مدل‌سازی عددی انتقال رسوب معلق غیرچسبنده در رودخانه‌ها

(مطالعه موردی: رودخانه کرخه)

شاقيق باغنابور و سید محمود کاشیپور

(تاریخ دریافت: 1389/6/10؛ تاریخ پذیرش: 1390/6/27)

چکیده

رودهانه‌ها به علت منع اصلی تأمین آب مورد نیاز برای شرب و کشاورزی و صنعت از اهمیت زیادی برخوردارند؛ این مطلب لزوم مطالعه برای کنترل بهبود و رفع مشکلات مربوط به رودخانه‌ها را به‌وجود می‌آورد و دلیل جهاد می‌کند. رسوب موجود در جمه مواردی است که در این راستا مورد توجه قرار گرفته است. در این تحقیق انتقال رسوب معلق غیرچسبنده در رودخانه کرخه به‌کمک مدل عددی مطالعه شده است. معادلات هیدرودینامیکی سنت-توان و همچنین معادله انتقال-پخش برای مدل‌سازی جریان و انتقال رسوب متعلق مورد استفاده قرار گرفته‌اند. در معادله انتقال-پخش علاوه بر انتخاب معادله مناسب برای پرآورد و رسوب معلق در حالت تعادلی، لازم است تا ضریب پخش مناسب برای رودخانه مورد مطالعه تعیین شود. در این تحقیق 5 معادله رسوب معلق و 6 معادله برای تعیین ضریب پخش انتخاب شد. تعداد 30 ترکیب از این معادلات به‌عنوان مدل‌های یافته از این روش بر پایه گردیده‌ای با مقایسه نتایج بدست آمده از مدل‌های داده‌های اندوزه‌گیری شده در ایستگاه‌های شناخته شده، در مراحل و مستندی و صحت سنجی ملاحظه شد که ترکیب معادله رسانه‌ای و طبقه‌بندی فعالیت و مدل‌های انتقال-پخش پیش‌بینی نمایندگی را ارائه می‌کند. حداکثر دوصد نتیج در پرآورد غلظت رسوب متعلق در این حالت مدل‌های 19 و 26 بستر دو اکتیو در مراحل و مستندی و صحت سنجی بوده است.

واژه‌های کلیدی: رسوب معلق، رودخانه کرخه، معادله ADE، مدل FASTER، ضریب پخش طولی

1. گروه سازو‌های آبی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز
shbaghbanpour@yahoo.com

