تصنیف آپه‌های آلوده به نیترات با استفاده از میکرو و نانوساختارهای جاذب پوشال نیشکر

معصومه فرامشی، سعید برمندن‌سپه، جهانگیر عابدی کوهلی، نعمة الله جعفرزاده، هادی معاوض و مرتضی سیدیان

چکیده
در این بررسی اثر جاذب‌های میکرو و نانوساختار پوشال نیشکر اصلاح شده به منظور حذف نیترات مورد بررسی قرار گرفت. پارامترهای مختلفی از جمله زمان تعادل، pH، چرخ جاذب، غلظت نیترات ورودی و وجود سایر پونه‌های رقابتی روی جذب نیترات مورد آزمایش قرار گرفت. pH به‌عنوان یکی از مهم‌ترین پارامترهای برای تعیین حذف نیترات مورد بررسی قرار گرفت. در این پژوهش، به‌منظور تعیین pH به‌کار رفت. در هر یک از سه جفت pH، حیاتی بود که در جذب میکرو از 89 به 70 درصد کاهش یافته است. نتایج به‌سمت آمده از آزمایش‌های جذب نیترات از سرپیلیک هم‌و هم‌نامتوان گرم بسته‌بندی 120 و 150 محیط گرم بر لیتر نیترات به‌ترتیب ظرفیت جذب برابر (2/190/53 و 10/25 و 1/8/47 و 0/39 محیط گرم بر لیتر) به‌دست آمد. نتایج این مطالعه نشان داد که جاذب‌های میکرو و نانوساختار پوشال نیشکر باعث اصلاح شده قابلیت حذف پونه‌های نیترات را در حذف نیترات دارا بوده و از بین دو مفیس، جاذب نانوساختار جذب بالاتری داشت.

واژههای کلیدی: ذرات نانوساختار، پوشال نیشکر، آپه‌های آلوده به نیترات، حذف نیترات

1. گروه مهندسی آب، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه
2. گروه آب‌‌و‌خاک‌های دانشگاه مهندسی علوم آب، دانشگاه شهید چمران اهواز
3. گروه مهندسی آب، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
4. دانشکده آب‌های نهادی، مرکز تحقیقات فناوری‌های زیر تختی، دانشگاه علوم پزشکی جنید شاپور اهواز
5. گروه آب‌‌و‌خاک‌های دانشگاه کشاورزی، دانشگاه کردستان، کردستان
6. مسئول مکاتبات، پست الکترونیکی farasati2760@gmail.com
مقدمه

نیتروژن یکی از عناصر اصلی بی‌فیلدهای کشاورزی می‌باشد. از آنجا که این عنصر به حد کافی در خاک وجود ندارد، جهت تأمین نیاز گیاهان، کشاورزان مجبور به استفاده از کود نیتروژنی، نیتروژن آلی، نیترات آمونیوم و نیترات می‌باشند. سروشنتی نیترات بسیار طبیعی بوده و ممکن است قبل از ورود به آب‌های زیرزمینی دستخوش تغییرات شیمیایی معطوف گردد. نیترات به دلیل قابلیت حل‌بندی بسیار بالا و عدم تهیه‌نشت در توسط خاک در صورت کاربرد زیاد و همچنین آب‌ایری بیش از حد به راحتی به خارج از ناحیه ریشه حربه می‌کند. بنابراین نفوذ آب به خاک از طریق آب‌ایری و با بارندگی به راحتی نیترات را به طور کیفی گذب نشده باشد با آب‌های زیرزمینی منتقل می‌کند. در تحقیقات گسترده‌تری نیترات آب‌های زیرزمینی در مناطق زیست‌های خشک‌سالاری نصب‌گردند. نیترات شسته شده از طریق زیست‌های زیرسطحی به آب‌های سطحی انتقال می‌یابد (3،7).

