اندازه‌گیری مقاومت مکانیکی و بررسی پیده سخت‌شوندگی در برخی
از خاک‌های استان همدان

الهام فراهانی، محمد رضا مصدقی ۲ و علی اکبر محبوبی

(تاریخ دریافت: ۱۳۹۷/۱۲/۱۶، تاریخ پذیرش: ۱۳۹۸/۳/۵)

چکیده

پدیده سخت‌شوندگی یکی از مشاهده‌های کیفیت زیستی خاک است. خاک‌های سخت‌شوندگی خاک‌های هستند که تغییر مقاومت
مکانیکی آنها با شدت سنگ نشان می‌دهند. در هنگام خشک شدن، خشکت و تراکم شده و خاک‌دروز آنها شووا است. خاک‌های سخت‌شوندگی
دارای دو شووا یا مانند تغییر شووا در شرایط مرطوب، مقاومت مکانیکی زیادی در دامنه رطوبت‌های خشک، فوق‌العاده به درد و روان‌آسیب و
فرسایش زیادی می‌باشند. با توجه به اینکه بسیاری از خاک‌های ایران از نظر ماده آلی فلزی، انظار مقاومت آنها رخ ندارد. برای طبقه‌بندی سخت‌شوندگی در برخی
از آنها رخ دهید، این پژوهش بر روی ۹ سری خاک از استان همدان با هدف بررسی پیده سخت‌شوندگی به‌نوع مقاومت
PR و دو UCس و ITS گردید. کششی که در نمونه‌های بازساخته‌شده خاک انجام شد، از آن‌ها بیشتر
روی نمونه‌های بازساخته‌شده با چگالی ظاهری (BD) که ضریبی از BD به‌رونده برای کسب گروه
(ABDcritical) به‌ENDED تعیین داده‌شده در سیستم‌های خاک‌های سخت‌شوندگی و سلعدد به‌طرفی
ویژگی‌های نهایی مؤثر بر این پدیده بررسی شد. براساس تعیین پیشنهادی در سیستم‌های جهانی خاک‌های سخت‌شوندگی، نمونه‌های
فقط دو بین سه‌گانه خاک‌شناسی. که مقاومت کششی خاک سخت‌شوندگی در حالت‌های با ویژگی پدیده برداری گرایانه یا برای
۹۹ kPa توان گفته که نهایی یکی از خاک‌های مواد بررسی (با بافت متوسط) خاک‌های سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های
با بافت از خاک‌های مواد بررسی (با بافت متوسط) سخت‌شوندگی شده. بنابراین می‌توان نتیجه گرفت که خاک‌های

واژه‌های کلیدی: کیفیت زیستی خاک، پدیده سخت‌شوندگی، مقاومت مکانیکی خاک، چگالی ظاهری برایانی، مدل نمایی

1. گروه خاک‌شناسی، دانشکده کشاورزی، دانشگاه پویالی سینا، همدان
2. گروه خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
mosaddeghi@cc.iut.ac.ir
مقدمه
برخی از نشانه‌های کیفیت ویژه‌ی خاک، عبارتند از: نفوذ انگشتر آب در خاک، ایجاد روان‌آب، تهیه‌ی ضعیف، محدودیت رشد ریشه‌ی گیاهان در خاک، کارایی ضعیف خاک و بدیع سخت‌شدگی خاک (Hardsetting phenomenon). تعیین که توسط کمیته‌ی سنجش‌های خاک‌های سخت‌شدگی سخت‌شناسی (USSS)، سخت‌صدای در بررسی‌های استان ایک ایفای سخت‌شنوده در هنگام خشک‌شدن و کاهش قابل ملاحظه‌ی سطح ریز خاک می‌باشد. این امر باعث ایجاد مقدار می‌باشد که به اندیشه افزایش خشک‌سازی خاک‌های خاک‌های سخت‌شنوده نشان دهنده بوده و امکان فرآیند سخت‌سازی در آن وجود ندارد. همچنین مقاومت کشفی آن در حالت هوا خشک برگزاری با برای ۴۰ kPa سبب شده و در هنگام مرطوب‌شدن نرم شده ولی در هنگام خشک‌شدن گردیده است. (۱۹)

سخت‌شنودگی شال در فاصله میانگین سخت‌سازی در هنگام و پس از مرطوب‌شدن و خشک‌شدن بدون سخت‌سازی دوباره در هنگام خشک‌شدن می‌باشد (۲۰). تنا خاک‌های خشک‌شده که به اندیشه که توسط خاک‌های شکل‌دار ناپایدار شده. همچنین این امر باعث افزایش خشک‌سازی خاک‌های سخت‌شنوده می‌باشد (۱۹). سلسله مانند سخت‌شنودگی رخ می‌دهد. اما بسیاری از خاک‌های که سلیم می‌باشد، سخت‌شنودگی (۲۰)