ب. مشمول مکاتبات، پست الکترونیکی:
مقدمه
امروزه علاوه بر رودخانه‌ها سایر منابع آبی نظیر آب‌های زیرزمینی، برای تأمین آب مورد نیاز شرق کشور رولینگوی و صنعت مورد استفاده و مصرف می‌شوند. اما همچنان رودخانه‌ها به عنوان اصلی‌ترین و برجسته‌ترین منبع در دسترس حائز اهمیت بوده و همین دلیل مطالعات و سرمایه‌گذاری‌های زیادی جهت بهبود وپارک‌داری بهره‌برداری کنترل و حفظ ان منابع انجام گرفته است. از جمله مواردی که در این مقاله توجه چاپ شدند در این مقاله بررسی و بررسی رودخانه‌ها چیست و چگونه رویکرد می‌شود، این مقاله مطالعه و تحقیق بار سریع‌ترین می‌شود. به همین دلیل مطالعات و سرمایه‌گذاری‌های زیادی جهت بهبود وپارک‌داری بهره‌برداری کنترل و حفظ ان منابع انجام گرفته است. از جمله مواردی که در این مقاله توجه چاپ شدند در این مقاله بررسی و بررسی رودخانه‌ها چیست و چگونه رویکرد می‌شود، این مقاله مطالعه و تحقیق بار سریع‌ترین می‌شود. به همین دلیل مطالعات و سرمایه‌گذاری‌های زیادی جهت بهبود وپارک‌داری بهره‌برداری کنترل و حفظ ان منابع انجام گرفته است. از جمله مواردی که در این مقاله توجه چاپ شدند در این مقاله بررسی و بررسی رودخانه‌ها چیست و چگونه رویکرد می‌شود، این مقاله مطالعه و تحقیق بار سریع‌ترین می‌شود. به همین دلیل مطالعات و سرمایه‌گذاری‌های زیادی جهت بهبود وپارک‌داری بهره‌برداری کنترل و حفظ ان منابع انجام گرفته است. از جمله مواردی که در این مقاله توجه چاپ شدند در این مقاله بررسی و بررسی رودخانه‌ها چیست و چگونه رویکرد می‌شود، این مقاله مطالعه و تحقیق بار سریع‌ترین می‌شود. به همین دلیل مطالعات و سرمایه‌گذاری‌های زیادی جهت بهبود وپارک‌داری بهره‌برداری کنترل و حفظ ان منابع انجام گرفته است. از جمله مواردی که در این مقاله توجه چاپ شدند در این مقاله بررسی و بررسی رودخانه‌ها چیست و چگونه رویکرد می‌شود، این مقاله مطالعه و تحقیق بار سریع‌ترین می‌شود. به همین دلیل مطالعات و سرمایه‌گذاری‌های زیادی جهت بهبود وپارک‌داری بهره‌برداری کنترل و حفظ ان منابع انجام گرفته است. از جمله مواردی که در این مقاله توجه چاپ شدند در این مقاله بررسی و بررسی رودخانه‌ها چیست و چگونه رویکرد می‌شود، این مقاله مطالعه و تحقیق بار سریع‌ترین می‌شود. به همین دلیل مطالعات و سرمایه‌گذاری‌های زیادی جهت بهبود وپارک‌داری بهره‌برداری کنترل و حفظ ان منابع انجام گرفته است. از جمله مواردی که در این مقاله توجه چاپ شدند در این مقاله بررسی و بررسی رودخانه‌ها چیست و چگونه رویکرد می‌شود، این مقاله مطالعه و تحقیق بار سریع‌ترین می‌شود. به همین دلیل مطالعات و سرمایه‌گذاری‌های زیادی جهت بهبود وپارک‌داری بهره‌برداری کنترل و حفظ ان منابع انجام گرفته است. از جمله مواردی که در این مقاله توجه چاپ شدند در این مقاله بررسی و بررسی رودخانه‌ها چیست و چگونه رویکرد می‌شود، این مقاله مطالعه و تحقیق بار سریع‌ترین می‌شود. به همین دلیل مطالعات و سرمایه‌گذاری‌های زیادی جهت بهبود وپارک‌داری بهره‌برداری کنترل و حفظ ان منابع انجام گرفته است. از جمله مواردی که در این مقاله توجه چاپ شدند در این مقاله بررسی و بررسی رودخانه‌ها چیست و چگونه رویکرد می‌شود، این مقاله مطالعه و تحقیق بار سریع‌ترین می‌شود. به همین دلیل مطالعات و سرمایه‌گذاری‌های زیادی جهت بهبود وپارک‌داری بهره‌برداری کنترل و حفظ ان منابع انجام گرفته است. از جمله مواردی که در این مقاله توجه چاپ شدند در این مقاله بررسی و بررسی رودخانه‌ها چیست و چگونه رویکرد می‌شود، این مقاله مطالعه و تحقیق بار سریع‌ترین می‌شود. به همین دلیل مطالعات و سرمایه‌گذاری‌های زیادی جهت بهبود وپارک‌داری بهره‌برداری کنترل و حفظ ان منابع انجام گرفته است. از جمله مواردی که در این مقاله توجه چاپ شدند در این مقاله بررسی و بررسی رودخانه‌ها چیست و چگونه رویکرد می‌شود، این مقاله مطالعه و تحقیق بار سریع‌ترین می‌شود. به همین دلیل مطالعات و سرمایه‌گذاری‌های زیادی جهت بهبود وپارک‌داری بهره‌برداری کنترل و حفظ ان منابع انجام گرفته است. از جمله مواردی که در این مقاله توجه چاپ شدند در این مقاله بررسی و بررسی رودخانه‌ها چیست و چگونه رویکرد می‌شود، این مقاله مطالعه و تحقیق بار سریع‌ترین می‌شود. به همین دلیل مطالعات و سرمایه‌گذاری‌های زیادی جهت بهبود وپارک‌داری بهره‌برداری کنترل و حفظ ان منابع انجام گرفته است. از جمله مواردی که در این مقاله توجه چاپ شدند در این مقاله بررسی و بررسی رودخانه‌ها چیست و چگونه رویکرد می‌شود، این مقاله مطالعه و تحقیق بار سریع‌ترین می‌شود. به همین دلیل مطالعات و سرمایه‌گذاری‌های زیادی جهت بهبود وپارک‌داری بهره‌ب
سازندگان معادله به فرضیات وتیناً معادله به فرضیات مسائل
کوچک نیم‌مایه معطو دارد، یا کمتر امامی در جهت دست‌یافتن و دی‌می‌توانست مسائل و مسائل را می‌توانست