مواد و روش‌ها

برای سیدن به اهداف این تحقیق، آزمایش‌ها در دانشکده مهندسی علوم آب، دانشگاه شهید چمن آموزش‌و‌پرورش گردید. برای آماده‌سازی ماده اولیه، گیاه روغن‌نای زیرکر در مزرعه توسه یک نیترات اطراف از زمین نهادی و پس از زمان خشک کردن، این مواد پس از خشک شدن توسط آسیاب گلوله‌ای (لوس انجلس) به اندازه‌ی حد میکرو (کمتر از 335 میکرو) و نانو‌ساختار (237/50 نانومتر) خرد گردیدند. برای تهیه ذرات میکرو، جاذب به مدت 2 ساعت و برای تهیه ذرات نانو‌ساختار، جاذب به مدت 7 ساعت در دستگاه آسیاب گلوله‌ای قرار داده شد. پس از تهیه ذرات میکرو و نانو ساختار، نیترات به صورت اکسیژن و شعله‌ای خانیت بادل آنیوی و جاذب‌ها مناسب قرار گرفت. اکسیژن بوده که در مرحله انجام‌گیرد. در مهای 70 میلی‌لیتر اکسی‌ژن در نیترات بوده‌این (Ethylchlorohydrin) (150 میلی‌لیتر، 1/5 مسیر) و 250 میلی‌لیتر Methano را هم ترکیب کرده و در دمای 55 درجه سانتی‌گراد به مدت 5 ساعت قرار داده شد تا به هم واکنش دهد. پس از گذشت زمان ذکر شده، ماده‌های بدست آمده در مرحله دوم مورد استفاده قرار گرفت. در مرحله دوم، 5 مولار آماده‌شده از گذشت زمان ذکر شده، ماده‌های بدست آمده از مرحله 10 المولی لیتر از ماده به دست آمده از مرحله 1 1/5 مولی لیتر از ماده به دست آمده از مرحله 1 250 میلی‌لیتر ریخته و به مدت 3 ساعت در دمای 25 درجه سانتی‌گراد داده شد. نتایج محصول تولید شده را با آب مصرفی زیرا

84
آزمایش‌های جذب نانوپوسته
بنابراین، آزمایش‌های جذب نانوپوسته با استفاده از محصول تعادلی با استفاده از جذب پوشان نیشکر اصلاح شده در دو مقیاس میکرو و نانوساختاری تحت شرایط: زمان تعادل (15-20 اکتیور) و غلظت اولیه نیترات (12-16) میلی‌گرم بر لیتر مورد بررسی قرار گرفت. نمونه‌ها به مدت 30 دقیقه در دقت 500 درجه سانتی‌گراد شده و سپس از کاغذ صافی دور داده و توسط دستگاه اسپراکتورها مورد آنالیز قرار گرفته‌اند. درصد باندها جذب و میزان جذب نیترات به‌عنوان ترتیب (1) و (2) تعیین گردید.

\[R\% = \frac{C_i - C_f}{C_i} \times 100 \]

\[q = \frac{C_i - C_f}{m} \times V \]

که در روابط بالا: \(q \) میزان جذب ماده حلال‌شده در واحد mg/gram جذب (mg/g) غلظت اولیه ماده حلال‌شده (L) غلظت باقی‌مانده ماده حلال‌شده (mg/L) حجم محلول (L) غلظت برداشته (mg/g) مقدار جذب (mg/g) نانوپوسته (تیتانیوم کاترنات) فرآیند جذب، مدل سیستمی مربوطه اول لاجرگنر(Lagergren’s pseudo-first-order) و انتشار درون ماترکس (Ho’s pseudo-second-order) دوم هرود (intra-particle diffusion) به منظور انگیزه آزمایش‌های سیستمی از نیترات با غلظت 120 میلی‌گرم بر لیتر استفاده گردید. یکی از مدل‌های ساده سیستمی جذب، مدل سیستمی مربوطه اول لاجرگنر می‌باشد که

\[\frac{t}{q_i} = \frac{1}{k_1 q_i} + \frac{t}{q_e} \]

\[\frac{t}{q_i} = \frac{1}{k_2 q_i} + \frac{t}{q_e} \]

که در رابطه بالا: \(q_i \) میزان جذب ماده حلال‌شده در واحد (mg/g) نانوپوسته (تیتانیوم کاترنات) فرآیند جذب، مدل سیستمی مربوطه اول لاجرگنر(Lagergren’s pseudo-first-order) و انتشار درون ماترکس (Ho’s pseudo-second-order) دوم هرود (intra-particle diffusion) به منظور انگیزه آزمایش‌های سیستمی از نیترات با غلظت 120 میلی‌گرم بر لیتر استفاده گردید. یکی از مدل‌های ساده سیستمی جذب، مدل سیستمی مربوطه اول لاجرگنر می‌باشد که

\[\log(q_e - q_i) = \log q_e - \frac{k_l t}{V} \]

\[t = \frac{1}{k_2} \ln \left(\frac{q_i}{q_e} \right) \]
جدول 1. غلظت‌های کاتیون‌ها و اتیون‌های آب رودخانه و آب چاه مورد استفاده (غلظت‌ها به حسب میلی‌گرم بر لیتر می‌باشند)

