به‌رهوز مصطفی‌زاده، سید نرهاد موسوی و محمد حسین شریف بیان‌الحق

چکیده
به منظور بررسی اثر شبب زمین، دری فطره چکان، حجم آب آبیاری و بافت خاک روی جهه رطوی و خیس شنگی سطحی خاک از یک منبع نفتگاهی، مطالعات صحرایی بر روی سه خاک با نفوذ پذیری متغیر، سه دی فطره چکان (3، 6 و 12 لیتر بر ساعت)، چهار شب سطحی زمین (صفر، 2، 5 و 10 درصد) و پنجم حجم آب آبیاری (0، 10، 30 و 50 لیتر) در سه تکرار انجام گردید. نتایج حاصل نشان داد که با افزایش دی فطره چکان سطح خیس شده افزایش می‌یابد. تغییرات سطح خیس شده با افزایش دی فطره چکان در مزارع آزمایشی محسوب و مزارع آزمایشی شبب در بافت خاک سبک کاهش یافته، در مزارع آزمایشی شبب، بافت خاک سنگین، در شب‌های بالای 5 درصد تغییرات سطح خیس شده با افزایش دی فطره یافته، ولی در شب‌های زیر 5 درصد تا حدودی از روند صعودی افزایش سطح خیس شده با افزایش دی کاسته شد. با توجه به اینکه با افزایش دی فطره سطح خیس شده افزایش می‌یابد، در هر حجم ساکنی آب آبیاری، در دی‌های پایین، عمق جهه خیس شده بیشتر بود، ولی در مجموع حجم خیس شده جهه رطوی و خیس شده جهه رطوی با افزایش دی بیشتر گردید. حجم آب آبیاری تأثیر مستقیمی بر حجم جهه رطوی و حجم خیس شده جهه رطوی باعث آب آبیاری بر حجم خیس شده خاک برای تأثیر دی فطره چکان برای در حجم به دست آمد. به طور کلی در شکاف‌های بافت سنگین نسبت به شکاف‌های بافت سبک، سطح خیس شده افزایش یافت و خیس شده رطوی از همین شکاف‌ها برخوردار بود. با افزایش شبب زمین، سطح خیس شده و انحراف جهه رطوی در جهت شبب افزایش یافت که این افزایش تحت تأثیر نفوذپذیری خاک، دی فطره چکان و حجم آب آبیاری قرار داشت.

واژه‌های کلیدی - آبیاری فطره‌ای، جهه رطوی، منبع نفتگاهی

مقدمه
آبیاری فطره‌ای یکی از روشهای آبیاری تحت فشار محصور می‌باشد. محاسبات این روش باعث گردیده که در سال‌های گذشته توجه چشمگیری به گسترش آن معرفت گردد. اصولاً به کارگیری استفاده محصور از هر سیستم آبیاری مستلزم شناخت کامل و محاسبات مناسب تمامی خصوصیات و پارامترهای اولیه به ترتیب دانش‌دانان و دانشجوی سایه‌کارشانی ارتش گروه آبیاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

