مدیریت سیستم‌های آبیاری قطراهای و شیاری سوا به تن تنش آبی

پریسا شاهین رخشان* و محمد اسماعیل اسدی*

(ناریخ دریافت: ۱۳۹۰/۲/۶، تاریخ پذیرش: ۱۳۹۱/۵/۲)

چکیده

اصلاح برنامه‌ریزی آبیاری و بهبود مدیریت سیستم‌های آبیاری، در محوری است که در ارتقای کارآیی مصرف آب در کشاورزی تأثیر بسزایی دارد. این آزمایش به منظور بررسی تأثیر دو روش آبیاری قطراهای نواری (تیپ) و آبیاری شیاری تحت رژیم‌های مختلف آبیاری بر عملکرد و اجزای عملکرد سویا در سال زراعی (۱۳۸۵-۰۸) در استان مرکزی تحقیقات کشاورزی گرگان اجرا شد. آزمایش به‌صورت کرت‌های ترد شده در قالب طرح پلوکه‌های کامل تصادفی با دو نرخ تهیه شده و با روش آبیاری قطراهای نواری (۴)، و شیاری (۸) به عنوان عامل اصلی و سه تیمار آبیاری ۷۵، ۱۵۰ و ۱۵۰ درصد نیاز آبی (I) به عنوان عامل فرعی در نظر گرفته شد. تا پایان سال زراعی دانه‌ها به ارتقاف بوده و روش‌های مختلف آبیاری را آزمایش کردند. با استفاده از تحقیقات عملیاتی دریافت و به‌عنوان مفید برای افزایش کارآیی مصرف آب در کشاورزی هستند.

واژه‌های کلیدی: سوا، شیاری، قطراهای، کم آبیاری، کارآیی مصرف آب

1. مرکز تحقیقات کشاورزی و منابع طبیعی استان گیلان
2. مرکز تحقیقات کشاورزی و منابع طبیعی استان گلستان
3. مسئول مکاتبات، پست الکترونیکی: pshahinroksar@yahoo.com

97
مقدمه

بخش کشاورزی برق از دو گروه اصلی مصرف کننده آب محصولی می‌باشد و امرهایی توجه جدی به مدیریت بهینه مصرف آب در این بخش از بهبود بالایی برخوردار است. در این میان انتخاب روش‌های مناسب نوعی آب نظر آب‌های قطره‌ای توری (تیب) که دارای کارایی مصرف آب بالایی است، مفید به نظر می‌رسد. در این روش آب آرا می‌باشد و مقدار کمی در نزدیک ریشه گیاه ریخته می‌شود (14). با توجه به قابل انعطاف بودن این روش ابزاری، تحقیقاتی که بر اساس داده‌های آماری و آزمایش‌های تحقیقاتی انجام گرفته است. این مطالعه بر اساس argument گاهی و مطالعات مختلف در بررسی کارایی عکس عمل متفاوتی از یک نظر نشان می‌دهند، بنابراین باید به سیاست‌های منطق جامعی شود تا عمد و فعالیت نشان دهنده باعث در دوره رشد گیاهی تشکیل گردد. نتایج پایلوئی و همکاران (12) از نظر بررسی تأثیر نش خشکی بر پارامترهای کمی سویا نشان داد که عملکرد دانه سویا به صورت خطي تحت تأثیر مصرف آب قرار گرفت. به طوری که عملکرد دانه سویا در نش شدید 34 درصد عملکرد در تیمار بیشترین مصرف آب بود. نتایج براون و همکاران (13) از نظر بررسی نش خشکی نشان دهنده کاهش مصرف دانه به ویژه قرار نش خشکی قرار تهیه (10 ماهه‌گی) مشاهده شده که در این اجرا عملکرد دانه سویا نیز به گراف کارایی مصرف آب آپ شیاری قرار گرفت و اجزای دیگر دانه عملکرد دانه. نتایج دانه در غلاب و وزن هزار دانه در رقم رشته‌های آبیاری نسبتاً مشابه بودند. به نظر می‌رسد انجام تحقیقات زمین بررسی عکس عمل سویا به سیستم‌های مختلف آبیاری در شرایط نش خشکی می‌تواند به ارائه راهکارهای مدیریت انتخاب بهینه از آب منتهی شود. بدین مدل نظر آزمایشی در راستای اهداف فوق الذکر در ابتدای تحقیقات شاخصی گزینی انجام گرفت.
مواد و روش‌ها

