که هواى گرم به طور یکنواخت از بستر باد شد و در عبور می‌گردد است.

منحنی 8. تغیرات رطوبت بر حسب زمان داده‌های آزمایشی و مقدار پیشینی شده توسط معادله پیچ برای بستر چهل سانتی‌متری به‌نام‌های ضخیم استفاده کرد. همچنین، از نتایج آزمایش می‌آید که در بستر خشک‌کن، یک‌نواخت در عمل خشک شدن وجود دارد و بستر باد نسبت به ورود هواى گرم شده از

منابع مورد استفاده

1. بین نام. 1377. پانکر اطلاعات کشاورزی جهان. اداره کل امور و اطلاعات وزارت کشاورزی.
2. بین نام. 1378. آمارنامه کشاورزی سال زراعی 1376-1377. اداره کل امور و اطلاعات وزارت کشاورزی.