13
آپاری قطعه‌های داشته و بر مقدار آپ آپاری مؤثر است. در واقع اولین گرام برای تضمین عمل آپاری، تهیه و اندازه‌گیری جهه رطوبتی است. شکل میزان رطوبتی به عوامل مختلفی از قبیل باد و لایه بندی خاک، میزان رطوبتهایی که در حال آپاری می‌باشد، شدت پخش آپ رطوبت اولیه خاک، شیب زمین و حجم آب مصری می‌باشد دارد (7 و 12). در محیط‌های مغناطیسی خاک‌های بافت زرد جهه خسش به صورت افقی و عمودی و تقریباً با یک سرعت حرکت می‌کنند در خاک‌های بافت درشت و همگی، حرکت آپ بهتر در جهت عمودی است. در طریق دیسپت آپ آپ از قطعه، مطمئن شده راه تعیین درصد سطح خاک خسش به بررسی ساده‌تر زمینه‌ای است (10، 11 و 12). اکرم نیا در سال 1375، در بررسی‌هایی که در مورد انواع قطعه‌های درختانی داده که نفوذ‌پذیری در خاک‌های شسته به طور عمده تابع نیروی قدرت است، حال آن که در خاک‌های رسی عامل اصلی تعیین کننده شکل پیاز رطوبتی خاک نیروی می‌باشد. (1) این بدان معنی است که در خاک‌های شسته پیاز رطوبتی به صورت عمودی و بالاترین ولی در خاک‌های رسی به صورت سطحی کاهش یافته است که مکان آن در زیر قطعه چکان قرار دارد. (2) توزیع آپ در نیم‌برخ خاک را یک یک منبع نفلتی ماهی نموده و تجربیات و جهه آپی آپاری افزایش می‌یابد. در دیه‌های پایین، جهه خسش از عمک پیاشتگی برخورد به دوپه و در دیه‌های پایین، پیاشتگی افتقی افزایش بی‌پناهی نموده، از عمک تا نهایت می‌شود.

طبق تحقیقات حرم زاغداون (15) روی حرکت آپ در خاک تحت یک منبع نقطه‌ای تجربی می‌گردد که به هنگام شروع جریان آپ، نوری مویشکی اگهی خسش بشزگی ماکت یا انتقال می‌کند و با افزایش منبع خسش شده آپ. حرکت آپ مصری پی پر. یکری نگوی خسش شده آپ در شرایط منبع محیطی و زیر سطحی را بررسی قرار داد. در شرایط منبع محیطی در بافت‌های سبک کل هو (8 و 1) بررسی جریان اطراف اندازه‌گیری از یک منبع نقطه‌ای در شرایط مزره و آزمایشگاه، به واسطگی مستقیم حجم خسش شده آپ. حجم آپ مصری پی پر. یکری نگوی خسش شده آپ در شرایط منبع محیطی و زیر سطحی را بررسی قرار داد. در شرایط منبع محیطی، در بافت‌های سبک
پیشروی جبهه و رفتاری از منبع تنظیم در سطوح بیشتر

مجاورت کارخانه ایرانیت، در جنوب غربی اصفهان
مزرعه شماره 2، نقشه زمینی واقع در ناحیه مرگ آثاری بین راه‌های آهمر، جنوب اصفهان.
مزرعه شماره 3، اراضی متفاوت اشکالی گسترش صنعتی اصفهان، شمال غربی اصفهان.
مزرعه شماره 4، مزرعه خزان متخلخل به دانشگاه صنعتی اصفهان، واقع در جنوب شرقی اصفهان.
خصوصیات فیزیکی خاک: مزرعه آزمایشی شامل باغ خاک چهارم مالیه‌بندی تولید یا همچنین حداکثر
قطر افقی پخش آب با شدت 2/8 تا 2/3 کمتر از 80 تا 85 درصد خاک در منطقه ریشه‌ای محصول رضایت بخشی می‌دهد.

حوزه (11) طبق تحقیقاتی که در مورد چگونگی توزیع
روتیوبی در اراضی نشان داد این مکانیه دارد در دامنه‌های
شیب‌یافته در هنگام آبیاری، مولفه افقت چیزی که به صورت
سطحی یا زیر سطحی حادثه می‌شود غالب بوده و مولفه
عمودی باید افزایش شیب کاهش می‌یابد. به‌کلیه شیب، مولفه
عمودی چیزی غالب می‌گردد.

مطالعات فوق و سایر مطالعات انجام شده در این زمینه (12)
و (13) نشان داده‌اند اهمیت بررسی چگونگی توزیع روتیوبی
از منبع تنظیم در سیستم آبیاری قطع‌های است. تا یک‌تشریح این
سیستم را با توجه به شرایط مزئعه‌ای به‌طور طراحی نموده که
در حالی که کمک‌ردن روتیوبی ناحیه ریشه‌گیاه اتفاق می‌گردد.

حداقل اتفاق و حداکثر به‌ناهنجابی آبیاری حاصل گردد.