این آزمایش به منظور بررسی اثر آبیاری قطره‌ای نواری (تیپ) و شیاری تحت رتیوم مختلف آبیاری بر عملکرد و اجرای عملکرد سویا را به‌صورت طرح آماری کرده‌ای خرد شده در قالب طرح بلورکه‌های کامل تصادفی با سه تکرار در استفاده تحقیقات گرگان در سال زراعی (85-87) اجرا گردید.

نقشه اجرای طرح در شکل ۱ مشاهده می‌شود. در روش آبیاری قطره‌ای نواری (تیپ) و شیاری (S) به عنوان اصلی و سه تیمار کم آبیاری (۵۰), (۷۵), (۱۰۰) درصد نیاز آبی (Iw) به عنوان فارار در نظر گرفته شدند. هر کرت شماره ۶ خوشه با فاصله ۵۰ سانتی‌متر و بین هر کرت یک متر و بین کناره‌ها ۲ متر در نظر گرفته شد. در اواخر خرداد ماه آماده سازی زمین صورت گرفت و کشت به صورت تابستانی تعیین خصوصیات فیزیکی تا عمق ۶ سانتی‌متر صورت گرفت.

نتایج در جدول ۱ دیده می‌شود.

آب‌پذیری شیاره با استفاده از بک لولکا

روزه‌داری مناسب به‌کمک بمب روبی انجام شد (شکل 2-الف). فشار بمب طوری تنظیم گردید که همواره دو ۵/۰ پیوست گردید. کمتر از دو پیوست (ب) از هر روزه‌های خارج شد. در هر آبیاری حجم حقیقی آب با استفاده از کنترل حجمی متعلق به فرآیند آب‌پذیری که انسدادی می‌شود. آب‌پذیری قطره‌ای نواری (تیپ) با فاصله روزه‌داری ۳۰ سانتی‌متر و بین‌های ۶ لیتر در ساعت در هر متری‌گردسازی و فاصله ۱۰۰ سانتی‌متر از یک نوار برای یک چهار ریف گیاه استفاده شد (شکل 2-پ). در سیستم آبیاری قطره‌ای نواری فیلتر دیسکی ۲ اینج مورد استفاده قرار گرفت. در ضمن مقدار فشار و رودی به سیستم نیز توسط ابزار فلوک و فشارسنج کنترل گردید. دور آبیاری تابع میزان تخلیه رطوبت ۵۰ درصد از منطقه توسه ریشه در تیمار ۱۰۰ درصد نیاز آبی بود. در این آزمایشی برای پاسخگویی کاهش رطوبت منطقه ریشه در حد آب‌پذیری بک لولکا به این مقادیر انجام شد. هرگاه متوسط رطوبت موجود در عمق توسه ریشه به مقر بین آبیاری
جدول 1. مشخصات فیزیکی خاک محل آزمایش

<table>
<thead>
<tr>
<th>رطوبت نسبی</th>
<th>وزن مخصوص ظاهری</th>
<th>پذف</th>
<th>عمق</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWP</td>
<td>FC</td>
<td>μ</td>
<td>متر</td>
</tr>
<tr>
<td>درصد وزنی</td>
<td>درصد وزنی</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>89/5</td>
<td>1/4</td>
<td>0-20</td>
</tr>
<tr>
<td>143</td>
<td>27/9</td>
<td>1/4</td>
<td>20-40</td>
</tr>
<tr>
<td>9/8</td>
<td>26/3</td>
<td>1/4</td>
<td>40-60</td>
</tr>
</tbody>
</table>

شکل 2. کاربرد آب‌پذفی شیاری با استفاده از لوله روزن‌دار (الف) و آب‌پذفی قطره‌ای نواری (ب)

مقدار نفوذ استفاده گردید و شیارهای جانبی به عنوان محافظه محاسبه شدند.

