مطالعه تغییرات مکانی شوری خاک در منطقه راه‌مرز (خوزستان)
با استفاده از نظریه زئوژستاسیستیک

1- کریجینگ

چهانگرد محمودی*

چکیده
در این بررسی روش تجزیه‌گری به‌کارگیری جهت مطالعه تغییرات مکانی شوری خاک از نظر هواه بود. به عنوان مثال، اطلاعات حاصل از مطالعات تفصیلی اراضی منطقه راه‌مرز خوزستان که بر پایه روش مساحی آزاد استفاده بود، مورد استفاده قرار گرفت. بررسی تغییرات میزان شوری، با استفاده از حدود 500 نمونه، به‌کارگیری متریکی در سه عمق 50، 200 و 500 سانتی‌متر انجام شد. برای ترمیم تغییرات مکانی شوری در اعماق مختلف شوری که با استفاده از ساختار سطحی منطقه‌ای جغرافیایی به‌کار گرفته شد تا مقدار شوری با هر میزان توپوگرافی به‌کار گرفته شد.

نتایج به‌دست آمده نشان داد که دامنه تأثیر واریوگرام‌های محاسبه‌شده در سه عمق قبلاً (13-12 کیلومتر) بوده که
چگونگی انرژی را پرکش جغرافیایی مواد مادرهای واحدی فیزیکی در منطقه را نشان می‌دهد. به‌منظور تهیه نقشه شوری در اعماق مختلف شوری که بر پایه متریکی به‌کار گرفته شد مداوم به ۱۰۰۰۰ متر در سطح منطقه مطالعات استفاده شد. مقدار بین نشان می‌دهد که تا بخش شوری حاصل از مساحی آزاد حدود ۷/۶۵ می‌باشد. نتایج حاصله حاصله مورد این تا که نتیده‌ها می‌باشد بر روی کریجینگ از قابلیت استفاده شوری شوری حاصل از جهت تعمیق مقیاس کلاه‌سرا خوری S1 و S2 برخوردار بوده (۷/۶۵) و در حالی است که قابلیت استفاده شوری شوری حاصل از مساحی آزاد برای نشان دادن این کلاه‌سرا حدود ۵۰ می‌باشد. نتایج حاصله حاصله مورد این تا که نتیده‌ها می‌باشد در کار وروش‌های معمول تهیه نقشه شوری خاک استفاده می‌شود.

وژه‌های کلیدی: شوری، هدایت الکتریکی (EC)، مساحی آزاد، تغییرات مکانی، زئوژستاسیستیک، تعریحات متغیره، سطح واریوس.

واریوگرام، برآورد به‌بینی کریجینگ

مقدمه
یکی از خصوصیات مشترک عوامل و ویژگی‌های محیطی، تغییرات پیوسته مکانی آنها می‌باشد. محققین چنین تغییرات محیطی از قطعاتی به طول دیگر، به‌ویژه در است که مطالعه آنها به وسیله شیوه‌های معمول تجربه و تحلیل آماری

- استادیار خاکشناسی، دانشکده کشاورزی، دانشگاه شهید هدایت.

* 49
شیوه‌های جغرافیایی ارتباطی بین تغییرات مکانی داده‌ها به عنوان تابعی از فاصله بر قرار می‌شود.

یکی از جهت توصیف کمی از گروه‌های پراکنش جنین متغیرهای محیطی، علاوه بر مقادیر تبعیض شده خصوصیت مورد نظر می‌باشد. مدل‌های جغرافیایی مشاهدات نیز به طور هم‌زمان در نظر گرفته شود.

عوامل اصلی حاصل از مساحت خاکی به معادله‌ای از خاک و هدف قرار می‌دهد. برای ساختار این اشاره کرد. کابرد نظریه دوواستاتیستیک در ایران، که بدان‌ها «سیم» آماری اطلاعی می‌شود، عوامل و چکیده تحلیل تغییرات مکانی در خاکنشان استفاده گردید. در این مدل، این نظریه توسط محققین کشور در علوم خاک روابط و افزایش پدیده می‌شود که از جمله بایستی به مطالعات عالی و همکاران (۳ و ۴ محدوده) و حسابی و همکاران (۱۲ و ۱۳) اصلی نمود.