به طور کلی هدف اصلی مطالعه‌ای حاضر بررسی تأثیر واحله
شب زمین، باریک بیشتر، دمای، عبوری و دمای آب بر جهش
روتیوبی خاک از منابع تنظیم در سیستم آبیاری قطع‌های است.

مواد و روش‌ها
آزمایش‌ها در چهار مزرعه زیر که دارای خاک‌هایی با
توفیل‌های مختلف بودند، انجام گرفت:
مزرعه شماره 1: مزرعه حکمی واقع در باغ ایرانیت و در
لوله بان آبیات 16 میلیمتری، شبکه فلکه، قطره‌گیری باریک تنظیم
کمتر توزیع می‌گردد.
وسلای عمدی مورد نیاز جهت انجام آزمایش‌ها تهیه بود از

الگوی خشکشدن خاک در این مقطع نیم بیضی و در پایانه
سگنی به‌شکل شبه پایه‌ای می‌باشد. در شرایط مناسب
سطحی، الگوی خشکشدن خاک در این مقطع تقریباً دایره‌ای با
مرکزیت منبع آب است.

کو و نورک (14) این اثر را به گوناگونی بر توزیع روتیوبی خاک
را تحت آبیاری قطع‌های در باغات مناسب می‌باشد. نمونه
و تیپ می‌تواند که در خاک‌هایی با بافت ریز حکمت چنین آب
نسبت به خاک‌هایی با بافت دشت بیشتر است و همچنین در
قطر افقی پخش آب با شدت 3/9 تا 3/14 لیتر بر ساعت از
6/15 تا 1/3 لیتر به حساب می‌آید. این آتیه‌ها گرفته‌اند که
در مکان‌ها، خشکشجانی 60 درصد خاک در منطقه ریشه‌ای
به منظور بررسی اثرات باریک بیشتر و نیاز به جهش
روتیوبی از منبع تنظیم، سه نوع خاک با نفوذپذیری
فترات متفاوت انتخاب شد.

شبه‌یافته‌های باریک طرح عبارت از صفر، ۰/۵ و ۰/۱
درصد بود. با توجه به اینکه شیب جزئی زمین در
محیط‌های مختلف متفاوت است، در این طرح با استفاده از
شیب‌های متفاوت از منبع تنظیم در محل تکثیف شیب
روتیوبی اندوزه‌گیری شد.

به منظور بررسی اثرات بندرگاه‌های بر روی خاک
روتیوبی، به شیب جزئی به‌کار برده شد. در این
طرح از قطره‌گیری تهیه‌شده استفاده شد. در هر یک از
قطره‌گیری، به روش حجمی تنظیم گردید.

یکی از فاکتورهای مؤثر بر رضایت جهش و روتیوبی تخلیه
شده از یک منبع تنظیم ای، حجم آب مصروف است. در این
حریز 5 حجم 10، ۱۵، ۲۰، ۲۵ و ۳۰ لیتر به‌کار
برده شد. با توجه به اینکه حجم آب قطعات مشخص است، با استفاده از
گزارش زمان از شروع آب‌یاری، حجم آب مصروف شده معین
می‌گردد. طراحی است که در قطعه جهش‌های با دیب بیشتر، حجم
آب مورد نظر در زمان کمتری نسبت به حجم جهش‌های با دیب
کمتر توزیع می‌گردد.

و سپس عمده مورد نیاز جهت انجام آزمایش‌ها تهیه بود از
لوله بان آبیات ۱۶ میلیمتری، شبکه فلکه، قطره‌گیری باریک تنظیم