\[I = \frac{1}{1324} + \frac{1}{88} \]

با مشخص شدن \(T_0 \) به عنوان زمان لازم جهت نفوذ عمق خالص آب‌پذفی \(T_s \) به عنوان زمان رسیدن آب از ابتدا تا انتهای شیار، مدت زمان آب‌پذفی (\(T_f \)) به صورت رابطه 5 مشخص گردید.

\[T_f = T_s + T_0 \]

و عمق ناخالص آب‌پذفی با استفاده از رابطه 6 محاسبه گردید.

\[U = T_s + T_0 + T_0 \]

و عمق خالص آب‌پذفی \(T_f \) که در آن \(T_s \) طول طول A، مساحت در شیار (مترمربع) و \(T_0 \) دیب نوار آب‌پذفی در هر شیار (لیتر بر ساعت) می‌باشد. برای اندازه‌گیری ساعت آب‌پذفی در روش آب‌پذفی شیاری ابتدا با استفاده از روش ورودی و خروجی ضرابی محاسبه نفوذ کامنتاکف به صورت رابطه (3) به‌دست آمد. یکی از راه‌آهنگ شیار به طول 50 متر و عرض 12.5 متر در نظر گرفته شد. از شیار میانی برای

اندازه‌گیری مقدار جریان ورودی و خروجی به‌دست آوردن
جدول 2 برآم‌های اقیمی مربوط به زمان کشت در سال 55 (استگا، فرودگاه گرگان)

<table>
<thead>
<tr>
<th>برآم‌های اقیمی</th>
<th>تبخیر (میلی‌متر)</th>
<th>سعیت آفتابی (میلی‌متر)</th>
<th>بارندگی</th>
<th>میانگین رطوبت نسبی (درصد)</th>
<th>میانگین حداقل دما (درجه سانتی‌گراد)</th>
<th>میانگین حداقل دما (درجه سانتی‌گراد)</th>
<th>ماه</th>
</tr>
</thead>
<tbody>
<tr>
<td>اردبیلستان</td>
<td>2/7</td>
<td>9/5</td>
<td>3/1</td>
<td>87/1</td>
<td>22/3</td>
<td>32/8</td>
<td>خرداد</td>
</tr>
<tr>
<td>خرداد</td>
<td>9/6</td>
<td>12</td>
<td>2</td>
<td>60</td>
<td>32/9</td>
<td>33</td>
<td>تیر</td>
</tr>
<tr>
<td>تیر</td>
<td>6/3</td>
<td>9/6</td>
<td>2</td>
<td>44/2</td>
<td>22/3</td>
<td>24/1</td>
<td>مرداد</td>
</tr>
<tr>
<td>مرداد</td>
<td>8/6</td>
<td>4/2</td>
<td>3</td>
<td>61/3</td>
<td>12/6</td>
<td>21/9</td>
<td>شهریور</td>
</tr>
<tr>
<td>شهریور</td>
<td>5/8</td>
<td>8/5</td>
<td>4</td>
<td>67/2</td>
<td>33</td>
<td>19/5</td>
<td>شهریور</td>
</tr>
<tr>
<td>شهریور</td>
<td>8/4</td>
<td>6/6</td>
<td>3</td>
<td>52/1</td>
<td>29/5</td>
<td>18/3</td>
<td>مهر</td>
</tr>
</tbody>
</table>

Q = \(\frac{6.4 \times Q \times T}{W \times L} \)

که در آن I، مقادیر ناخالص عظم آب‌پذیری که وارد شیار شده است (میلی‌متر)، W، گرم در دو روزی به شیارها (گرم در حالت خشک)، L، مدت زمان آب‌پذیری (دقعه)، T، جریان آب (دقعه) و باشید. بر اساس فرم و کاوشین (14، مراحل مختلف فنولیزی رقم مورد بررسی با داده‌های برداری گردید و در زمان رسیدگی فیزیولوژی پارامهایی مانند افتتاح بروز، ارتفاع آبی رنگ، ضعف شرایط تیم، تعداد شاخص فری، تعداد غلاف در بوته، تعداد گره، وزن هزار دانه، عملکرد دانه برای هر تیمیار از طریق شمارش ده بوته از هر کرت تعبیه شد. حجم آب مصری در طول دوره کشت نیز با استفاده از دستور حجمی اندازه‌گیری شد. کارآیی مصرف آب از نسبت عملکرد محصول (کیلوگرم در هکتار) بر حسب آب مصری (مرکم‌بند) حاصل شد. در زمان رسیدگی کامپس از حذف حاشی‌ها، خطوط وسط برداشته و کلیه صفات با داده‌های برداری شدند و به همراه اجزای عملکرد توسط نرم‌افزار Excel 2003.SAS مورد تجزیه و تحلیل قرار گرفت.