هدف از این مقاله و مقالاتی که در پی می‌آید، کابرد نظریه دوواستاتیستیک جهت مطالعه تغییرات مکانی خاک از اعماق مختلف درون خاک ره‌پوش مرکزی در کشور و بررسی اثرات به کارگیری اطلاعات ثانویه در دقت نتایج حاصل از برآوردهای دوواستاتیستیکی می‌باشد.

مواد و روش‌ها

منطقه مطالعه

منطقه مورد مطالعه در ناحیه غربی شهر رامهرمز واقع در استان خوزستان، حد فاصل طول‌های جغرافیایی ۵۱°۲۷′ و ۵۱°۲۴′ شرقی و عرض‌های جغرافیایی ۳۲°۴۵′ و ۳۲°۴۱′ شمال و سطح شده است. و سعت تقریبی آن ۴۰۰ هکتار و دارای ارتفاع متوسط ۱۱۰ متر از سطح دریا در باشند. متوسط بارش سالانه بالای بیش از ۲۳۰ میلی‌متر و میان‌گیرنده حداکثر و حداقل سالانه در باشند. درجه سختی‌گردایی است. کل ۱۲ ناشی شماشیکی ایران و موقعیت منطقه مطالعاتی را نشان می‌دهد.

1- Geostatistics
نیزیوگرافی و خاکها

شکل 1- نقشه قیاسی ایران و محل منطقه مطالعاتی

شکل 2- نقشه واحدهای فیزیوگرافی منطقه مطالعاتی به‌همراه راهنمایی آن

دشت‌های آبرفتی رودخانه‌ای می‌باشند. این اراضی عموماً ازرسوبات رودخانه‌ای تشکیل یافته و میزان شوری خاک نسبتاً کم است. اراضی فوق عمدتاً به کشت محصولات زمستانی مانند گندم و جو و گاهی سبزیجات اختصاص یافته‌اند.

با بالا رفتن سطح ایستایی یکی از مهم‌ترین خصوصیات اراضی واقع در مناطق یکدیسر می‌باشد. فرآیند شورشده اراضی در این مناطق شدت‌داراً فعال بوده و در بسیاری از نقاط سطح خاک با لایه‌ای از نمک پوشش‌های سطحی است. مشاهده گردیده‌ای است که‌های اکسیداسیون و احیاء در سیلیستی‌های پرولی‌های حفر شده در این اراضی بین‌الای شرایط زیستی نامطلوب و نوسانات شدید سطح ایستایی است. در این منطقه خاک شده است.

msk 4 - رودخانه 4 - قطعه باقی‌مانده می‌باشد.

خاک‌های واقع در فلات‌های باقی‌مانده عموماً صمیم و دارای تکامل پرولی‌های بوده و تجمع آنها مشهد است. بافت خاک از رسی لومی و رسی متغیر بوده و میزان شوری خاکی در محدوده وسیعی می‌باشد. این اراضی عمدتاً به عنوان مرتع بهبودیاری می‌شود.

دشت‌های آبرفتی دامنه‌ای دارای خاک‌های نسبتاً عمیقی بوده و بافت خاکی از رسی سپیل لوم معکوس است. از طرف دیگر چنین بودن خاک‌ها از عمدتاً ویژگی‌های اراضی واقع در...

1- Remnant plateau 2- River alluvial plain 3- Piedmont plain 4- Lowland 5- Wind deposit
سوری با نقشه پرآکش واحدهای فیزیوگرافی کویای این واقعیت است که پراکش مکانی کلاس‌های شوری ارتباط مستقیمی با لناسکیب منطقه مطالعاتی دارد. همانطور که در روی نقشه شوری ملاحظه می‌گردد کلاس‌های شوری S1 و S2 عمداً در پرآکشند به‌دسته‌ای رسویی رودخانه‌ای پرده، در حالی که اراضی پست شمال کلاس‌های شوری S3 و S4 می‌باشد.

در حالات مطالعات نیمه‌تغییری منطقه مورد نظر، حدود ٦٠٠ نقطه (شامل نیم‌خر خاک و ونته) با متوسط فاصله ٥٠ متر از یکدیگر، مورد سطح‌سازی و از لحاظ کویای مختلف خاک نمونه‌برداری شدند. این منظور بر اشتراک از آماده‌سازی نمونه‌ها میزان هندیکت الکتریکی معرفی‌بیان خاک اندازه‌گیری گردید. از آنجا که به معرض میزان سطح‌سازی خاک در نقاط محاصره و برای همین سه عمق ٥٠، ١٠٠ و ١٥٠ سانتی‌متر به مصرف نقشه شوری خاک گزارش می‌شود، لذا در این بررسی از اطلاعات اکثر استفاده شده است.