15
جدول 1 - خصوصیات فیزیکی مزارع آزمایشی

<table>
<thead>
<tr>
<th>مزرعه آزمایشی</th>
<th>درصد درصد درصد درصد درصد درصد</th>
<th>باتت خاک</th>
<th>چرب</th>
<th>میوه</th>
<th>مخسوس</th>
<th>رطوبت</th>
<th>سرعت</th>
<th>شگرده</th>
<th>سنگریزه</th>
<th>چشم</th>
<th>سیلت</th>
<th>رس</th>
<th>توده</th>
<th>نفوذه</th>
<th>نفوذه</th>
<th>ساچنی‌متر</th>
<th>ساچنی‌متر</th>
<th>مکعب</th>
<th>مکعب</th>
<th>در ساعت</th>
</tr>
</thead>
<tbody>
<tr>
<td>مزرعه شماره 1</td>
<td>28/29</td>
<td>8/5</td>
<td>1/26</td>
<td>52</td>
<td>28</td>
<td>5/7</td>
<td>2/27</td>
<td>7/3</td>
<td>1/24</td>
<td>5/3</td>
<td>7/3</td>
<td>1/24</td>
<td>5/3</td>
<td>7/3</td>
<td>1/24</td>
<td>5/3</td>
<td>7/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(باغ‌آفتابی)</td>
<td></td>
</tr>
<tr>
<td>مزرعه شماره 2</td>
<td>22/27</td>
<td>6/7</td>
<td>1/28</td>
<td>52</td>
<td>28</td>
<td>5/7</td>
<td>2/27</td>
<td>7/3</td>
<td>1/24</td>
<td>5/3</td>
<td>7/3</td>
<td>1/24</td>
<td>5/3</td>
<td>7/3</td>
<td>1/24</td>
<td>5/3</td>
<td>7/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(مزرعه)</td>
<td></td>
</tr>
<tr>
<td>مزرعه شماره 3</td>
<td>25/27</td>
<td>5/7</td>
<td>1/28</td>
<td>52</td>
<td>28</td>
<td>5/7</td>
<td>2/27</td>
<td>7/3</td>
<td>1/24</td>
<td>5/3</td>
<td>7/3</td>
<td>1/24</td>
<td>5/3</td>
<td>7/3</td>
<td>1/24</td>
<td>5/3</td>
<td>7/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(دشماره صنعتی)</td>
<td></td>
</tr>
<tr>
<td>مزرعه شماره 4</td>
<td>35/27</td>
<td>7/3</td>
<td>1/28</td>
<td>52</td>
<td>28</td>
<td>5/7</td>
<td>2/27</td>
<td>7/3</td>
<td>1/24</td>
<td>5/3</td>
<td>7/3</td>
<td>1/24</td>
<td>5/3</td>
<td>7/3</td>
<td>1/24</td>
<td>5/3</td>
<td>7/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(اختوان)</td>
<td></td>
</tr>
</tbody>
</table>

حمجم و به وسیله پیچ تنظیم صورت می‌گردد. با وجود تنظیم دیگر قطره چکنها در این‌داده آزمایش، در طی آزمایش نیز این دیگر دفعات اندازه‌گیری می‌شود که تحت آن اطمینان حاصل شود (بدون هدر رفت آب). مدت آبایر با توجه به دیگر قطعه چکان (40) 12 لیتر برساعت و حجم مورد نظر تعیین و پس از اتمام زمان آبایر، قطعه چکان مربوطه مدد می‌گردد.

پس از شروع آزمایش در زمان‌های مختلف، جهت رطوبت سطحی در دو جهت عمود بر هم و در نقاط مختلف شبکه این چسب تعبیه شدند. تعداد گردیده به چهار تعداد سپس اندازه‌گیری می‌گردید. مدت و وسعت پرورش جهت رطوبت سطحی اندوزه‌گیری شد و با تایتان به دست آمد. در هنگام آزمایش در روز قبل مقايسه گردید.

پس از یک‌روز نشت و وضعیت پرورش جهت رطوبتی ادامه می‌رود. حفر ترکشته تا انتهای پایه رطوبتی ادامه می‌یابد. سطح مقطع و عمق ترکشته به‌طور یکسان در کل کنار بانده روش می‌گردد.