افتراش‌شنیده در مقاومت مکانیکی خاک‌های سخت‌شنوده در هنگام خشک‌شدن رخ می‌دهد. کشاورزان واز خاک‌های هنگام-هناز (Lunch-time soils) برای آنها به کار می‌برند که خاک‌های خشک‌شده که در هنگام عصر هم برای خاک‌وری خیلی خشک‌سازی می‌باشد. اما هنگام ظهور شرایط برای خاک‌وری بهینه است. اگر جه این اجرای یافته آزمایش است، ولی به خوبی باید برای یک بودن دانه رطوبی مناسب آن‌ها برای خاک‌وری می‌باشد (۲۰). همچنین خاک‌های که در دندانی (FAO) (۴) به عنوان لوئیسول، بلاتولوئیسی سولوتونز و در روش رده‌دنبال آمریکایی
مدیریت مکانیکی و بررسی پدیده سخت‌شدن‌گی در برخی

یافته‌ها

مقدار مکانیکی روی نمونه‌های بازساخت‌شده برخی از خاک‌های استان همدان بود.

ماده و روش‌ها

خاک‌های مورد بررسی

این پژوهش روی ۹ سری خاک از مناطق مختلف استان همدان انجام شد. استان همدان دارای اقلیم تمه‌خشک و میانگین بارندگی سالانه ۳۱۱ میلی‌متر برابر و اغلب بارندگی در فصل زمستان اتفاق می‌افتد. میانگین دمای بیشینه ماهه‌ان استان ۱۵/۵ درجه سانتی‌گراد در تیر ماه و کمینه آن ۵/۵ درجه سانتی‌گراد در دی ماه گزارش شده است. میزان بارندگی به شکل خاک‌های زراعی با ویژگی‌های میتواند در نمونه‌برداری انجام شود. نمونه‌برداری

مقدار وضوح در Z cm هوا بر اساس بعد هوا-خشک شدن هوا برای آزمایش‌های مقاومت‌های کشتی، نشان‌دار غیرمحصول و وفوری، بخشی از خاک هوا-خشک با کمترین آسیب به خاک‌دانه‌ها از اک ۲ میلی‌متر‌های داده شد. برای اندازه‌گیری ویژگی‌های فیزیکی و شیمیایی، نمونه‌ها پس از کوبیده‌شدن از اک ۲ میلی‌متری عبور داده شدند.

محاسبه گیرش‌های ظاهری بحرانی، آماده‌سازی نمونه‌های خاک

و اندازه‌گیری میتی مشخصه رطوبتی خاک

در ایران پژوهش در مورد گچ‌گالی ظاهری بحرانی (BD critical) در خاک‌های برای رشد ریشه‌ها انجام نگرفته و رابطه‌ای ارائه شده است. از این رو در این پژوهش برای تعیین رابطه ارائه‌شده توسط جونز (۱۰) و دکتر (۵) استفاده شد:

\[
BD_{critical} = 1.882 - 0.0083\% \text{Clay}
\]

که در آن براساس درصد رس خاک (BD critical)، بررسی می‌گردد.

مقدار مکانیکی و بررسی پدیده سخت‌شدن‌گی در برخی...
باید دقت ۶۵/۳۰۰ نیوتن انجماد شد. تغییر شکل قطری ایجاد شده در عرض صاف دهگمه که شامل دو بخش صاف شده در هنگام گسترشگیری، به اندازه‌گیری و بررسی محاسبه مورد استفاده قرار گرفت. از معادله فردیمن (۹) برای محاسبه مقاومت کششی استفاده شد که به صورت زیر است:

\[
\text{ITS} = \frac{2F_{\text{max}}}{\pi d} \times g(x)
\]

که در آن \(a\) طولی فشاری در هنگام گسترشگیری، \(d\) قطر صاف شده در نقطه گسترشگیری و \(g(x)\) نسبت صاف شده‌ی میان تیتانیم به رابطه زیر محاسبه گردید:

\[
g(x) = \left(\frac{-d}{2a}\right) \left[2\sqrt{x^2 - 2y \sin(\frac{x}{2})} \div \frac{\pi}{4} \div d\right]
\]

که در آن \(x\) عرض بخش صاف شده استوانه‌ای خاک در تماس با صفحه وارگذار و \(y\) فاصله بین دو بخش صافی می‌باشد. معکوس خاک می‌باشد. به طوری که \(x<0\) که می‌توان با مقادیر \(x>0\) می‌شود. صادق است. (۶)

آزمون مقاومت فشاری غیرمحصور (UCS)