نتایج و بحث

حجم آب مصری در دور روش آب‌پذیری شیاری و قطره‌ای نواری (نیب) در تیمار آب‌پذیری کامپس (I_100) به‌ترتیب 2004 و 3783 مترمکعب در هكتار به‌دست آمد (شکل 3). مقایسه حجم آب
جدول 3 تجربة واريانس (ميانگین مربعات) تعدادی از صفات مورد طالعه

<table>
<thead>
<tr>
<th>میانگین تغییر</th>
<th>درجه اخذ</th>
<th>ارتفاع بونه</th>
<th>ارتفاع تا اولین گره</th>
<th>تعداد گره</th>
<th>تعداد غلاف</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td>2</td>
<td>0.9</td>
<td>0.5</td>
<td>129/1</td>
<td>3*</td>
</tr>
<tr>
<td>روش آبیاری</td>
<td>1</td>
<td>0.5/3</td>
<td>0.1</td>
<td>0*</td>
<td>288/5</td>
</tr>
<tr>
<td>خطای روش آبیاری</td>
<td>2</td>
<td>0.7</td>
<td>0.3</td>
<td>111/2</td>
<td>0*</td>
</tr>
<tr>
<td>رژم آبیاری</td>
<td>3</td>
<td>0.2/3</td>
<td>0.2</td>
<td>98/2</td>
<td>37/3/5</td>
</tr>
<tr>
<td>برهمکشی روش آبیاری و رژم آبیاری</td>
<td>2</td>
<td>0.7</td>
<td>0.2</td>
<td>56/3/7</td>
<td>0*</td>
</tr>
<tr>
<td>خطای رژم آبیاری</td>
<td>8</td>
<td>0.7</td>
<td>0.2</td>
<td>13/2</td>
<td>29/7</td>
</tr>
</tbody>
</table>

شکل 3 اثر آبیاری قطعات نواری (تیب) و شیاری تحت رژم‌های مختلف آبیاری از نظر حجم آب مصرفی

جدول 4 میانگین صفات مورد طالعه تحت تأثیر روش آبیاری و کم آبیاری

<table>
<thead>
<tr>
<th>میانگین تغییر</th>
<th>درجه اخذ</th>
<th>ارتفاع بونه</th>
<th>ارتفاع تا اولین گره</th>
<th>تعداد گره</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>25/3</td>
<td>93/6</td>
<td>0.5</td>
<td>48/2</td>
</tr>
<tr>
<td>S</td>
<td>24/6</td>
<td>97/2</td>
<td>0.5</td>
<td>29/2</td>
</tr>
<tr>
<td>I50</td>
<td>24/2</td>
<td>84/5</td>
<td>0.2</td>
<td>28/2</td>
</tr>
<tr>
<td>I75</td>
<td>25/7,</td>
<td>95/2</td>
<td>0.2</td>
<td>28/2</td>
</tr>
<tr>
<td>I100</td>
<td>25/0</td>
<td>165</td>
<td>0.6</td>
<td>12/3</td>
</tr>
</tbody>
</table>

(جدول 3) به طوری که تیمار 100 گزارش کرد بهترین 101/3 سانتی‌متر و تیمار 50 کمترین 156/9 سانتی‌متر را دارای بودند (شکل 2). اختلاف معنی‌داری بین هیچ یک از تیمار‌های اعمال شده و برهمکشی آنها از نظر ارتفاع تا اولین گره مشاهده نشد.