شونده، کرونومتر، استوانه مدرج، نازار و اتصالات شامل سه راه، رابط و پست انتهایی، آزمایش‌ها به شرح زیر انجام گرفت: آب پری آبایر در یک منبع 120 لیتری ذخیره می‌شد که در دارایی یک شیر فلزی در قسمت تحتانی به‌طور کلی به دیگر شبکه‌های با سه انتهای موازی و مشابه (با توجه به سه تکرار آزمایش)، به فواصل 2 متری از لوله‌پلی ایجاد 16 میلیمتری تک چکان و به منبع وصل گردید. بر روی این انتهای 5 قطره چکان (با توجه به 5 حجم مختلف آب آبایر)، به فواصل حدود 2 متری از یکدیگر نصب گردید تا تأثیری بروز نماید.

با توجه به نظریات و رطوبت اولیه خاک به ترتیب به دست آمد. نمونه‌هایی از خاک محل آزمایش برای اندوزه‌گیری آزمایشگاهی ریخته و شد. به علت موجود بودن شیر آب جهت ثبت نتایج نشان فشار آب، از قانون چرخ مارپیچ استفاده شد و با اکتشاف زمان، منبع اصلی با استفاده از ظرف‌هایی 50 لیتری مجدداً پر گردید. در همین شرایط آزمایش شرایط منبج با انتها بیشتر و تنظیم دیگر قطره چکان به روش
جدول ۲- اثر متقابل شیب زمین و دی‌بند قطعه چکان‌ها بر سطح خیس شده در حجم آب آبی‌ای ۲۰ لیتر در مزرعه آزمایشی ۱

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>دی‌بند قطعه چکان (لیتر بر ساعت)</th>
<th>سطح خیس شده (متر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۲۷۹</td>
<td>۰/۲۸۰</td>
<td>۰/۲۷۳/۲۶۹</td>
</tr>
<tr>
<td>۰/۳۸۶</td>
<td>۰/۳۸۴</td>
<td>۰/۳۸۲/۳۳۲</td>
</tr>
<tr>
<td>۰/۴۲۵</td>
<td></td>
<td>۰/۴۲۸/۳۵۹</td>
</tr>
</tbody>
</table>

جدول ۳- اثر متقابل شیب زمین و دی‌بند قطعه چکان‌ها بر سطح خیس شده در حجم آب آبی‌ای ۴۰ لیتر در مزرعه آزمایشی ۱

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>دی‌بند قطعه چکان (لیتر بر ساعت)</th>
<th>سطح خیس شده (متر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۲۷۷/۲۴۷</td>
<td>۰/۲۷۶/۲۴۹</td>
<td>۰/۲۷۴/۲۴۶</td>
</tr>
<tr>
<td>۰/۵۷۶</td>
<td></td>
<td>۰/۵۷۳/۵۸۵</td>
</tr>
<tr>
<td>۰/۷۰۰</td>
<td></td>
<td>۰/۷۰۰/۷۰۷</td>
</tr>
</tbody>
</table>

آب آبی‌ای متفاوت بود. لیل مجموعاً بررسی در اعماق ۰ و ۵ سانتی‌متر و پس از آن در فواصل ۵ سانتی‌متر تا انتهای چاه، رطوبتی انجام می‌گرفت و تثبیت پس از اتدازه‌گیری یادآوری شد. در راه‌های از محیط‌های قابل شروع خیس برای مزرعه آزمایشی جزئی است. چادی و ۲ نمونه ای از تاکدی از پیش‌بینی انجام شد به ارتباط با تأثیر متقابلی دی‌بند قطعه چکان و شیب زمین بر روی سطح خیس شده را نشان می‌دهد. همان‌گونه که در این دو جدول دیده می‌شود، با افزایش دی‌بند، متوسط سطح خیس شده ًافزایش می‌یابد، به نحوی که در شیب‌های مختلف کمترین سطح خیس شده مربوط به ۴ لیتر نسبتاً و پیش‌ترین سطح مربوط به ۱۲ لیتر نسبتاً می‌باشد.