روش تک‌محوری برای آزمون مقاومت فشاری غیرمحصور استفاده شد. بنابر این نشان دهنده به نمودن‌های استوانه‌ای وارد شده و نشان دهنده جایی برای صفر بودن. در این روش، با کارگزاری در بسیاری نمونه‌های استوانه‌ای انجام می‌شود. نا و هنگامی که گسترشگیری برای رخ دهد (۱/۲ و ۳/۲) می‌باشد آزمون در نمونه‌های خشک و مرطوب متفاوت بود. نمودن‌های خاک (Brittle failure) با رطوبت کم و درشت‌بافت، گسترشگیری ترده رخ داده که هنگام افت نیرو و ایجاد سطح گسترشگیری، پایان بارگذاری است. در نمودن‌های خاک مرطوب گسترشگیری (Ductile failure) نمودن‌های خاک ماهی‌گیر در روی نمونه سطح گسترشگیری مشخصی ایجاد نمی‌شود. به همین دلیل نمونه آزمون به‌طور فرآیندی زمانی است که کرنش محوری (\(\text{ITS}\)) برای ی/۱۵ باشد (۱/۲ و ۳/۲). پارامترهای مقاومت فشاری غیرمحصور به

teh نمونه‌های بازساخته‌شده برای آزمون‌های مقاومت مکانیکی

نمودن‌های استوانه‌ای با قطر ۵ سانتی‌متر و ارتفاع ۳ سانتی‌متر، و با قطر ۳/۸ سانتی‌متر و ارتفاع ۸ سانتی‌متر در ۱۵ رطوبت مختلف از توزیع آب بن‌آب خشک و در چگالی‌های ظاهری برای هر خاک به‌ترتیب برای انجام آزمون‌های مقاومت کششی و مقاومت فشاری غیرمحصور ساخته شدند. همچنین نمونه‌های به همین بخش مورد نمونه‌هاي مقاومت کششی و در هم‌دان دانستگی و چگالی ظاهری، اما محصور در دو روش سیل‌برده‌ای فلزی. به‌طور مشابه، انجار آزمون مقاومت فروری ساخته شدند.

آزمون مقاومت‌های مکانیکی خاک‌ها

(ITS) آزمون مقاومت کششی

مقاومت کششی با استفاده از روش غیرمقطعی (برزیلی) اندازه‌گیری شد. در این روش، با کارگزاری روی نمونه‌های استوانه‌ای در جهت قطری انجام می‌شود، نا هنگامی که گسترشگیری در نمونه رخ داده و اولین ترک مشاهده گردد. اندازه‌گیری نیرو در آزمون ITS با استفاده از ریسیک نیرو
روش زیر محاسبه شد. کرتش محوری (σ_h) خاک با رابطه زیر محاسبه شد:

$$\epsilon_s = \frac{\Delta L}{L_0}$$

که در آن ΔL مقدار جایگاه عمودی اندازه‌گیری شده به وسیله جابجایی سنگ و L_0 اندازه انعکاس‌های خاک می‌باشد. برای محاسبه سطح مقطع نمونه، خاک با طول بارگذاری و هنگام گسیل‌گیری از فرمول زیر استفاده شد:

$$A = \frac{A_B}{1-\epsilon_s}$$

که در آن A_B نیروی محوری وارد شده به نمونه خاک می‌باشد. ϵ_s مقدار رطوبت وزنی مقاومت مکانیکی w در برای مقدار رطوبت وزنی خاک و a و b نیروهای محلی می‌باشد. شیب در معادله 12 (معنی مقدار b) می‌تواند حاصلی از سخ. سخت‌گیری خاک باشد. زیرا خاکی که تغییر مقاومت مکانیکی با تغییر مقدار رطوبت در آن شدت پیشرفت داشته باشد، بیشتر مستعد سخت‌گیری است.

$$Strength = a.exp(-b.w)$$

و برای محاسبه ϵ_s مقدار A_B به وسیله Excel در برای محاسبه نمونه و A سطح مقطع اویله نمونه شد. δ_i نیروی محوری به وسیله (UCS) برای نمونه‌های خاک‌سنگ با استفاده از رنگ نیرو به دقت $6/89$ نیرو و برای نمونه‌های مرطوب بر با استفاده از رنگ نیرو به دقت $5/69$ نیرو انجام شد. در نهایت مقاومت فشاری عنصر (UCS) شد که از نمونه‌های علف‌ها (UCS) با فرمول زیر محاسبه شد:

$$\sigma_i = \frac{F_a}{A}$$

که در آن F_a نیروی محوری وارد شده به نمونه خاک وارد می‌شد.

گسیل‌گیری به نمونه خاک وارد می‌شود. (PR)

مقایسه مقاومت فروری با استفاده از دستگاه فرسنگ ریز، با زاویه مخزون 30 درجه، قطر قادع مخزون 4 میلی‌متر و با سرعت فروری 2 میلی‌متر در دقایق اندازه‌گیری شد. اندازه‌گیری نیرو با رنگ نیرو به دقت $5/63$ نیرو و در 3 نقطه و در هر نقطه در 3 عمق ($5/5$ و 3 سانتی‌متر) انجام شد. سپس از این 9 اندازه‌گیری برای نمونه خاک، میانگین هندسی گرفته شد:

$$F_{average} = \sqrt[9]{\prod_{i=1}^{9} F_i}$$

نتایج و بحث

ویژگی‌های فیزیکی و شیمیایی خاک‌های مورد بررسی ویژگی‌های خاک‌های مواد بررسی در جدول 1 آورده شد. است. خاک شماره 2 با 4 درصد پیزهر و خاک شماره 8 با 12/1 درصد کمترین مقدار رس داشتند. کمترین درصد سالن 22/7 و پیزهر رویان 55/9 درصد بود. مقدار شن نیز بین 4/6 و 5/1 تا 18/8 درصد متفاوت بود. پیزهر درصد آن مربوط به خاک شماره 5 با 4/6 درصد و کمترین آن مربوط به خاک شماره 8 با 30/6 درصد بود. مقدار کریستال خاک‌ها بین 5/4 تا 30/6 درصد بود. برای خاک شماره 2 و 2/6 درصد بای خاک شماره 9 تغییر بود. کریستال سکورتیزه نیز در خاک‌ها بین 7/6 تا 4/6 درصد متغیر بود. دامنه گستردگی مقادیر این}
جدول 1. برخی ویژگی‌های لیزریکی و شیمیایی خاک‌های مورد بررسی

<table>
<thead>
<tr>
<th>شماره</th>
<th>نام خاک</th>
<th>تاریخ خاک</th>
<th>قادر شکافته</th>
<th>سکر بروز</th>
<th>ماده کربنات</th>
<th>رس سیلت</th>
<th>شیمایی</th>
<th>شیمایی</th>
<th>پاتن خاک</th>
<th>میزان</th>
<th>دمای خاک</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ده بار</td>
<td>196/3</td>
<td>0/3/3</td>
<td>0/3/3</td>
<td>19/6/3</td>
<td>0/3/3</td>
</tr>
<tr>
<td>2</td>
<td>آق باغ</td>
<td>196/3</td>
<td>0/3/3</td>
<td>0/3/3</td>
<td>19/6/3</td>
<td>0/3/3</td>
</tr>
<tr>
<td>3</td>
<td>هارون‌باد</td>
<td>196/3</td>
<td>0/3/3</td>
<td>0/3/3</td>
<td>19/6/3</td>
<td>0/3/3</td>
</tr>
<tr>
<td>4</td>
<td>امجرد</td>
<td>196/3</td>
<td>0/3/3</td>
<td>0/3/3</td>
<td>19/6/3</td>
<td>0/3/3</td>
</tr>
<tr>
<td>5</td>
<td>بیور</td>
<td>196/3</td>
<td>0/3/3</td>
<td>0/3/3</td>
<td>19/6/3</td>
<td>0/3/3</td>
</tr>
<tr>
<td>6</td>
<td>جوکار</td>
<td>196/3</td>
<td>0/3/3</td>
<td>0/3/3</td>
<td>19/6/3</td>
<td>0/3/3</td>
</tr>
<tr>
<td>7</td>
<td>مسلم‌باد</td>
<td>196/3</td>
<td>0/3/3</td>
<td>0/3/3</td>
<td>19/6/3</td>
<td>0/3/3</td>
</tr>
<tr>
<td>8</td>
<td>حسین‌باد</td>
<td>196/3</td>
<td>0/3/3</td>
<td>0/3/3</td>
<td>19/6/3</td>
<td>0/3/3</td>
</tr>
<tr>
<td>9</td>
<td>نواحی</td>
<td>196/3</td>
<td>0/3/3</td>
<td>0/3/3</td>
<td>19/6/3</td>
<td>0/3/3</td>
</tr>
</tbody>
</table>

می‌توان گفت مراد کربنات کلسیم می‌تواند تأثیر قلیایی بر مقدار مقادرات کنیشی در خاک‌های مورد بررسی داشته باشد. اثر افزایشی مقدار رس بر مقادارت کمیکی خاک در این پژوهش، با یافته‌های الی و همکاران (12 و 13) هم‌اکنون داشت.

برای مقدمات تعریف پیش‌باندی در سیستم‌های خاک، می‌تواند شکل‌ساز و سلول‌ساز به‌شکل‌های مختلفی با ریزی‌پذیری ۹۰ kPa سخت‌شونده باشد. سخت‌شونده هوا‌خشک باید یا برای (۱۹) با نرم‌یابی به‌طور فردی ۳ می‌تواند کمک کند. شرایط ۱ (نینیا، ریزی‌پذیر) سخت‌شونده محسوب می‌شود. همچنین خاک‌های شماره ۳ و ۵ نیز برای ارائه تسیب از خاک شماره ۱ می‌توانند با سایر شیمایی مورد بررسی، شیرین مقدار مقادار کمیکی هوا‌خشک بودن. این نتایج مشابه می‌باشد. افزایش مقدار رس (البیاها تا حدی) می‌تواند

مقدمات کمیکی خاک‌ها (ITS)

مقدمات کمیکی (ITS) می‌تواند کیستئین، میانگین، انحراف معیار و ضریب تغییرات خاک‌های مورد بررسی و همچنین مقدار متوسط‌های خاک در واقع گسترش یافته در جدول ۱ و ۲. همچنین دارای دارایی ITS می‌باشد. در چگالی نظامی مقدار ITs می‌باشد. همچنین خاک شماره ۹ که دارای مقدار کربنات کلسیم در سیستم‌های مورد بررسی بود، دارای کمترین مقدار ITS بود (جدول ۲). نتایج بررسی می‌باشد.
جدول 2. مقادیر بیشینه، میانگین مقادیر کششی نمونه‌های خاک و مقادیر مقدران کششی نمونه‌های هو-خشک