به منظور ارزیابی نتایج حاصل از تجزیه و تحلیل‌های آماری، حدود ١٠٠ درصد از داده‌ها (٥٠) به صورت تصادفی اختیار و به عنوان مجموعه داده‌های میانگین از کلیه تجزیه و تحلیل‌ها استفاده شد که شرح داده می‌شود کاربرد خاصی نداشتند.

روش آماری

به طور کلی روش‌های آماری زئوساناتیستیکی بر پایه نظریه ستیج مکانی استوار است (١٥ و ١٧). یک ستیج مکانی عبارت است از هر خصوصیت محیطی که در فضای دو بعدی و یا به بعدی توزیع شده باشد. تغییرات این دسته از ستیج‌ها از تغییرات به طبقه دیگر مشخص و دارای پوستگی اشکالی می‌باشد. مشخصه‌ها معمولاً بافت خاک، میزان ماحصل و شیمیایی مختلف در خاک و یا شوری خاک مالیاتی از ستیج‌های مکانی هستند. تفاوت اساسی بین آمار کلاس‌های مختلف شوری در منطقه مورد مطالعه است. مقايسه نقشه

شکل ٣. نقشه حاصل از مطالعات نیمه‌تغییری پدروش مساحی آزاد کلاس‌های شوری (دست زیر خاک) عبارت است از:

\[
S_0 = 16-22 \text{ dS/m} \\
S_1 = 23-32 \text{ dS/m} \\
S_2 = 33-42 \text{ dS/m} \\
S_3 = 43-52 \text{ dS/m} \\
S_4 = 53-62 \text{ dS/m}
\]

مطالعات نیمه‌تغییری

به منظور تعبیه نسبی اراضی واقع در منطقه مورد نظر برای كشاورزان نیازه، مطالعات نیمه‌تغییری این منطقه توسط موسسه تحقیقات خاک و آب اصفهان در طی سالهای ١٣٦٤ و ١٣٥٩ صورت گرفته است (١). شکل ٣ نقشه شوری منطقه مطالعاتی راکه در طی مطالعات نیمه‌تغییری تهیه شده.

شناخت مراجع

این نقشه معرف چگونگی پراکنش کلاس‌های مختلف شوری در منطقه مورد مطالعه است. مقايسه نقشه

1- Test data set 2- Regionalized variable

پایه تئوری
طالبه تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان) با استفاده از...

اگر این اختلاف را می‌توان به صورت
\[\gamma(h) = \text{AVE} \left[Z(x_i) - Z(x_i + h) \right] \]
الکول، این اختلاف که بین‌گیر تفاوت دو نقطه است، چنین مورد توجه نیوبله به بک اختلاف مقدار متوسط مورد نظر در نقطه X و X+H می‌باشد.

\[Z(x_i) - Z(x_i + h) \]
می‌باشد.

\[\gamma(h) = \frac{1}{N} \sum_{i=1}^{N} \left[Z(x_i) - Z(x_i + h) \right] \]
در رابطه فوق، \(\gamma(h) \) را سیم واریانس و می‌باشد. بر اساس نمونه‌های موجود، که از مقدار متوسط تجریبی آن به دست آمد. بین‌گیرنده به این مقدار باید مقدار‌های پایدار را با این مقدار تجریبی وقت داد. در عمل با رسم مقدار سیم واریانس بر روی محور عمودی به ازای فاصله مختلف H، سعی می‌شود که بهترین مدل منطقه‌ای بر داده‌ها انتخاب و رسم شود. منحنی به دست آمده را اصطلاحاً

\[Z(x_i) - Z(x_i + h) \]
معیتی از خاک (Z) در دو نقطه به فاصله مشخص a برسی اختلاف مقداری خاصی می‌شود نظر در آن دو نقطه

\[Z(x_i) - Z(x_i + h) \]
می‌باشد. از آن چهار که علائم

\[Z(x_i) - Z(x_i + h) \]
ابن اختلاف مورد نظر نیوبله، مقدار دارد.

1- Variogram 2- Semi-variance
مقدار h مقدار واریانس نیز از این فاصله به ترتیب h مقدار واریانس تبادلی بین دو واحد نمونه‌بری، نیز تابع یک نمونه‌بری را باید به دست آورد.