جزء اول معادله (۱) پیوستگی و جوز دوم مسئول نامیده می‌شوند. در این معادلات این سطح مقطع جریان Q، دیگر جریان
و جریان ورودی یا خروجی جانبه در هر نقطه آرامه شیب نقطه، شیب خط انرژی Sی که کفاتی کلیت در جهت جریان و تغییر

زمان است.

اساس استنتاج این روابط بر راپایی فرضیات بنیادی زیر است:
۱. جریان یک‌بعدی است، به طور مقطع سرعت یک‌واخت
و بروز سطح آب افقی است.
۲. انحجای خطوط جریان بسیار کم و سرعت عمودی جریان ناجی می‌باشد. در نتیجه توسعه فشار هیدرواستاتیک است.
۳. انتظار انرژی در جریان غیردائم را می‌توان با استفاده از معادله موافقویت جریان‌های دائم نظیر معادله شری با ماتیگ یا متشابه کرد.

\[\sin \theta = \tan \phi \quad \text{و} \quad \cos \theta = \sin \phi \]

۴. شیب کفت کالر کم است و ۱ = \phi زاویه بین کفت کالر و خط افق می‌باشد. برای این صورت انرژی که به‌طور عمودی از کفت کالر به پایین در قائم اندازه‌گیری می‌شود باید تقریباً یکسان می‌باشد.

معادله دینامیکی‌های توان جریه در قابل رابطه انتقال پخش براز حالت یک‌بعدی و یک‌بعدی، به اساس مدل سازی کیفی آپ می‌باشد؛ که با کارگری روی فیکت بار شار جریان مثبت ایجاد می‌کند و معادله یک‌بعدی انتقال پخش را می‌توان به‌صورت معادله (۲) نوشت:

\[\frac{\partial (SA)}{\partial t} + \frac{\partial (SQ)}{\partial x} - \frac{\partial}{\partial x} \left[AD_L \frac{\partial S}{\partial x} \right] = 0 \]

\[S_T + \frac{QL S_L}{\delta} = \frac{t}{\varepsilon} \]

سازندگان معادله به فرضیات و بنیاد معادله به فرضیات مسائل کوچک نیم‌مایه معطو دارد، یا کمتر امامی در جهت دست‌یافتن و دی‌می‌توانست مسائل و مسائل را می‌توانست

جزء اول معادله (۱) پیوستگی و جوز دوم مسئول نامیده می‌شوند. در این معادلات این سطح مقطع جریان Q، دیگر جریان
و جریان ورودی یا خروجی جانبه در هر نقطه آرامه شیب نقطه، شیب خط انرژی Sی که کفاتی کلیت در جهت جریان و تغییر

زمان است.

اساس استنتاج این روابط بر راپایی فرضیات بنیادی زیر است:
۱. جریان یک‌بعدی است، به طور مقطع سرعت یک‌واخت
و بروز سطح آب افقی است.
۲. انحجای خطوط جریان بسیار کم و سرعت عمودی جریان ناجی می‌باشد. در نتیجه توسعه فشار هیدرواستاتیک است.
۳. انتظار انرژی در جریان غیردائم را می‌توان با استفاده از معادله موافقویت جریان‌های دائم نظیر معادله شری با ماتیگ یا متشابه کرد.

\[\sin \theta = \tan \phi \quad \text{و} \quad \cos \theta = \sin \phi \]

۴. شیب کفت کالر کم است و ۱ = \phi زاویه بین کفت کالر و خط افق می‌باشد. برای این صورت انرژی که به‌طور عمودی از کفت کالر به پایین در قائم اندازه‌گیری می‌شود باید تقریباً یکسان می‌باشد.