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>کمیته بهبود</th>
<th>میانگین</th>
<th>انحراف معیار</th>
<th>ضرب حاصل</th>
<th>ضرب مختلف مقادیر کششی هو-خشک (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5/10</td>
<td>5/11</td>
<td>5/12</td>
<td>3/5</td>
<td>10/15</td>
</tr>
<tr>
<td>2</td>
<td>5/2</td>
<td>5/3</td>
<td>5/4</td>
<td>3/6</td>
<td>10/2</td>
</tr>
<tr>
<td>3</td>
<td>5/5</td>
<td>5/6</td>
<td>5/7</td>
<td>3/8</td>
<td>10/3</td>
</tr>
<tr>
<td>4</td>
<td>5/8</td>
<td>5/9</td>
<td>5/10</td>
<td>3/11</td>
<td>10/4</td>
</tr>
<tr>
<td>5</td>
<td>5/12</td>
<td>5/13</td>
<td>5/14</td>
<td>3/15</td>
<td>10/5</td>
</tr>
</tbody>
</table>

موفقیت افزایش مقادیر کششی در رطوبت هو-خشک شود. می‌توان نتیجه گرفت که خاک‌هایی با بایت متوسط، بیشتر مستعد سخت‌سازی هستند. این باعث می‌شود تا بتواند همگامی را در درست کردن گوی و عامل خاک‌سازی (رس و ماده آلی) کمی بوده و این ویژگی موجب شده است که کمترین مقدار بیشینه UCS را داشته باشد.

(UCS) مقادیر فشاری غیرمحصور

مقادیر بیشینه، میانگین، انحراف معیار و ضرب تغییرات داده‌های خاک‌های مورد بررسی در جدول 3 آورده شده است. خاک شماره 1 بیشترین و خاک شماره 8 کمترین مقدار بیشینه و میانگین را داشته است. همانند آنچه در مورد اثر مقادیر رس بر مقادیر ITS خاک‌ها-خشک بیان می‌گردد، می‌توان گفت مقادیر رس افزایشی بر مقادیر UCS نیز داشته است. همچنین با توجه به جدول 3، دیده می‌شود که خاک شماره 7 که دارای مقدار زیاد کریستال کلسیم می‌باشد، پس از خاک شماره 11، کمترین مقدار UCS بیشینه UCS می‌باشد. این نشان می‌دهد که اثر مقادیر کریستال کلسیم بر مقادیر کلسیم خاک‌ها می‌تواند افزایشی باشد. مصداقی و همکاران (12 و 17) نیز در یافته‌ها که مقادیر مکانیکی با افزایش کریستال کلسیم افزایش می‌یابد.
جدول 3. مقادیر بیشتر، کمیته و میانگین مقاومت شاری ع纪检监察 نمونه‌های خاک

<table>
<thead>
<tr>
<th>ضرب تغییرات</th>
<th>انحراف معیار</th>
<th>میانگین</th>
<th>کمیته</th>
<th>بیشتر</th>
<th>شماره خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>kPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.7</td>
<td>318/6</td>
<td>394/2</td>
<td>14/8</td>
<td>1044/0</td>
<td>1</td>
</tr>
<tr>
<td>79.9</td>
<td>274/3</td>
<td>347/2</td>
<td>5/0</td>
<td>709/2</td>
<td>2</td>
</tr>
<tr>
<td>74.4</td>
<td>198/2</td>
<td>218/2</td>
<td>0</td>
<td>513/3</td>
<td>3</td>
</tr>
<tr>
<td>65/1</td>
<td>195/4</td>
<td>300/1</td>
<td>0</td>
<td>602/5</td>
<td>4</td>
</tr>
<tr>
<td>79/8</td>
<td>152/1</td>
<td>203/0</td>
<td>7/0</td>
<td>407/2</td>
<td>5</td>
</tr>
<tr>
<td>105</td>
<td>128/2</td>
<td>122/0</td>
<td>0</td>
<td>243/7</td>
<td>6</td>
</tr>
<tr>
<td>92/7</td>
<td>313/9</td>
<td>328/4</td>
<td>0</td>
<td>956/2</td>
<td>7</td>
</tr>
<tr>
<td>107</td>
<td>96/1</td>
<td>88/5</td>
<td>0</td>
<td>277/1</td>
<td>8</td>
</tr>
<tr>
<td>90</td>
<td>151/6</td>
<td>148/4</td>
<td>0</td>
<td>354/2</td>
<td>9</td>
</tr>
</tbody>
</table>