از طرف دیگر به حداکثر رسالن واریانس تخمین‌ها را به یک مثال بهینه سازی است می‌توان با استفاده از ضرایب لاگرانژی، با در نظر گرفتن حمل نهایی بودن انجام داد. در نتیجه

1- Sill
2- Spherical
3- Gaussian
4- Range
5- Nugget effect
6- Optimal estimation
7- Kriging
8- Generic
9- Lagrange multiplier

54
مطالعه تغییرات مکانی شوری خاک در منطقه رامهرمز (مروزستان) با استفاده از...

شکل ۵- منحنی‌های فراوانی داده‌های شوری در اعماق (a) ۰–۵ سانتی‌متر، (b) ۵۰–۱۰۰ سانتی‌متر، و (c) ۱۰۰–۲۰۰ سانتی‌متر

سیستم معادلات کریجینگ را که با استفاده از مبانی ماتریسی حل می‌گردد، می‌توان به شکل زیر نوشت:

\[\sum_{j=1}^{n} \lambda_j \gamma(x_i, x_j) + \sum_{i=1}^{n} \lambda_i = \gamma(x_i, x_i) \]

در معادله فوق (\(x_i\), \(x_j\) میانگین عمیق واریانس بین نمونه‌ها و (\(x_i\), \(x_j\) میانگین عمیق واریانس بین نقطه مورد تخمین و نمونه‌های واقع در همسایگی آن نقطه می‌باشد. دستگاه معادلات کریجینگ را می‌توان به دو روش برآورد نقطه‌ای و یا برآورد قطعه‌ای انجام داد. در این پریود برآورد آماری برای بلکهای

1- Point Kriging
2- Block kriging
3- Skewness

۵۵
جدول 1- خلاصه آماری داده‌های شوری (ds/m) در اعماق مختلف خاک، قبل و بعد از تبدیل لگارتمی

<table>
<thead>
<tr>
<th>عمق ۰-۲۰ سانتی‌متری</th>
<th>عمق ۲۰-۵۰ سانتی‌متری</th>
<th>عمق ۵۰-۱۰۰ سانتی‌متری</th>
</tr>
</thead>
<tbody>
<tr>
<td>داده‌های اصلی</td>
<td>تبدیل شده به لگارتمی</td>
<td>داده‌های اصلی</td>
</tr>
<tr>
<td>تعادل‌مومه‌ها</td>
<td>میانگین</td>
<td>میانه</td>
</tr>
<tr>
<td>۶۱۶</td>
<td>۵۹۰</td>
<td>۴۱۲</td>
</tr>
<tr>
<td>۲۷</td>
<td>۱۲/۹</td>
<td>۱۳/۹</td>
</tr>
<tr>
<td>۷۶</td>
<td>۱۹</td>
<td>۱۹</td>
</tr>
<tr>
<td>۷۵</td>
<td>۱۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>۷۶</td>
<td>۲/۱</td>
<td>۲/۱</td>
</tr>
<tr>
<td>۱۲۴</td>
<td>۱۲۴</td>
<td>۱۲۴</td>
</tr>
</tbody>
</table>