نتیجه و بحث

براساس نتایج مذکور در جدول ۱، مزرعه شماره ۱ با ۳۵/۵ درصد رس و ۲۸ درصد سنگ ریزه و مزرعه شماره ۲ با ۵۰ درصد سنگ ریزه به ترتیب دارای سنگ‌تنیه‌های سنگ‌تنین و سنگ‌تنیه‌های سنگ‌تنیه‌های سنگ‌تنین و سنگ‌تنین باتری خاک با بن مزارع آزمایشی انتخاب شده می‌باشند. قبل از انجام آبی‌ای، متوسط درصد
جدول 4- آثر مستقل شیپ زمین و حجم آب آبیاری بر سطح خیس شده در دی 8 لیتر بررسی مورد برای مزرعه آزماشی 1

<table>
<thead>
<tr>
<th>شیپ زمین (درصد)</th>
<th>حجم آب آبیاری (لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>0/172</td>
<td>0/148</td>
</tr>
<tr>
<td>0/179</td>
<td>0/280</td>
</tr>
<tr>
<td>0/194</td>
<td>0/377</td>
</tr>
<tr>
<td>0/272</td>
<td>0/387</td>
</tr>
<tr>
<td>0/512</td>
<td>0/446</td>
</tr>
</tbody>
</table>

جدول 5- آثر مشترک شیپ زمین و حجم آب آبیاری بر سطح خیس شده در دی 8 و ژانویه 8 لیتر بررسی مورد برای مزرعه آزماشی 1

<table>
<thead>
<tr>
<th>شیپ زمین (درصد)</th>
<th>حجم آب آبیاری (لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>0/253</td>
<td>0/240</td>
</tr>
<tr>
<td>0/386</td>
<td>0/333</td>
</tr>
<tr>
<td>0/459</td>
<td>0/443</td>
</tr>
<tr>
<td>0/579</td>
<td>0/545</td>
</tr>
<tr>
<td>0/679</td>
<td>0/679</td>
</tr>
</tbody>
</table>

کلی در شیپهای مختلف افزایش در سطح خیس شده می‌شود. در سطح خیس شده در جهت شیپ زمین و افزایش حجم آب بر ساعت می‌شود که با افزایش در سطح خیس شده افزایش قابل ملاحظه‌ای نداشت. پس گزارش می‌گردد که در طرح‌های آبیاری قطره‌ای از قطره‌های بالاتر گیاه خارج کلی در شیپهای مختلف نیروی نیاز مؤثر است. نیروی نیاز باعث افزایش سطح خیس شده در جهت شیپ‌ها و از طرف دیگر لیتر بر ساعت می‌شود. در افزایش در سطح خیس شده چون یک نیروی مذکور در گستره اقی جو دیگر رطوبت محصول می‌شود باعث افزایش سطح خیس شده نیز خواهد شد. تأثیر نیروی دیگر باعث افزایش در سطح خیس شده می‌شود با شیپ زمین و با افزایش در سطح خیس شده می‌باشد. همان‌گونه که در جداوال و 3 مشاهده می‌شود با افزایش شیپ زمین سطح خیس شده در راستای شیپ زمین نیز افزایش یافته است. بالاتر از 3 لیتر بر ساعت افزایش می‌گردد و در جهت شیپ‌ها و 4 لیتر بر ساعت افزایش می‌گردد. در نتیجه، سطح خیس شده با افزایش بیشتر منجر به افزایش گیاه خارج می‌شود. پس این نیروی با سطح خیس شده می‌باشد. این نیروی با سطح خیس شده می‌باشد.