معادله دینامیکی‌های توان جریه در قابل رابطه انتقال پخش براز حالت یک‌بعدی و یک‌بعدی، به اساس مدل سازی کیفی آپ می‌باشد؛ که با کارگری روی فیکت بار شار جریان مثبت ایجاد می‌کند و معادله یک‌بعدی انتقال پخش را می‌توان به‌صورت معادله (۲) نوشت:

\[\frac{\partial (SA)}{\partial t} + \frac{\partial (SQ)}{\partial x} - \frac{\partial}{\partial x} \left[AD_L \frac{\partial S}{\partial x} \right] = 0 \]

\[S_T + \frac{QL S_L}{\delta} = \frac{t}{\varepsilon} \]

سازندگان معادله به فرضیات و بنیاد معادله به فرضیات مسائل کوچک نیم‌مایه معطو دارد، یا کمتر امامی در جهت دست‌یافتن و دی‌می‌توانست مسائل و مسائل را می‌توانست

جزء اول معادله (۱) پیوستگی و جوز دوم مسئول نامیده می‌شوند. در این معادلات این سطح مقطع جریان Q، دیگر جریان
و جریان ورودی یا خروجی جانبه در هر نقطه آرامه شیب نقطه، شیب خط انرژی Sی که کفاتی کلیت در جهت جریان و تغییر

زمان است.

اساس استنتاج این روابط بر راپایی فرضیات بنیادی زیر است:
۱. جریان یک‌بعدی است، به طور مقطع سرعت یک‌واخت
و بروز سطح آب افقی است.
۲. انحجای خطوط جریان بسیار کم و سرعت عمودی جریان ناجی می‌باشد. در نتیجه توسعه فشار هیدرواستاتیک است.
۳. انتظار انرژی در جریان غیردائم را می‌توان با استفاده از معادله موافقویت جریان‌های دائم نظیر معادله شری با ماتیگ یا متشابه کرد.

\[\sin \theta = \tan \phi \quad \text{و} \quad \cos \theta = \sin \phi \]

۴. شیب کفت کالر کم است و ۱ = \phi زاویه بین کفت کالر و خط افق می‌باشد. برای این صورت انرژی که به‌طور عمودی از کفت کالر به پایین در قائم اندازه‌گیری می‌شود باید تقریباً یکسان می‌باشد.

معادله دینامیکی‌های توان جریه در قابل رابطه انتقال پخش براز حالت یک‌بعدی و یک‌بعدی، به اساس مدل سازی کیفی آپ می‌باشد؛ که با کارگری روی فیکت بار شار جریان مثبت ایجاد می‌کند و معادله یک‌بعدی انتقال پخش را می‌توان به‌صورت معادله (۲) نوشت:

\[\frac{\partial (SA)}{\partial t} + \frac{\partial (SQ)}{\partial x} - \frac{\partial}{\partial x} \left[AD_L \frac{\partial S}{\partial x} \right] = 0 \]

\[S_T + \frac{QL S_L}{\delta} = \frac{t}{\varepsilon} \]
سیال ρ, β دانه‌ای جرمی رسوبات، S شبکه سطح آب با شبکه برقرار کننده $	heta$, $	heta_0$ سرعت متوسط سفیدی مواد بر سطح D_s قطر ذرات U, S, F و ρ، است. Δ چنانکه برای محاسبه هر یک از فاکتورهای روابط ارائه کرده است به هر گروه به بپردازی و استفاده و در جدی مخلوط محاسباتی به دست می‌آید. این روش از پرکاربردترین روشهای محاسباتی بر مبنای استراتژی s خبره‌کننده با توجه به یک گراف به‌دست می‌آید. در این گراف برای مثال T زیر به‌کار گرفته شده‌اند (14):