روخدانه واقع شده در حالی که غلبه مقایسه بزرگ شوری در پخش‌های شمالی و جنوبی اراضی پست قرار گرفته است. نتایج بین‌گیرنده وقتی است که مقدار هدایت الکتریکی عصاره اشاع خاک در ارتباط مستقیم با خصوصیات لنداسکی، منطقه مطالعاتی است. محال این به نظر می‌رسد شناسایی تغییرات و نوسانات سطحی شوری در داخل هر کدام از واحد‌های فیزیوژی‌جیک بود. به منظور بررسی و مطالعه ساختار تغییرات مکانیکی داده‌های شوری واریوگرافه تجربی، قیاس ایز و تبدیل لگارتمی داده‌ها، با در نظر گرفتن متوسط فاصله ۱۰۰۰ متر، به طور منظم برای هر عمق محاسبه و ترسیم شدند. شکل ۷ واریوگرافه تجربی به همراه مدل‌های نظری برای شده شده را نشان می‌دهد. نتایج حاکی از آن است که واریوگرافه مربوط به طور ایده‌آل با مدل‌های موجود در دانشگاه شده است. این نتیجه به منظور بررسی و مطالعه ساختار تغییرات مکانیکی داده‌های شوری واریوگرافی داده شده که نشان‌گردی می‌کند که خاک‌های زیردریایی نسبت به خاک‌های سطحی بیشتر می‌باشند. مهارت طراحی که ملاحظه می‌شود پس از تبدیل لگارتمی داده‌ها اختلاف بین میانگین و میانه در هر عمق به شدت کاهش پیدا می‌کند. مقایسه میزان میانویژ تغییرات میزان میانویژ تغییرات در هر عمق خاک شناخت‌های نکته است که میزان هدایت الکتریکی عصاره اشاع خاک با افزایش عمق خاک کاهش می‌یابد. روند مشابه برای تغییرات واریانس با عمق نیز مشاهده شده است. از طرف دیگر بر مقدار ضریب تغییرات با افزایش عمق افزوده شده که چنین افزایش احتمالاً تحت تأثیر نوسانات موقعی سطح ایستایی بوده است (۱۰۰). به منظور پی بردن به چگونگی پراکنش مکانیکی داده‌ها، مقادیر سطحی الکتریکی عصاره اشاع خاک به صورت تشکیل می‌شود. نتایج در شکل ۸ نشان داده شده است. این نتیجه به منظور بررسی و مطالعه ساختار تغییرات مکانیکی داده‌های شوری در منطقه مطالعاتی می‌باشند. مهارت طراحی که ملاحظه می‌شود کمترین مقادیر شوری عموماً در کنار و به موازات

1- Trend
شکل ۶- نقشه پراکنش داده‌های شوری در اهمای (۱۱۰-۷۵ سانتی‌متر)، (۵۰-۱۱۰ سانتی‌متر) و (۵-۱۰۰ سانتی‌متر)
شکل 7- واریوگرامهای تجريبی \(\ln(dS/m) \) (تقاطع) و مدل‌های برآورد داده شده (منحنی‌ها) داده‌های شوری در اعماق

دو مقياس منطقه‌ای و محلی نمی‌باشد. علاوه بر آن، در تمامی واریوگرام‌ها نرخ اثر قطعه‌ای نسبی یکسان و حدود ۳۸/۲٪ حد آستانه را تشکیل می‌دهد. این امر را می‌توان ناشی از تغییرات تصادفی شوری خاک در هر ممق دانت که در نواحی کمتر از فاصله نمونه‌برداری بروز می‌نماید. زیاد بودن نسبت اثر قطعه‌ای به حد آستانه، باعث کاهش وقت برآورد آماری توسط کریجی‌گر

می‌شود (12). هر سه واریوگرام دارای دامنه ننی‌ای یکسان ۱۳–
جدول ۲- ضرایب مدل‌های برآورد داده شده بر واریوگرام‌های تجربی شوری در اعماق مختلف خاک

<table>
<thead>
<tr>
<th>مدل</th>
<th>عمق (سانتی‌متر)</th>
<th>اثر قطره‌ای</th>
<th>حد آستانه</th>
<th>دامنه تأثیر</th>
<th>دامنه آستانه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۱/۱۵</td>
<td>۱/۸۹۱</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۱/۸۸۷</td>
<td>۱/۵۱۸</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۱/۸۶۴</td>
<td>۱/۳۸۷</td>
</tr>
</tbody>
</table>