جدول 4. مقادیر بیشتر، کمیته و میانگین مقاومت فروروزی نمونه‌های خاک

<table>
<thead>
<tr>
<th>ضرب تغییرات</th>
<th>انحراف معیار</th>
<th>میانگین</th>
<th>کمیته</th>
<th>بیشتر</th>
<th>شماره خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>kPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72/1</td>
<td>2328</td>
<td>4357</td>
<td>219/1</td>
<td>8628</td>
<td>1</td>
</tr>
<tr>
<td>71/6</td>
<td>2381</td>
<td>3322</td>
<td>66/7</td>
<td>6240</td>
<td>2</td>
</tr>
<tr>
<td>78/4</td>
<td>3134</td>
<td>2923</td>
<td>98/9</td>
<td>8800</td>
<td>3</td>
</tr>
<tr>
<td>76/5</td>
<td>3575</td>
<td>4744</td>
<td>51/0</td>
<td>9800</td>
<td>4</td>
</tr>
<tr>
<td>85/7</td>
<td>2798</td>
<td>2626</td>
<td>94/1</td>
<td>7286</td>
<td>5</td>
</tr>
<tr>
<td>105/0</td>
<td>2872</td>
<td>2535</td>
<td>213/1</td>
<td>7558</td>
<td>6</td>
</tr>
<tr>
<td>89/7</td>
<td>3299</td>
<td>3888</td>
<td>242</td>
<td>10053</td>
<td>7</td>
</tr>
<tr>
<td>99/7</td>
<td>1712</td>
<td>1716</td>
<td>2/2</td>
<td>2878</td>
<td>8</td>
</tr>
<tr>
<td>85/0</td>
<td>1390</td>
<td>1635</td>
<td>8/9</td>
<td>3549</td>
<td>9</td>
</tr>
</tbody>
</table>

نتایج با یافته‌های مشداقی و همکاران (16 و 17) هماهنگی دارد که درنتج که در ناحیه‌های مختلف در خاک می‌توانند مانند

اه او رونده در 3 خاک ثبت مورد بررسی در شکل 1

از آورده شده است. در این شکل مقادیر مقاومت مکانیکی به دلیل

دلمه گسترش تغییرات با مقایسه لگاریتمی رسم شده. برای هر

سه نوع مقاومت مکانیکی، روند کاهشی نسبتاً خطی (در مقایسه

لگاریتمی) با افزایش مقادیر رطوبت به‌خوبی مشخص است.

همچنین در همه ناحیه‌های مورد بررسی، بیشترین مقادیر

مقاومت مکانیکی مربوط به مقاومت فروروزی و کمترین آن

مرجع به مقاومت کشی بوده است. اگرچه داده‌های مقاومت

رطوبت خاک

روند کلی مقادیر مقاومت هر سه نوع مقاومت مکانیکی با

افزایش مقادیر رطوبت در تمامی خاک‌ها دیده شد. برای نمونه

188
نمونه‌هایی از روند کاهشی هر سه نوع مقاومت مکانیکی با افزایش مقدار رطوبت خاک

کارگاه شده توسط نانوپلیمر (24) بسیار مقاومت بود. کولن و وندراکر (11) نیز مهاجم با نظریه گریفیت، نسبت 8 به 1 را برای نمونه‌هایی با نمایش‌های شده سه خاک کشاورزی به‌دست آورند. دلیل انحراف این نسبت از عدد 8 (در نظریه گریفیت) آن است که براساس نظریه گریفیت، ماده سریزه‌بررسی برای کشن و همگی و همسانی که باشد و این نظریه برای موارد غیرکشن و تنه‌هاگی و ناهیانند که تاریخ کشاورزی دارای خطا خواهد بود (14 و 15).

نسبت‌های UCS/ITS

UCS/ITS (الف) همان‌گونه که در بخش‌های پیشین دیده شد، مقادیر UCS به مقدار ITS بزرگتر بودند. نسبت بین این دو مقاومت مکانیکی در پروچرهای متفاوتی مورد بحث قرار گرفته و مقادیر مختلفی برای آن توصیه گردد. گرچه مقادیر UCS در برابر ITS برابر است، شکل 3 همه داده‌های UCS در برابر ITS در برابر PR بزودی مورد بررسی قرار گرفت. شکل 3 همه داده‌های UCS در برابر ITS و شکل 2 نیز همه داده‌های UCS در برابر PR بزودی مورد بررسی قرار گرفت. شکل 3 همه داده‌های UCS در برابر ITS و شکل 2 نیز همه داده‌های UCS در برابر PR بزودی مورد بررسی قرار گرفت. شکل 3 همه داده‌های UCS در برابر ITS و شکل 2 نیز همه داده‌های UCS در برابر PR بزودی مورد بررسی قرار گرفت. شکل 3 همه داده‌های UCS در برابر ITS و شکل 2 نیز همه داده‌های UCS در برابر PR بزودی مورد بررسی قرار گرفت. شکل 3 همه داده‌های UCS در برابر ITS و شکل 2 نیز همه داده‌های UCS در برابر PR بزودی مورد بررسی قرار گرفت. شکل 3 همه داده‌های UCS در برابر ITS و شکل 2 نیز همه داده‌های UCS در برابر PR بزودی مورد بررسی قرار گرفت. شکل 3 همه داده‌های UCS در برابر ITS و شکل 2 نیز همه داده‌های UCS در برابر PR بزودی مورد بررسی قرار گرفت. شکل 3 همه داده‌های UCS در برابر ITS و شکل 2 نیز همه داده‌های UCS در برابر PR بزودی مورد بررسی قرار گرفت. شکل 3 همه داده‌های UCS در برابر ITS و شکل 2 نیز همه داده‌های UCS در برابر PR بزودی مورد بررسی قرار گرفت. شکل 3 H
شکل 2. مقادیر مقاومت فشاری غیرمحصور (UCS) در برای مقاومت کنشی (ITS) برای خاک‌های مورد بررسی