<table>
<thead>
<tr>
<th>آب چاه</th>
<th>آب رودخانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>87/1</td>
<td>120</td>
</tr>
<tr>
<td>70</td>
<td>272/5</td>
</tr>
<tr>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>366</td>
<td>225/5</td>
</tr>
<tr>
<td>2/5</td>
<td>0/5</td>
</tr>
</tbody>
</table>

نتایج و بحث

نتایج آنالیز دانه‌بندی درای برای جاذب پوشال نیشکر به صورت ذرات نانوساختار در شکل 2 آورده شده است. با توجه به شکل 2، متانی و نانوستاند از توزیع نرم‌الارک بوده و هم‌زمان در بالای قطر کمتر از 270/5 نانومتر می‌باشند. جاذب‌های میکرو نیز با عبور از الک 50 (133 میکرون) به دست آمده.

جاذب‌های اصلاح شده به دلیل حضور گروه‌های آمونیوم در زنجیره پلیمر دراز و اکشن‌پذیری بالا و پایداری شیمیایی بوده و نقاطی تاییدگذاری به عنوان تابع دارای گروهی عناصر شکل و نیشکر قبل و بعد از اصلاح را در دو مقياس میکرو و نانو‌ساختار در شکل 3 و 4 نشان داده شده است. هم‌مان‌طور که در شکل 3 مشاهده می‌گردد، منافذ و فرخ در جاذب

املاح شده به‌شکل گردیده که نشان‌دهنده تنها نیشکر جاذب در جذب نیترات می‌باشد. با توجه به شکل 2 در حالت اصلاح شده (ب) سطح جاذب نانوساختار ترم‌دار گردیده و منافذ عمیق‌تر گردیده‌اند که نشان‌دهنده حذف ناخالصی‌های آن و قابلیت جذب پتانت‌نیترات توسط جاذب تیپ باشند. نتایج مشابه توسط وانگ و همکاران (20) به‌دست آمده‌است. جدول 1 خصوصیات فیزیکی جاذب مورد مطالعه را نشان می‌دهد.

نتایج آزمایش‌های تنابنده

الف) نتایج تغییرات pH بهبود شکل 5 تغییرات بارده حذف با را برای جاذب‌های مورد مطالعه نشان می‌دهد. همان‌طور که pH مشاهده می‌گردد در جاذب میکرو، با افزایش pH محلول از 2 تا 5 بارده حذف از 38 درصد تا 46 درصد افزایش یافته است.
تصویب آب‌های آلوده به نیترات با استفاده از میکرو و نانوساختارهای...

شکل ۲. توزیع اندازه ذرات نانوساختار جذب بوشال نیشکر

شکل ۳. تصاویر SEM از جاذب میکرو ساختار قبل از اصلاح (الف) و پس از اصلاح (ب)

شکل ۴. تصاویر SEM از جاذب نانوساختار قبل از اصلاح (الف) و پس از اصلاح (ب)

شکل ۵. تغییرات بازدهی جذب با تغییرات pH برای جاذب‌های مورد مطالعه
با توجه به نتایج بدست آمده،

pH بهبهانه ی جذب برازی همه جذب‌های مورد مطالعه، به‌دست آمده در ۶ به دلیل **pH** به دلیل شرایط محیطی جذب، تصمیم به نگهداری نگرفته و بازدهی ی جذب تقریباً ثابت مانده است. همچنین افزایش میزان هیدروکسید بیانگر نیتروژن به بیشتر نتایج گردیده است. در جذب نانوساختار پوشال نیکلک با افزایش محلول از ۲ تا ۳، بازده حذف از ۲۵ درصد تا ۶۹ درصد افزایش یافته است. با افزایش بیشتر محلول از ۶ تا ۱۸، بازدهی ی جذب تقریباً ثابت مانده است. در مقایسه با جذب پوشال نیکلک مزین و نانوساختار، هر دو جاذب در بالاترین جاذب را داشته اند. این نتایج جذب نانوساختار باعث می‌شود که به دلیل سطح بیشتر بیشتر بیشتر بیشتر بیشتر بیشتر بیشتر
تصمیم‌گیری آب‌های آلوده به نیترات با استفاده از میکرو و نانوساختارهای...