شکل ۸- نقشه‌های کریجینگ شوری (dS/m) در اعماق (a) ۰-۵ سانتی‌متر و (b) ۵-۵۰ سانتی‌متر و (c) ۵۰-۱۵۰ سانتی‌متر
مقایسه نتیجه‌های کریجینگ برای اعمال مختلف، گویای
این واقعیت است که علی‌العیبی بوده، چون در راه‌ها بسیار
لازم به توجه باشد که این تکنیک که کدامیک از
نوسانات حاصل از اعمال کریجینگ طی زمانی یا کریجینگ در
دقت دقیق از کهکشان می‌شود. اثبات نشان می‌دهد که در
نحوی 20 مسیسه قطعه مورد نظر بیش از 12 کیلومتر را داشته‌اند
ستفاده گردد. لجسیزمی‌باشد این اثرات این با
کاراکتریتی باید باشد. شکل 8 نشان‌های حاصل
 Hazel آماده‌کردن کریجینگ، برای سه عامل مختلف آختراشی و چری خاک را نشان می‌دهد.
روابطی لناسکوب و فراانداز شدن اراضی به خوبی در این
تشکیل شده است. چنین تشکیل‌های این ارتفاع می‌تواند با
فراانداز شد، این ارتفاع شاهدی از طرفی شناخت موقتی مکانیک در
لناسکوب درک نموده، به شکل این‌ها به‌نیا می‌آید. مقایسه این
تشکیل‌های حاصل از اعمال نیمه تکسیم‌پذیر، نشان‌گر تشکیل بسیار
زیادی باید باشد.
تشکیل‌های کریجینگ نشان می‌دهد که حدود 18% مناطق
تخمین زده شده دارای هدایت الکتروکیمی کمتر از 4 دسی‌زیمنس بر
متر می‌باشد. این اعمال نشان می‌دهد از اعمال
می‌باید باشد. شکل 8 نشان‌های حاصل از اعمال نیمه
فراانداز شد. این ارتفاع شاهدی از طرفی شناخت موقتی مکانیک در
لناسکوب درک نموده، به شکل این‌ها به‌نیا می‌آید. مقایسه این
تشکیل‌های حاصل از اعمال نیمه تکسیم‌پذیر، نشان‌گر تشکیل بسیار
زیادی باید باشد.

1- Back-transformation
2- Two-sided similarity table
3- Overall accuracy

60
جدول 3- جداول تشابه در طرفین بین داده‌های معیار (ستون‌ها) و (8) با نام‌های طبقه‌بندی شده توسط کریجینگ

(b) تنش شوری حاصل از مساحی آزاد (ردیف‌ها)

<table>
<thead>
<tr>
<th>کریجینگ/داده‌های معیار</th>
<th>S4</th>
<th>S3</th>
<th>S2</th>
<th>S1</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>جمع ردد</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>خطای٪</td>
<td>53</td>
<td>19</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>جمع ستون</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>جمع ستون</td>
<td>70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>جمع ستون</td>
<td>55</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>جمع ستون</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>جمع ستون</td>
<td>44</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>جمع ستون</td>
<td>81</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>دقت کلی:</td>
<td>40٪</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>مساحی آزاد/ داده‌های معیار</th>
<th>S4</th>
<th>S3</th>
<th>S2</th>
<th>S1</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>جمع ردد</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>خطای٪</td>
<td>76</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>جمع ستون</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>جمع ستون</td>
<td>56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>جمع ستون</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>جمع ستون</td>
<td>56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>جمع ستون</td>
<td>56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>دقت کلی:</td>
<td>46٪</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1- omission error
2- commission error
تاریخ نشان می‌دهد که از نظرهای کریگینگ به‌اختیار می‌توان به منظور تعیین ساختار پراکنش مکانی شوری در منطقه مورد مطالعه استفاده نمود. این امر را با میزان ناشی از اثرات پیروی‌های انسانی در کریگینگ دانست (۱۳۱). از سوی دیگر، با توجه به هویت کمی این گونه نتخیه‌ها، از آنها می‌توان به عنوان لایه‌های مختلف اطلاعاتی در سیستم‌های اطلاعات جغرافیایی (۱۳۲) جهت تجزیه و تحلیل‌های کمی بی‌پره جست. بنابراین، می‌توان در کنار روش‌های معقول تهیه نتخیه‌های شوری خاک، از روش‌های آماری آن راه‌های دیدن در نظرگیرنده استاندارددیستیک نیز استفاده کرد.

سپاسگزاری

بدین وسیله از آقای مهندس فریبرز نوربخش عضو هیئت علمی بخش تحقیقات خاک و آب اصفهان، به خاطر انتخاب نهادن اطلاعات و نتخیه‌های مربوط تکرار، نمی‌پذیریم و یاد می‌گیریم.

منابع مورد استفاده

۱- وزارت کشاورزی. ۱۳۶۸. مطالعات خاک شناسی نیمه تفصیلی دقيق منطقه رامهرمز استان خوزستان. مؤسسه تحقیقات خاک و آب، تهران. ۷۵۰ صفحه.

۲- وزارت کشاورزی. ۱۳۶۸. راهنمای طبقه‌بندی آراضی برای کشت آبی. مؤسسه تحقیقات خاک و آب، تهران. ۴۰۰ صفحه.

۱- Reliability ۲- Smoothing effect ۳- Geographical Information System (GIS)