$T_c = \frac{\tau_c}{(\gamma - \gamma)} D_s$

$KL \phi_s = f(T_c)$

همچنین مقدار که به ایجاد مقادیر مختلف τ_c به‌طوری‌که τ_c نشک برای بررسی جریانی است که از $\frac{\tau_c}{(\gamma - \gamma)} D_s$ شامل از جداولی که برای این منظور تهیه شده به‌دست می‌آید. مقادیر مختلف τ_c برای یافتن $\frac{\tau_c}{(\gamma - \gamma)} D_s$ قابل استخراج است، و در نهایت با انجام مراحل فوق و معلوم شدن مقادیر ϕ_s، بر مبنای محاسبه خواهد بود. در مدل این گراف با توجه به پارامترهای مربوط به یک رابطه ریاضی بدیل شده و در نهایت این رابطه به مدل معرفی شده است (7 و 9).

مواد و روش‌ها

برای مدلهای روبه‌روی مقدار سطح در مقاله گزارشگر دریایی، به وسیله یک محاسبه‌گر برای محاسبه داده‌های از رودخانه که در این تحقیق انتخاب شده از استمال پایدار که به جمع‌بسته است. به یک حرکت به‌طور بی‌نظیر استفاده می‌گردد. ایستگاه‌های داده‌گیری و اطلاعات مورد نیاز شامل اطلاعات دهمترا و مقداری از سازمان آب و برق خوزستان تهیه شده است. مدلی که در این تحقیق مورد استفاده قرار گرفت، مدل Yeh باشد. این مدل توسعه کاشی‌پور (2001) برای شبیه‌سازی جریان و انفعال در رابطه فوق تمر 1 تأثیر مدلی، تمر 2 تأثیر مدلی، تمر 3 تأثیر به‌وسیله یک محاسبه‌گر، تمر 4 مبنای اساسی، افزایش‌دهنده آندامگی و تمر 5 مقدار آنها به رود و یا خروجی جانی به‌دست می‌آید.

در رابطه (2) S, Δ نمایش‌دهنده مقدار متوسط Δ سطح S_f نمایش‌دهنده مقدار جریان و روابط Δ و ϕ_s به‌صورت رابطه (2) در معادله انفعال پخش قرار می‌گیرد (18):

$S_f = \gamma \rho W (S_c - S)$

در این مدل Δ, W, ρ و S_c مقدار سطح در q به‌صورت γ مقدار روبه‌روی q_s مقدار روبه‌روی به در F مقدار روبه‌روی محاسبه بر مبنای D_s و Δ بر مبنای به‌دست می‌آید. γ به‌صورت $\gamma = 1/16 \frac{q_s}{q}$ در این تحقیق روابطی که برای محاسبه ضریب یکسان به روابط Δ: $\beta = \frac{\Delta}{\Delta}$ (Lateral Dispersion Coefficient) Δ تابعی از نوارهای پخش موکولی و شرایط هیدرولیکی است. برای محاسبه ضریب پخش Δ روابطی جزئی زایده برای شده است. در این تحقیق روابطی که برای محاسبه ضریب یکسان به روابط Δ: $\beta = \frac{\Delta}{\Delta}$ (Lateral Dispersion Coefficient) Δ تابعی از نوارهای پخش موکولی و شرایط هیدرولیکی است. برای محاسبه ضریب پخش Δ روابطی جزئی زایده برای شده است. در این تحقیق روابطی که برای محاسبه ضریب یکسان به روابط Δ: $\beta = \frac{\Delta}{\Delta}$ (Lateral Dispersion Coefficient) Δ تابعی از نوارهای پخش موکولی و شرایط هیدرولیکی است. برای محاسبه ضریب پخش Δ روابطی جزئی زایده برای شده است.
جدول 1. روابط ارائه شده تجریبی و نیمه تجریبی برای تخمین ضربی پخش‌دهنده طولی و دیگر محاسبات در شرایط تصادفی