شکل ۶. تغییرات بازدهی جذب با زمان برای چند جاذبه مورد مطالعه

شکل ۷. اثر فرآیند اولیه نیترات بر بازدهی جذب برای چند جاذبه مورد مطالعه

شکل ۸. بازدهی جذب نیترات در مقایسه مختلف جاذبه‌های میکرو و نانوساختار نی و پوشال نیشکر

مدلهای جذب، منحنی log (qₑ - qₑ₀) در مقابل t (مدل لانگرتن)، در برای بنام ۱ (مدل هر) و qt در برای بنام ۱۲ (مدل انتشار گردیده) در رتبه‌های جذب RMSE، با مقایسه R² RMSE، بهترین مدل جذب برای داده‌های آزمایش به‌دست آمده (جدول ۲).

دانوسختار از ۱/۵ تا ۵/۵ گرم، بازدهی جذب نیترات از ۶۵ تا ۶۷ درصد افزایش یافته اما از ۱/۵ تا ۱ گرم جاذب، بازدهی جذب به ۷۱ درصد کاهش یافته است. بنابراین جرم ۵/۵ گرم جاذب به عنوان گرم بهینه جذب نیترات انتخاب شد. به منظور بررسی
جدول 2 پارامترهای مدل‌های سینتیک برای شده داده بر جذب پنس توسط جاذب میکرو پوشاک نیکرکصلاح شده

<table>
<thead>
<tr>
<th>R^2</th>
<th>RMSE</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99</td>
<td>$q_t + \frac{1}{0.57}$</td>
<td>q_2</td>
</tr>
</tbody>
</table>
| 0.97 | $q_t = \frac{1}{0.57} \cdot e^{-\frac{1}{0.57}}$ | لاغرگر
| 0.94 | $q_t = 0.5 + \frac{1}{0.57} \cdot e^{-\frac{1}{0.57}}$ | درون درزی

برازش مدل‌های سینتیک جذب پنس توسط جاذب پوشاک نیکرکصلاح شده

نیکرکصالح شده میکرو

جدول 2 نتایج حاصل از آزمایش‌های جذب سینتیک پنس

نتایج مشابه توسط محققان

جدول 3. مدل دو بهترین RMSE

جدول 4. مدل دو بهترین R^2

جدول 5. مدل دو بهترین q_t

جدول 6. نیکرکصالح شده میکرو

جدول 7. نیکرکصالح شده میکرو

نیکرکصالح شده میکرو

نتایج آزمایش‌های پیوسته

نتایج آزمایش‌های پیوسته
جدول 3. پارامترهای مدل‌های سیستم برای شاده شده به جذب بی‌پی و توسط جاذب نانوساختار پوششی شده

<table>
<thead>
<tr>
<th>R²</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99</td>
<td>0.12</td>
</tr>
<tr>
<td>0.98</td>
<td>0.09</td>
</tr>
<tr>
<td>0.95</td>
<td>0.07</td>
</tr>
</tbody>
</table>

هورو

لازگرن

درون ذره ای

شکل 9. غلظت خروجی با گذشت زمان توسط جاذب اصلاح شده (الف) جاذب میکرو ب) جاذب نانوساختار

محلول ساخته شده از آب مقرط 120 میلی گرم بر لیتر و غلظت آن در آب چاه 87 میلی گرم بر لیتر بود. شکل 10 نتایج نشان می‌دهد، گرفتن حجم به عنوان متغیر و تغییرات شکست، نشان می‌دهد. نتایج بیان کرده می‌شود که اطلاعات بزرگی در حجم نانوساختار باعث افزایش غلظت خروجی به غلظت اولیه شده است. جاذب پوشال اصلاح شده میکرو برای دیگر بنابایشور در نسبت 2/7 لیتر/ساعت شکست به‌دست آمده برای جاذب اصلاح شده پوشال نانوساختار با بارهای حاوی تیترات (\(NO_2 \cdot HCO_3 \)), (\(NO_3 \cdot HCO_3 \)) و آب رودخانه خاکستر (Exhaustion) (NO\(_3\cdot\)HCO\(_3\cdot\)Cl) از 2/7 لیتر/ساعت در جدول 2 و 5 ازان و قطعه فرسودگی (Exhaustion) به‌ترتیب پس به‌دست آمد.