شکل 3. مقادیر مقاومت فرورويی (PR) در برای مقاومت کنشی (ITS) برای خاک‌های مورد بررسی

تغییرات مقاومت‌های کنشی و فرورویی با تغییرات مقدار فشار و شیب تغییر می‌انجامد. بنابراین، مقادیر مقاومت‌های مکانیکی با تغییرات تأثیرگذاری قابل قبولی دارد. برای مقایسه، منحنی شکل 2 نشان می‌دهد که دقت برآورد مقادیر کم مقاومت مکانیکی، بیشتر است (شکل های 2-4).

مقدار مقاومت فرورویی که انداده‌گیری نسبتاً می‌شود، مقدار دیگر مقاومت‌ها را به طور تقریبی به‌دست می‌آورد و روی نمودار مشخصات مقاومت‌های مکانیکی با تغییر مقادیر رطوبت خاک یک شکستگی دارد. نتایج نشان می‌دهد که دقت برآورد مقادیر کم مقاومت مکانیکی، بیشتر است (شکل های 2-4).

تعیین نسبت بین انواع مقاومت‌های مکانیکی می‌توان با انداده‌گیری یک شکستگی مقاومت‌های مکانیکی، بیش از شکستگی مقاومت‌ها براورده نمود. برای نمونه، با داشتن این نسبت‌ها براورده خاک‌های استان همدان، می‌توان به‌دست انداده‌گیری مستقیم تعیین مقاومت‌های مکانیکی، نتایج با انداده‌گیری یک از انواع مقاومت‌های...
نتایج برآورد مدل نمایی بر داده‌های مقاومت مکانیکی خاک

در این پژوهش برای هر سه نوع مقاومت مکانیکی در جدول 5 اورده شده است. به ذکر است که برای مقاومت مکانیکی با کاهش رطوبت بهد و ممکن است لزوماً روند تغییر آن با روند تغییر مقاومت مکانیکی که در بحث‌های اندیشمندی اشاره شده، هموارا نداشته باشد. همان‌گونه که پیش از این برای هر سه نوع مقاومت مکانیکی در جدول 5 اورده شده است.

جدول 5 مقادیر پارامتر برآورد مدل نمایی (b) و R^2

<table>
<thead>
<tr>
<th></th>
<th>PR</th>
<th></th>
<th>UCS</th>
<th></th>
<th>ITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>b</td>
<td>R^2</td>
<td>b</td>
<td>R^2</td>
<td>b</td>
</tr>
<tr>
<td>0/95</td>
<td>0/1275</td>
<td>0/95</td>
<td>0/1269</td>
<td>0/95</td>
<td>0/1266</td>
</tr>
<tr>
<td>0/93</td>
<td>0/1279</td>
<td>0/93</td>
<td>0/1273</td>
<td>0/93</td>
<td>0/1270</td>
</tr>
<tr>
<td>0/94</td>
<td>0/1281</td>
<td>0/94</td>
<td>0/1285</td>
<td>0/94</td>
<td>0/1282</td>
</tr>
<tr>
<td>0/97</td>
<td>0/1289</td>
<td>0/97</td>
<td>0/1293</td>
<td>0/97</td>
<td>0/1290</td>
</tr>
<tr>
<td>0/92</td>
<td>0/1329</td>
<td>0/92</td>
<td>0/1333</td>
<td>0/92</td>
<td>0/1330</td>
</tr>
<tr>
<td>0/97</td>
<td>0/1379</td>
<td>0/97</td>
<td>0/1383</td>
<td>0/97</td>
<td>0/1380</td>
</tr>
<tr>
<td>0/94</td>
<td>0/1477</td>
<td>0/94</td>
<td>0/1481</td>
<td>0/94</td>
<td>0/1478</td>
</tr>
<tr>
<td>0/97</td>
<td>0/1594</td>
<td>0/97</td>
<td>0/1600</td>
<td>0/97</td>
<td>0/1591</td>
</tr>
<tr>
<td>0/99</td>
<td>0/1599</td>
<td>0/99</td>
<td>0/1605</td>
<td>0/99</td>
<td>0/1596</td>
</tr>
<tr>
<td>0/95</td>
<td>0/2587</td>
<td>0/95</td>
<td>0/2601</td>
<td>0/95</td>
<td>0/2594</td>
</tr>
<tr>
<td>0/97</td>
<td>0/2487</td>
<td>0/97</td>
<td>0/2501</td>
<td>0/97</td>
<td>0/2494</td>
</tr>
</tbody>
</table>