با توجه به موارد فوق الذکر می‌توان نتیجه گرفت که به طور

18
پیش‌روی جبهه رژیمی از منع تجهیزات در سطوح شهردار

ریشه‌گیاه قوار نمی‌گیرد.
تأمر متقابل حجم آب آبیاری و شب زمین در بروز موزعه سطح خرس شده برای مزرعه آزمایشی 1 در جدول و 6 نشان داده شده است. نتایج مشابه برای سایر مزرعه آزمایش و تجاری‌های مورد مطالعه به دست آمده (2). همانطور که ملاحظه می‌شود، با افزایش حجم آب آبیاری در همه موزعه‌ها سطح خرس شده با حجم آب آبیاری افزایش یافته است. این افزایش بسیار به بیان حاکم و دبی قطعه جکی‌ها مربوط است. به طور کلی، در اندیش آبیاری قسمت عمده آب در سطح خاک توزیع شده و تقویم نامی اجتناب است. بنابراین به روش‌های اعمال شده بر سطح خرس شده از جایگاه دیقب قطعه جکی بافت خاک و شب زمین در آدامه آبیاری پیش‌روی مؤثر تلقی جبهه رژیمی در سطح خاک یک و در نتیجه آبیاری بر خلاف شده که یک و دبی قطعه جکی مناسب است در اینجا با دقتی در سطح خاک توزیع شده و صرف توسطه سطح خرس شده می‌شود، ولی در حجم‌های بالای پیش‌روی آب صرف کستور موثری جبهه رژیمی می‌گردد.

تأمر متقابل حجم آب آبیاری و شب زمین روی حجم خرس شده در جدول حجم خرس شده و انحراف جبهه رژیمی برای موزعه آزمایشی 1 در جدول و 6 نشان داده شده است. در جدول 6 و 7 به ترتیب حجم خرس شده و حجم خرس شده در بالا دست و پایین دست قطعه جکی با هم مقایسه شده است. در جدول 8 انحراف جبهه رژیمی در حجم پیش‌روی در شیب‌های مختلف و برای زمان‌های مختلف آبیاری با هم مقایسه شده که در واقع زمان آبیاری معرف حجم آب آبیاری در آزمایش‌ها می‌باشد. نتایج مشابه با جدول 6 تا 8 برای سایر مزرعه و تجاری‌های مورد مطالعه به دست آمده است (3). همان‌طور که در جدول و 6 نشان داده شده، در شیب صفر در حجم خرس شده در بالا دست و پایین دست قطعه جکی در حاکم و دبی قطعه جکی شده که برای سایر مزرعه‌ها مشابه است. در حجم پیش‌روی شب زمین نهایت عادی‌تبار با دقتی در سطح خاک توزیع شده و حجم خرس شده در بالا دست و پایین دست قطعه جکی با هم مقایسه شده که در واقع زمان شیب در حجم پیش‌روی در سطح خاک و حجم خرس شده در بالا دست و پایین دست قطعه جکی در حاکم و دبی قطعه جکی شده که برای سایر مزرعه‌ها مشابه است.
جدول ۶- مقایسه حجم خیس شده در بالادست و پایین دست قطعه چکان در حجم‌ها و شیب‌های مختلف

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>حجم آب آبآرایی (لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۱۰ ۲ ۶ ۰</td>
</tr>
<tr>
<td>۵</td>
<td>۱۶ ۲۱ ۲۷ ۲۳ ۲۰</td>
</tr>
<tr>
<td>۸</td>
<td>۴۸ ۸۱ ۹۲ ۹۸ ۹۵</td>
</tr>
<tr>
<td>۱۲</td>
<td>۸۷ ۱۰۱ ۸۹ ۸۸ ۸۶</td>
</tr>
<tr>
<td>۱۵</td>
<td>۸۱ ۱۲۳ ۸۱ ۸۱ ۷۱</td>
</tr>
</tbody>
</table>

جدول ۷- مقایسه درصد حجم خیس شده در بالادست و پایین دست قطعه چکان در حجم‌ها و شیب‌های مختلف

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>درصد حجم خیس شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۱۰ ۲ ۶ ۰</td>
</tr>
<tr>
<td>۵</td>
<td>۴۸/۰ ۴۸/۷ ۴۸/۴ ۴۸/۱ ۴۸/۸</td>
</tr>
<tr>
<td>۸</td>
<td>۵۹/۷ ۵۱/۶ ۴۹/۳ ۴۷/۸ ۴۵/۴</td>
</tr>
<tr>
<td>۱۲</td>
<td>۵۱/۳ ۴۹/۱ ۴۸/۹ ۴۳/۸ ۴۲/۵</td>
</tr>
<tr>
<td>۱۵</td>
<td>۵۱/۲ ۵۱/۶ ۵۰/۶ ۴۹/۴ ۴۸/۰</td>
</tr>
</tbody>
</table>