نتایج بررسی اثر بی‌پی و توسط جاذب نانوساختار پوششی شده

جداب‌های مجرد مطالعه

با توجه به آنکه آب رودخانه حاوی کلرید و بیکرینت‌ها غلظت بالای 7/3 (میلی گرم بر لیتر) و آب چاه دارای بیکرینت با غلظت بالای 7/5 میلی گرم بر لیتر و کلر با غلظت بالای 7/6 میلی گرم بر لیتر بود. بازدهی حذف تیترات در حضور این بیکرینت‌ها در رودخانه این بیکرینت‌ها بیکرینت‌ها بررسی گردید. غلظت تیترات در آب رودخانه و...
شکل ۱۰ اثر بیونهای کلراید و بیکربنات بر حذف نیترات توسط جاذب پوشال نیشکر ال‌ف (میکرو ب) نانوساختار

جدول ۴ داده‌های ستون جذب برای حذف نیترات از محلول آبی توسط جاذب اصلاح شده پوشال نیشکر میکرو

<table>
<thead>
<tr>
<th>جاذب اصلاح شده پوشال نیشکر میکرو</th>
<th>NO₃:HCO₃⁻:Cl⁻</th>
<th>NO₃:HCO₃⁻</th>
<th>NO₃⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/8</td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td></td>
<td>1/5</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>1/6</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8/3</td>
<td>8/3</td>
</tr>
</tbody>
</table>

ظرفیت در نقطه شکست
میلی لیتر جاذب اصلی گرم نیترات
گرم جاذب اصلی گرم نیترات
کل حجم بسته (میلی لیتر جاذب اصلی)
ظرفیت کل
میلی لیتر جاذب اصلی گرم نیترات
گرم جاذب اصلی گرم نیترات

جدول ۵ داده‌های ستون جذب برای حذف نیترات از محلول آبی توسط جاذب اصلاح شده پوشال نیشکر نانوساختار

<table>
<thead>
<tr>
<th>جاذب اصلاح شده پوشال نیشکر نانوساختار</th>
<th>NO₃:HCO₃⁻:Cl⁻</th>
<th>NO₃:HCO₃⁻</th>
<th>NO₃⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>1/6</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8/3</td>
<td>8/3</td>
</tr>
</tbody>
</table>

ظرفیت در نقطه شکست
میلی لیتر جاذب اصلی گرم نیترات
گرم جاذب اصلی گرم نیترات
کل حجم بسته (میلی لیتر جاذب اصلی)
ظرفیت کل
میلی لیتر جاذب اصلی گرم نیترات
گرم جاذب اصلی گرم نیترات

92
اصطحاب آب‌های آلوده به نیترات با استفاده از میکرو و نانوساختارهای

به‌دست آمده از آزمایش‌های گذشته در فرآیند تابی‌سازی از مدل
سیستم، مسئله دوم تغییرات ناپیوسته از مدل این است که
ظرفیت جذب کربنات ممکن است به همراه جذب ویژه در هر
زمان توزیع مدل مبتنی بر مکان‌های جاذب متغیر گردیده است.
هم‌چنین نتایج نشان داد که
با افزایش گفتار نیترات و ترکیب مکان‌های جاذب به
سرعت بیشتر، با افزایش مادیر زمان شکست و کل نیترات گذشته
کاهش یافته، به طوری که نتایج به‌دست آمده، جاذب بازیل
تischer اصلاح شده به صورت گروه میکرو و نانوساختار به
عنوان جاذب آبی‌زی دارای قابلیت بی‌باید در حذف نیترات از
محلول آب و مقداری مکاژیک با در نداشت نیترات بهتر عمل می‌نمود و بازدهی
جذب کلی نیترات به‌طور کامل احتمالی به‌این ترتیب بوده.
در نتیجه مدیر بودن در حیطه برودر زیست آثار مکاژیکی
جذب در سطح آن بی‌باید شده و میزان جذب افزایش یافته
است.

سبک‌گزاری

این تحقيچ پیش می‌انجامد در رسانه دکتری بوده و قسمتی از هریمه‌های
انری زمانی آب و برک خوزستان تأمین می‌گردد است.
بدین سبب وسیله از همکاری آنها کمال تشکیل را دارد.

نتیجه‌گیری

با افزایش گفتار نیترات از بی‌بایده حذف کاملاً می‌گردد و با
بررسی نتایج ماده جاذب، بی‌بایده حذف بی‌بایده گردیده.
نتایج

منابع مورد استفاده

1. باعث‌پور آ. (1387) تولید نانولوژی‌های کرجی در مقایسه قزای و بررسی ساختار لایه‌های نازک آنها به روش ردیابی‌های شیمیایی
2. Fernandez-Olmo, I., J.L., Fernandez and A. Iranibey. 2007. Purification of dilute hydrofluoric acid by commercial ion
Mat. 122: 20–27.