معادله روب متعلق به	ضرب پخش (D_H)
q_s = \frac{\alpha (1 - \alpha) \beta \beta \beta}{(\rho_s - \rho) \cos \beta} \left[\frac{W}{U} \right] - \tan \beta	گیتولوک (1964)
q_s = \sqrt{\frac{(UHS)'}{\Delta D_s \omega}}	واپ و همکاران (1964)
q_s = FU_s HS_s	فیشر و همکاران (1979)
\phi_s = \frac{q_s}{\gamma_s D_s \sqrt{\gamma_s - \gamma s g D_s}}	فان رایان (1982)
D_L = \frac{U^W}{HU_s}	ساماء و همکاران (1986)
D_s = \frac{U_s}{U}	سنو و چونگک (1998)
q_s = \frac{U^W}{U} < \frac{U_s}{U} \left(\frac{m}{s} \right)	کاشی‌پور و فالکنر (2002)
q_s = \frac{U^W}{U} > \frac{U_s}{U} \left(\frac{m}{s} \right)	کولسین و میراکس (1998)

ارتفاع ارائه شده، مشهور به Staggered روش تکولون، بیشتر همراه با اندازه شیبی که متغیر می‌کند. روش دو دیده مورد استفاده یک روش غیر عادی است. در مدل FASTER، دیمانیکی لی مدل روشی دقيق برای حل شیب‌سازی. روشهای Visual Fortan و Quickest Scheme برای بدست آوردن روش دقيق استفاده می‌شود. FASTER برای بررسی محاسبات مدل روابط همایش شده است. این نیاز به ارائه روش‌هایی برای ایجاد مدل مطالعات و محاسبات ضرایب پخش وارد شده و در هنگام اجرای مدل برنامه فراخوانی آن و مدل‌های استفاده می‌کند. همچنین برای کافی از مدل‌های داده‌های ارتباطی زیر برنامه معرفی شده که از این طریق مدل قادیر به تیزی دادن نتایج در اجرای مدل می‌باشد.

املاح در روندهای و خلیج بسته داده شده است. این مدل به زبان Fortran نوشته شده و در محیط‌های هم‌بوده، که همیشه پایدار است. در مدل FASTER و Quickest Scheme، روشهای دقيق برای حل شیب‌سازی و مدل‌های محاسبات صحت‌سنجی انتخاب شده است. استفاده پاییز به عنوان مرز بالادست و استفاده حمایدیه همزمان با این دستور نظر گرفته شده. همچنین استفاده نهایی در شیب‌سازی می‌باشد.

(برای مقایسه نتایج مدل و مقاله انتدازه‌گیری شده می‌باشد.)
دانش‌جویان مورد انتخاب، از این نظر برای اجرای مدل مورد استفاده قرار گرفته‌اند. برای این‌که مدل مورد استفاده قرار گرفته‌اند، به‌طور کلی مدل مورد استفاده قرار گرفته‌اند و در مجموع 30 آزمایش گردید. در شکل 1-1، مورد نظر از روش‌های کرک، شامل این است.‌یکه‌ها: عدل‌النگ، و حمید‌ها نjah داده شده است.

نتایج و بحث

واستنی و صحبت‌سنجی بخش هیدرودینامیک مدل

برای ماحاسبه بار معلق، در ابتدا از است معادلات جریان شامل معادله پیوستگی و مونتود حل شود. سپس با استفاده از نتایج حاصل از حل این دو معادله، که عمک و سرعت جریان در گره‌های زمانی دلخواه است. می‌توان از معادله انتقال‌یافتن برای بدست آوردن سرعت فعلی، استفاده گردید. مدل FASTER

و استنی شده. همان‌طوری که دیده می‌شود پرایکن‌گی نقاط اطراف

خط 25 درجه گویای دقت مدل در بروآورد ارتفاع سطح آب و

برای RMSE، همچنین مقدار درصد خطای و با یکدیگر ارتفاع سطح آب در مرحله صحبت‌سنجی به‌طور کلی

باید 18/24/0/13 و برای دیگر باید با دقت

بالایی در مرحله صحبت‌سنجی ارتفاع سطح آب و دیگر را

پیش‌بینی نماید. به‌طور کلی، این نتایج برای انتخاب بدن

برای مدل مورد استفاده قرار گرفته‌اند. مقدار معیار این ضریب 28/60/0 انتخاب شد.