قسمت‌های هواپیمایی می‌گذارد (18) استوکر (25) نیز گزارش کرد که نش شکلی موجب کاهش ارتفاع بونه و ابتدا حالت گرمئی قدر در گیاه می‌شود. برهمکشی روش آبیاری و رژم آبیاری از نظر ارتفاع بونه اختلاف قابل ملاحظه‌ای نشان داد (P<0.05).

102
شکل ۲ اثر آبیاری قطره‌ای نواری (تیپ) و شیاری تحت رژیم‌های مختلف آبیاری از نظر ارتفاع بوته

و همکاران (۵) نیز تأثیر شدید است. همچنین تعداد غلاف در بوته نیز تحت تأثیر رژیم‌های آبیاری قرار گرفت (جدول ۳). تعداد غلاف در بوته در آب‌آوری I_{100} بیشترین نسبت به I_{50} و I_{75} هستند و به ترتیب ۷/۵ هر دیده و ۹ دیده کاهش بافته است. طویل که تیمار I_{100} بیشترین تعداد غلاف (۲/۵/۱۲ عدد) و تیمار I_{50} کمترین تعداد غلاف (۲/۴/۱۲ عدد) را موجب شدند (جدول ۴). این کاهش تعداد غلاف در ساقه اصلی بوته سوابی تحت شرایط تحت شکست خشکی را می‌توان به کاهش رشد و ارتفاع ساقه اصلی که در این زیرمیان ملاحظه خواهد کرد. نسبت داد (۲۵). نیشابوری و هانفیلد (۲۱) نیز تعداد غلاف در بوته را حساس ترین اجزای عملکرد سوابی در مقیاس تنش کم روتیون تنش خشکی دانستند. همچنین برهمکنش روش آبیاری و رژیم آبیاری از نظر تعداد غلاف در بوته در سطح احتمال ۱ عدد معنی‌دار شد (جدول ۳). بیشترین مقدار این صفت در تیمار I_{100} به میزان $۴/۹/۴$ عدد دیده شد (شکل ۵).

مقدماتی این شدید در روش آب‌آوری I_{100} بیشترین آبیاری و رژیم آبیاری اعمال شده، برهمکنش روش آب‌آوری و رژیم آبیاری از نظر تعداد شاخه فرعی اختلاف معنی‌داری دیده نشد (جدول ۵). هر چند که تیمار I_{100} بیشترین تعداد رشد I_{100} به وزن هزار دانه نشان داده، اما اثرات برهمکنش روش آب‌آوری و رژیم آبیاری معنی‌دار نشد (جدول ۵). نتایج پایانی همکاران (۲۲) و براون و همکاران (۱۶) و یسایی (۱۵) نشان داد که
جدول 5 تجزیه واردات (میانگین محموله) تعدادی از صفات مورد مطالعه

<table>
<thead>
<tr>
<th>خصوصیت</th>
<th>کارایی مصرف آب</th>
<th>هزینه دارده</th>
<th>درجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td>2</td>
<td>0.3</td>
<td>10.0/20.0</td>
</tr>
<tr>
<td>روش آبیاری</td>
<td>1</td>
<td>0.3</td>
<td>210.0/10.0</td>
</tr>
<tr>
<td>خطا</td>
<td>2</td>
<td>0.1</td>
<td>32/6</td>
</tr>
<tr>
<td>روش آبیاری</td>
<td>2</td>
<td>0.3</td>
<td>40/2</td>
</tr>
<tr>
<td>برهمکش روش آبیاری</td>
<td>2</td>
<td>0.3</td>
<td>6/3</td>
</tr>
<tr>
<td>خطا</td>
<td>2</td>
<td>0.1</td>
<td>77/8</td>
</tr>
<tr>
<td>CV</td>
<td>2</td>
<td>0.1</td>
<td>14/7</td>
</tr>
</tbody>
</table>

شکل 5 اثر آبیاری قطره‌ای نواری (تیب) و شیاری تحت رژیم‌های مختلف آبیاری از نظر تعداد غلاف در بوته

صفت مذکور تحت تأثیر رژیم آبیاری قرار نمی‌گیرد. نتایج

مقدار آزمایش نشان داد که تیمار T1 در مقایسه با تیمار T5 موجب افزایش میزان است که معنی‌دار این صفت کرد (شکل 6). روش‌های مختلف آبیاری اثر معنی‌داری بر عملکرد نداشتند (P≤0.05).