در زمینه‌ای که شیب آن‌ها بالای ۵ درصد است، مخصوصاً در خاکهای با بالاترین آن‌ها، بهتر است از قطره چکان ۴ لیتر بر ساعت استفاده کنید.

- حجم آب آبآرایی بسته به وضعیت گیاه و گسترش ریشه آن انتخاب شود.

- در هنگام اجرای سیستم آبآرایی قطره‌ای در زمینه‌ای شیب‌دار، بهتر است محل استقرار قطره چکان‌ها بین ۱۰ تا ۸۰ سانتی‌متر بالاتر از درختان قرار گیرد.

- در زمینه‌ای که شیب آن‌ها بالای ۸ درصد است، بهتر است از قطره چکان ۸ لیتر بر ساعت استفاده شود.


<table>
<thead>
<tr>
<th>انحراف جهه رطوبتي در جهت شيب (سانتيمتر)</th>
<th>زمان آباري (دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>47</td>
</tr>
<tr>
<td>45</td>
<td>48</td>
</tr>
<tr>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>55</td>
<td>44</td>
</tr>
<tr>
<td>60</td>
<td>42</td>
</tr>
<tr>
<td>65</td>
<td>46</td>
</tr>
</tbody>
</table>

جدول 9- مقایسه حجم خس شده در بالادست و پایین دست قطره چکان در دیبها و مدت انتقال متوسط یافته‌ها

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>دیب قطره چکان (ایتیر بر ساعت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

جدول 8 - اثر متقابل شیب زمین و زمان آباری بر انحراف جهه رطوبتی در جهت شیب، در دیب ۲ لیتر بر ساعت برای مزرعه آزمایشی ۱

<table>
<thead>
<tr>
<th>شیب زمین (درصد)</th>
<th>زمان آباری (دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>۱۰</td>
<td>۰</td>
</tr>
</tbody>
</table>

سیاست‌گذاری

در شروع این تحقیق از نظرات ارزشمند شاکرین دکتر روحانی به‌عنوان راهگیری کسب فیض نمودایم که بدن و سیله براز روح آن مرحلهٔ رحمت و آمرزش طلب می‌نمایم.

در مجموع، استفاده از قطره چکان با دیب بیشتر از ۸ لیتر بر ساعت توصیه نمی‌شود زیرا علاوه بر این که باعث بالا رفتن قطر لوله‌ها و افزایش هزینه اولیه سیستم می‌گردد، مزیت خاصی از لحاظ افزایش سطح خس شده نسبت به قطره چکان با دیب ۸ لیتر بر ساعت ایجاد نمی‌کنند.

21
منابع مورد استفاده
1- آکرم نیاه ف. 1375. ارزیابی انواع قطره چکانها و اثر آن طویل بقای چکان بهینه از لحاظ اقتصادی. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه تهران، 151 صفحه.
2- حجتی، ب. 1375. اثر پارامترهای آبیاری بر روی درصد سطح خس در آبیاری قطرهای. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان، 118 صفحه.
3- سلامتی منش، ر. 1375. بررسی و ارزیابی عملکرد سیستم‌های آبیاری قطرهای در سطح استان سمنان. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه اصفهان، 111 صفحه.
4- شفیعی بیان الحق، م. 1375. توزیع رطوبت در پروفیل خاک از منبع نقطه‌ای در سطوح شیپور. پایان نامه کارشناسی ارشد، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان، 149 صفحه.
5- ضیاء تبار احمدی، م. 1371. آبیاری قطرهای (ترجمه). انتشارات دانشگاه مازندران، 329 صفحه.