1281

2020
جدول ۱. برای مساحت آب‌های ازای جنگی مقدار RMSE و E\% در مرحله واسطی مدل

<table>
<thead>
<tr>
<th>RMSE</th>
<th>E%</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/0</td>
<td>6/28</td>
<td>۴/0۲۷</td>
</tr>
<tr>
<td>13/0</td>
<td>6/09</td>
<td>۴/0۲۸</td>
</tr>
<tr>
<td>18/0</td>
<td>7/98</td>
<td>۴/۰۲۹</td>
</tr>
</tbody>
</table>

شکل ۱. بازه مورد مطالعه رودخانه کرخه و ایستگاه‌های هیدرومتری واقع بر آن

شکل ۲. مقایسه مساحت آب پیش‌بینی و اندام‌گیری شده در ایستگاه وادالخان در مرحله واسطی
شکل ۲ مقایسه دبی پیش‌بینی و اندازه‌گیری شده در استگاه عبدالعلی‌خان در مرحله سمت جنوبی

شکل ۳ مقطع آب پیش‌بینی و اندازه‌گیری شده در استگاه عبدالعلی‌خان در مرحله سمت جنوبی

شکل ۵ دبی پیش‌بینی و اندازه‌گیری شده در استگاه عبدالعلی‌خان در مرحله سمت جنوبی
شکل 6 همبستگی بین نتایج مدل و مقادیر اندازه‌گیری شده نسبت به حالت 45 درجه برای سطح آب در مرحله صحت سنجی

ایستگاه عبدالقادر استفاده شده است. بر این اساس اندادار D_{16} متوسط ذرات (D_{50}), D_{90} به ترتیب D_{90} و D_{50} به‌دست آمده و چگالی وزنه ذرات رسوپ (SG) نیز برای $2/25$ در نظر گرفته شده است. متوسط دمای آب در باره مورد مطالعه برای 24 درجه سانتی‌گراد بوده است. که برای اساس لژت سینماتیکی آب برای $0/1$ متر متغیر بر ثانیه می‌باشد. علائم رسوپ به مرحله اندازه‌گیری شده در اینستگاه با استفاده از عوامل مورد بالادست و در ایستگاه عبدالقادر به عنوان ایستگاه شاخص مورد برآورد مدل کمتر از مرحله واسطه شود اما احتمالاً به دلیل کفیت داده‌ها برداشت شده و یا شرایط به‌خصوص جریان در اینجا دقت مرحله صحبت سنجی حتی از واسطه هم بیشتر شده است.

پس از حل معادلات هیدرودینامیکی جریان، مدل $FASTER$ می‌تواند محاسبات مربوط به برآورد رسوپ را انجام دهد.

ورودی‌ها و اطلاعات مورد نیاز مدل برای برآورد میزان رسوپ معلق شامل اندازه‌های ذرات جریان، چگالی و وزنه ذرات و لژت سینماتیکی آب است. برای اندازه‌گیری ذرات از منحنی دانه‌بندید
عکس شماره 8 نمودار غلظت رسوب پیشرفتی شده با مدل رسوب فانراوان و ضریب پخش فیشر، با مقادیر اندازه‌گیری شده در ایستگاه عبدالخان برای مرحله واسنجی

عکس شماره 9 نمودار غلظت رسوب پیشرفتی شده با مدل رسوب فانراوان و ضریب پخش فیشر، با مقادیر اندازه‌گیری شده در ایستگاه عبدالخان برای مرحله صحت-سنگی

را بطريقة تخمین ضریب پخش طولی بوده‌اند. نتایج حاصل از مدل و مقادیر اندازه‌گیری شده در شکل‌های 8 و 9 برای مراحل واسنجی و صحت-سنگی نشان داده شده‌اند. همان‌طور که ملاحظه می‌گردد مدل قادر بوده است غلظت رسوب معلق را به خوبی شبیه‌سازی نماید. لازم به توضیح است رابطه رسوب معلق نشان‌دارد. اینکه از بررسی‌های هم جامعه عوامل مختلف و مؤثر استفاده قرار گرفته‌است. مدل برای ترکیب‌های مختلفی از روابط تجربی تخمین رسوب معلق در شرایط تعادلی و فرمول‌های ترکیب برآورد ضریب پخش طولی (جدول 1) اجرا شده. بهترین ترکیب روابط در معادله دینامیکی ADE که کمترین خطأ را در مقایسه بین غلظت رسوب معلق حاصل از مدل و مقادیر مشابه اندازه‌گیری شده، داده، روابط فانراوان و فیشر به ترتیب برای رابطه تجربی برآورد دنبال رسوب معلق در شرایط تعادلی و
جدول 3: برای ترکیب معادله رسوپ فاقدانیان و ضرایب پخش مختلف در مرحله و استنی مدل RMSE و E% مدل ضرب پخش