جدول 5. نتایج کمیتی. (97) تیمار مؤید این نکته است که روش آبیاری بر روی عملکرد تأثیر معنی‌داری ندارد. ولی

بررسی نتایج تأثیر رژیم‌های آبیاری اعمال شده بر عملکرد نشان می‌دهد که تیمار I100 به میزان 27124 کیلوگرم در هکتار

سطح یک درصد موجب ازاری معنی‌داری نسبت به تیمار I5 اختلاف قابل ملاحظه‌ای ندارد (جدول 5 و 6).

تأثیر یکمود بر رطوبت خاک و طولانی شدن دوره کمیود آب

در کاهش رشد و عملکرد سویا توسط پورسل و کینگ (33).

104
جدول ۶: میانگین صفات مورد مطالعه تحت تأثیر روش آبیاری و کم آبیاری

<table>
<thead>
<tr>
<th>تیمار</th>
<th>تعداد شاخه فرعی</th>
<th>هزار دانه</th>
<th>عملکرد</th>
<th>کارakter مصرف آب (کیلوگرم بر هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1/25۱</td>
<td>117/4۱</td>
<td>2478/9۱</td>
<td>۰/۹۱</td>
</tr>
<tr>
<td>S</td>
<td>1/5۱</td>
<td>132/8۱</td>
<td>2438/8۱</td>
<td>۰/۶۱</td>
</tr>
<tr>
<td>I۵۰</td>
<td>1/5۱</td>
<td>125/5۱</td>
<td>2289/3۱</td>
<td>۰/۶۱</td>
</tr>
<tr>
<td>I۷۵</td>
<td>1/5۱</td>
<td>127/7۱</td>
<td>2778/9۱</td>
<td>۰/۶۱</td>
</tr>
<tr>
<td>I۱۰۰</td>
<td>1/3۱</td>
<td>122/6۱</td>
<td>2711/4۱</td>
<td>۰/۶۱</td>
</tr>
</tbody>
</table>

حروف مشابه در سطح ۵ درصد معنی‌دار نمی‌باشند.

جدول ۷: میانگین صفات مورد مطالعه تحت تأثیر روش آبیاری و کم آبیاری

بطور معنی‌داری بیش از سایر تیمارها مخصوصاً تیمار S۱۰۰ به میزان ۱/۵۰ کیلوگرم بر مترمکعب بود (نمودار ۸). در آبیاری فطرهای نواری (تیپ) عواملی چون عدم وجود روستای سطحی آب در تیمار آبیاری، رژیم آبیاری و اثرات بیومکانیک آنها معنی‌دار است (۵/۰۰۰ کیلوگرم بر مترمکعب) و بیومکانیک کاراکتر مصرف آب در تیمار S۱۰۰ به میزان ۱/۱۱ کیلوگرم بر مترمکعب بود.

شکل ۶: تأثیر آبیاری قطره‌ای نواری (تیپ) و شیبی تحت رژیم‌های مختلف آبیاری از نظر وزن هزار دانه

شکل ۷: تأثیر آبیاری قطره‌ای نواری (تیپ) و شیبی تحت رژیم‌های مختلف آبیاری از نظر عملکرد

۱۰۵
شکل 8 اثر آبیاری قطره‌ای نواری (تبی) و شیاری تحت رعایت میاهای مختلف آبیاری از نظر کارآیی مصرف آب

محدودیت آب می‌تواند از تیمار آبیاری ۷۵ درصد و آبیاری قطره‌ای نواری (تبی) بیش از جناب آب مصرفی کمتر و بیشتر کاهش معنی‌دار عملکرد استفاده کرد و کاهش تبخیر از سطح خاک و کاهش فوز عمقی باعث افزایش تولید، کاهش مصرف آب و در نتیجه افزایش کارآیی مصرف آب نسبت به روش آبیاری بیشتر (۱). تایپیو و هیبراس (۲) نیز مؤید این مسئله است.