شماره خاک

1
2
3
4
5
6
7
8
9

۱۹۱
جدول ۶ روابط معنی‌دار پارامتر b در مدل نمای مربوط به سه مقاومت مکانیکی و برخی ویژگی‌های خاک و روابط منفی مقدار b برای سه مقاومت مکانیکی خاک

<table>
<thead>
<tr>
<th>درجه معنی‌دار</th>
<th>ضریب تبین R^2</th>
<th>رابطه خطي b</th>
<th>مقاومت مکانیکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p < 0.005$</td>
<td>0.70</td>
<td>0.7114 – 0.0116%Silt</td>
<td>ITS</td>
</tr>
<tr>
<td>$p < 0.030$</td>
<td>0.52</td>
<td>0.0047 + 0.0069%Sand</td>
<td>UCS</td>
</tr>
<tr>
<td>$p < 0.001$</td>
<td>0.79</td>
<td>0.4433 – 0.0066%Silt</td>
<td>PR</td>
</tr>
<tr>
<td>$p < 0.010$</td>
<td>0.64</td>
<td>0.0372 + 0.0041%Sand</td>
<td>ITS , UCS</td>
</tr>
<tr>
<td>$p < 0.004$</td>
<td>0.71</td>
<td>0.3412 – 0.0042%Silt</td>
<td>PR</td>
</tr>
<tr>
<td>$p < 0.002$</td>
<td>0.77</td>
<td>0.0707 + 0.0030%Sand</td>
<td>ITS , PR</td>
</tr>
<tr>
<td>$p < 0.00005$</td>
<td>0.92</td>
<td>$b_{\text{UCS}} = 0.053 + 0.51b_{\text{ITS}}$</td>
<td>UCS</td>
</tr>
<tr>
<td>$p < 0.00003$</td>
<td>0.85</td>
<td>$b_{\text{PR}} = 0.094 + 0.327b_{\text{ITS}}$</td>
<td>UCS</td>
</tr>
<tr>
<td>$p < 0.00009$</td>
<td>0.90</td>
<td>$b_{\text{PR}} = 0.061 + 0.631b_{\text{UCS}}$</td>
<td>UCS</td>
</tr>
</tbody>
</table>

فضاهایی بین دانه‌های شن وارد شده یا به عنوان پل‌های اتصالی به‌دست آمده و عمل کرده و توسط سطح دانه‌های شن متصور شده‌اند. در خاک‌های سخت‌شونده، دارای سیستم ریز و رشد پیوندهای برخی فرآیندهای مانند تغییرات سطحی و رشد مخلوط‌های مختلف توسعه‌دهنده شن-کاتیون‌لین در مقادیر مختلف رطوبت، بررسی گردیده است. این داده‌ها که منحنی‌های با مقدار رس (کاتیون‌لین) بیشتر مقاومت مکانیکی بیشتری نسبت به داشته‌اند. زیرا همان‌گونه که در شن بازیابی که به عنوان پل‌های اتصالی در مورد حاکم‌های ساختاری شن-کاتیون‌لین و در مورد دارایتیدی که در هر مقادیر رطوبت و در هر مقادیر رس (کاتیون‌لین) مقاومت مکانیکی بیشتری از خود نشان دادند. نمونه‌های دارایی شن درشت، ناشناخته و شیاری داشته و دارای رس به‌خوبی نتوانستند بین دارایی شن درشت بل ایجاد کنند و فقط یک درصد مانند آنچه در مورد شن ریز رخ می‌دهد. انجام تغییرات و در نتیجه مقادیر مقاومت مکانیکی گرند شد. روابط بین سه آمده به

UCS و *ITS*}

با توجه به روابط جدول ۶ می‌توان دریافت که با افزایش مقادیر سیستم، پارامتر b برای هر سه نوع مقاومت مکانیکی کاهش یافته. چنین یافته‌ای به این مفهوم است که سیستم در کاهش است و سخت‌شونده خاک‌ها مؤثر است. رابطه منفی بین b و مقدار شن نیز نشان می‌دهد که افزایش مقادیر شن در خاک پایین‌دهنده سخت‌شونده‌گزینی افزایش داده است. نیکی و چوبارک (۲۲) و سپیکار (۲۵) نیز به یافته‌های مشابهی در مورد خاک‌های سنتی رسیده‌اند. نیکی و چوبارک (۲۲) می‌توان گفت، دررت‌سیستم، از عوامل مهمی، دارایتیدی (دات اسکلتی) برای قرارگرفتن و رسوب دارایتیدی و در آنها (بل) عمل کرده و سپس افزایش قفل‌شانگی و استکلاک بین دارایی و نور افزایش مقاومت مکانیکی باکاهش مقادیر رطوبت خاک می‌شوند. در خاک‌های بیدون صفت می‌توان با استکلام ضعیف و دارای پیچر دانه‌های منفر همین، در هنگام ممکن شدن دارایی سیستم و رس (مواد ریز) به