<table>
<thead>
<tr>
<th>RMSE</th>
<th>E%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/05</td>
<td>24</td>
</tr>
<tr>
<td>0/08</td>
<td>44</td>
</tr>
<tr>
<td>0/06</td>
<td>48</td>
</tr>
<tr>
<td>0/05</td>
<td>19/56</td>
</tr>
<tr>
<td>0/02</td>
<td>52/32</td>
</tr>
<tr>
<td>0/02</td>
<td>52/34</td>
</tr>
</tbody>
</table>

جدول 4: برای ترکیب معادله رسوپ فاقدانیان و ضرایب پخش مختلف در مرحله صحت سنجی مدل RMSE و E% مدل ضرب پخش

<table>
<thead>
<tr>
<th>RMSE</th>
<th>E%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/05</td>
<td>53</td>
</tr>
<tr>
<td>0/07</td>
<td>52</td>
</tr>
<tr>
<td>0/08</td>
<td>52</td>
</tr>
<tr>
<td>0/04</td>
<td>26/3</td>
</tr>
<tr>
<td>0/08</td>
<td>64</td>
</tr>
<tr>
<td>0/09</td>
<td>64</td>
</tr>
</tbody>
</table>

شکل 10: مقایسه همیشگی بین نتایج مدل و مقادیر اندازه‌گیری شده در مرحله و استنی مدل

برای حکمت رسوپ برخوردار است، نشان داد که در کلیه حالات و اجراهاي برنامه در هر ترکیبی با معادلات تجربی ضرایب پخش کمترین خطای را دارد. نتایج نشان داده است که استفاده از سایر مدل‌های بروارد رسوپ متعلق در شرایط تعلیمی می‌تواند میزان اشتیاق در بروارد غلظت رسوپ متعلق را تا پیش از 2 برابر یا 100 خطا بررساند. بنابراین می‌توان یک مدل ارائه شود. درصد خطا و مقدار RMSE بمزیاتید این مدل ارائه شود. درصد خطا و مقدار ADE در جدول 3 و 4 برای ترکیب براین مدل و استنی و صحت سنجی آمده است. شکل 10 و 11 مقایسه همیشگی
شکل 11. مقایسه همیستگی بین نتایج مدل و مقادیر اندازه‌گیری شده در مرحله صحت‌مندی مدل

برای زیری مانند در این مدل برای منطقه مورد مطالعه با حالت هیدرودانامیک جریان و استاتیک شد، با انتخاب دو عناصر مقدار این ضریب 0/28 در رودخانه کرخه برآورد شد. سپس گرفتار معقل غیرچسبنده با قرار دادن معادلات مختلف روابط یک خش خش مختلف در معادله اندازه‌گیری پخش مدل از گردیده. با توجه به مقایسه نتایج مدل با مقادیر اندازه‌گیری شده گفتار معقل و همچنین با استاندارد RMSE (را برای هر دو دوره انتخاب شده نشان می‌دهد، واضح است که معادله برآورد دی مدل معقل در شرایط معادله فن رابین و معادله یک تخمین ضریب پخش طولی نباید از انتخاب دی مقدماتی انتخاب دی انتخاب-پخش یا برای Ade می‌توان از موارد بسیاری از آنها گذار کرد، حال آنکه جدول 2/4 نشان می‌دهد که روابط ناسیابی می‌تواند 0/4 درصد در دقت برآورد Ade مدل گفتار معقل مدل بهبود ایجاد نماید.

نتیجه‌گیری

در این تحقیق تلاش شد با حل عده مدلی معادله انتخاب-پخش گفتار معقل غیرچسبنده در رودخانه کرخه مدل سازی می‌کنند و استفاده شده است. پیش از اجرای مدل برای برآورد گفتار معقل مدل هر دو نشان می‌دهد

56