سیاست‌گذاری

این مقاله برگرفته از گزارش نهایی پروژه تحقیقاتی سازمان تحقیقات، آموزش و تربیت کشاورزی به شماره نسخه ۸۸/۶/۲۵ می‌باشد. نواحیه قطره‌ای بکار رفته در این طرح پژوهشی با حمایت مالی شرکت مهندسی و صنعتی آب‌پیمایی و انگیزه بیدرکت که بین وسیله مرحلات قدردانی و تحقیق خود را به مدیر عامل محقق‌آبیات نظام و مدیریت فروش محترم آقای مهندس مجید خرازیان اعلام می‌دارم.

نتیجه‌گیری

نتایج این پژوهش نشان داد که کارآیی مصرف آب در روش قطره‌ای نواری (تبی) با مقدار ۴/۹ کیلوگرم بر متر مکعب به‌طور محسوس بیشتر از روش آبیاری شبیه به میزان ۰/۶ کیلوگرم بر متر مکعب بوده که به‌واسطه اثر مثبت ماهیت و خصوصیات فنی روش آبیاری قطره‌ای نواری (تبی) در کاهش ۶۳ درصدی مصرف آب نسبت به روش آبیاری شبیه می‌باشد؛ بنابراین بر این اساس به نظر می‌رسد در شرایط منابع مورد استفاده

۱. اخوان، س. س. محیط. گردهمایی‌های به تازه‌گذاری سیب‌زمینی. علوم و فنون کشاورزی و منابع طبیعی. ۳۸/۱۱۱(41): ۱۵-۱۵۲.
۲. اسدی کنگر شاهی. م، ملکوتی و م، مدیتران. ۳۸/۱۱۶. تأثیر روش‌های مختلف آبیاری و مصرف متعادل کود بر عملکرد و کارایی مصرف آب در کشت کاهش علوم و فنا (۲): ۱۵۰-۱۵۵.
۳. باغانی، ج. وا. علی‌زاده. ۳۸/۱۱۶. عملکرد محصول و کارایی مصرف آب در آبیاری قطره‌ای و شیاری. مجله تحقیقات مهندسی کشاورزی (۱۸۱): ۱۰۱-۱۰۱.
مديريت سيستمهاي آبياري قطورهاي و شياري سويه تحت تنش آب

1. حامدي، ف. ج. جعفری، ج. قادري، ر. رضایي زنگنه و ک. صیادیان. ۱۳۸۴. مقایسه روش آبیاری قطورهای نواری (نیبی) و شیاری از طريق سطوح مختلف نيازي آبی بر عملکرد ذرت. مجموعه مقالات نهمين كنگره علم خاک ايران، كچ. 5. دانشبانی، ج. ق. نورمحمدی و ب. جنوبی. ۱۳۸۱. بررسی واکنش سوئی به تنش خشکي و مقدار مختلف فسفر. مجموعه مقالات هفتمين كنگره علم زراعت و اصلاح نباتات ايران، كچ.

7. سیاسخواه، ع. توکلی و س. ف. موسوی. ۱۳۸۵. اصول و كاربرد كم آبیاری. كمیته ملی آبیاری و زوگشت.

8. علیزاده، ا. ۱۳۸۵. طراحي سيستمهاي آبیاری (جلد اول). انتشارات دانشگاه امام رضا. ۲۵۰ صفحه.

9. كریمیزاده مقیده، م. ۱۳۸۱. ارزیابی روش آبیاری قطورهای نواری (نیبی) پارا بوج جیچی بر عملکرد چغندرد. پایان نامه كارشناسی ارشد. دانشگاه فردوسی مشهد.

10. بیجی، س. غ. ۱۳۸۶. اثر رژیم‌های آبیاری بر عملکرد اجزای عملکرد دانه آزمایش‌های نیم‌نجمی و نیم‌نجمی سوئی. مجله علم كشاورزي و منابع طبيعي ۴(5): ۲۱-۳۱.

19. Hussein, M.M. 2004. Drought and it's effect on growth of different soybean varieties September 4-12, EUROSOIL Congress, Freiburg, Germany

