اثر سطوح مختلف گلکوسینولات‌های جیره غذایی بر عملکرد جوجه‌های گوشتی

سیدمحمدعلی جلالی حاجی آبادی، سیدعبدالحسین ابوالقاسمی، علیرضا جعفری صیادی،
محمد رستاوه علیمهر و محمود حقیقی رودسری

چکیده

پژوهش نشان داد که سطح گلکوسینولات‌های جیره در دوره آغازین و رشد به ترتیب بیش از ۱۱/۲۳ و ۰/۲۳ میکرومول در گوجه گوشتی به بهتر بودن نژادهای گوشتی که در دوره آغازین و رشد می‌توانند در جیره غذایی گوشتی به کار برده شود باید به ترتیب ۳۱ و ۶/۲ درصد جیره است.

واژه‌های کلیدی: گلکوسینولات‌ها، کنجاله‌ها، عملکرد و جوجه‌های گوشتی

مقدمه

گلکوسینولات‌های Glucosinolates ترکیبات طبیعی ضد چربی انسان از جمله کلزا و جود دارند. نژاد گلکوسینولات شناخته شده است. ۱) Safflower عضوی
گلکووسبیوت‌های مشابه یک بوده است که تفاوت انواع مختلف آن در
زمینه‌ی فعالیت مربوط به PAAS می‌باشد (Mirozinans) (Myosinase)
که در بخش‌های مختلف کیاسی و نیز توسط
BRX1 باکتری‌های دستگاه گوارش طوری که می‌شود
Agycone) هیدروچلن‌های و یا گلکوز و آکلیکون
تبدیل می‌گردد. آکلیکون تحت شرایط مختل‌فی همچون تغییرات pH
و باعث بهبود و یا تبدیل به تکانیت‌های تیبوسیانات، اپیدوپین، نیتریلی
و ایتوئیس فیت (Goritinrin (5-Venyl-2-thio oxazolidinione))
بروگلیکوزاژن (بروگلیکوزاژن، گلکوکورتئزول) در اثر هیدرولزی، یک ترکیب
که مقدار گلکوکورتئزول های چرب (X) بیش از 20 میکرومول
در کریستال 13 در سال زراعی 1381 میلی‌نیکا دانه روغنی
کازا در ایران ۶۴۲۰۰ تن بوده است که با توجه به تعداد کشت
آن، انجام پژوهش درباره از کنترل منبع فرآیند تولید گلکوکورتئزول
نسبت به یک میزان کم‌تر گزارش شده و نسبت یا با توجه تأثیر
مهمی بر مقدار گلکوکورتئزول‌های کازا و کنترل آن دارد به
طوری که با افزایش مقدار گلکوکورتئزول در خاک مواد
گلکوکورتئزول‌های مانند تیبوسیانات و اپیدوپین‌های
فعالیت ضد بروتوشیم بوده و نتایج آن به فرد و
مکانیسم ارتباطی این گروه‌های مانند انقلاب بیدر یا
پژوهش حاضر با مفهوم بررسی اثر سطح مختلف
کنترل منابع گلکوکورتئزول‌های چربی و تیبوسیانات
برای تغییرات در عملکرد جلوه‌های گوشی در مصرف
گلکوکورتئزول‌های چربی انجام گرفته است. همچنین بیشماری
قابل تعداد از یک ترکیب ضد گلوکوزدار و کنترل آن در جلوه‌های
جوابگویی کننده سیستم آمنیت و آن جلوه‌های می‌باشد
استفاده از کنترل کازا با توجه به مقدار گلکوکورتئزول‌های
مواد در آن، در جلوه غذایی جوابگویی کننده مشخص شود.
مواد و روش
تعداد ۱۰۰ یک ترکیب جعیی را که روش سبز آمیز در طرح کامل
تصادفی شامل ۵ تیمار مختلف چهار نتکار (فپ) و نتکار
جهت در دوره آغازین (۰-۱۲)، و رشد (۱۳-۲۵) روز
پرورش داده شدند. از کنترل کازا که مقدار کل
گلکوکورتئزول‌های ۹۶ میکرومول در گرم ماده خشک بود و
مقدار آن با استفاده از روش کروماتوگرافی مایع با بازدی بالا

شکل 1. ساختار عمومی گلکوکسیولات‌ها با زنجیره چپی R

(placeholder)
جدول 1. ترکیب مواد مغذی نامی شده و مقدار غلوكوسیلوئات‌های جیره‌های آزمایشی نیمارهای مختلف در دوره‌های آغازین (۰–۱۰ روز) و رشد (۱۰–۲۳ روز)

<table>
<thead>
<tr>
<th>ترکیب (دندان)</th>
<th>دوز</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>کک‌های مختلف</td>
<td>۱۸۰</td>
<td>۱۷۰</td>
<td>۱۶۰</td>
<td>۱۵۰</td>
<td>۱۴۰</td>
<td>۱۳۰</td>
</tr>
<tr>
<td>طعم‌های مختلف</td>
<td>۱۲۰</td>
<td>۱۱۰</td>
<td>۱۰۰</td>
<td>۹۰</td>
<td>۸۰</td>
<td>۷۰</td>
</tr>
<tr>
<td>دوز إعادة</td>
<td>۶۰</td>
<td>۵۰</td>
<td>۴۰</td>
<td>۳۰</td>
<td>۲۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>دوز رسیده</td>
<td>۳۰</td>
<td>۲۰</td>
<td>۱۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
</tbody>
</table>

مقدار مولکولی (گیلوکاربید/گرم)

<table>
<thead>
<tr>
<th>ترکیب (دندان)</th>
<th>دوز</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروتئین‌های خام</td>
<td>۱۵</td>
<td>۱۴</td>
<td>۱۳</td>
<td>۱۲</td>
<td>۱۱</td>
<td>۱۰</td>
</tr>
<tr>
<td>کاربن (کربن)</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
<tr>
<td>سولفات (کلسیم)</td>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
</tr>
<tr>
<td>گلوکاربید (کلسیم)</td>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
<td>۰۵</td>
</tr>
</tbody>
</table>

مقدار مولکولی (گیلوکاربید/گرم)

نتیجه‌ریزی: روش‌های تولید غلوبین و آزمایش‌های زیست‌پزشکی نشان می‌دهد که ترکیب مواد غذایی و دوز به‌کارگیری می‌توانند بر عملکرد نیمارهای تولیدکننده اثر بروز داشته باشند.
جدول 2: معادلات و ضرایب همبستگی اضافه وزن (X) و ضریب تبدیل غلابی (Y) جویه‌ها با مقدار گلکوئسیلونهای چربه (X) و گلکوئسیلونهای شده (Y) در دوره‌های آغازین (X=21-22 روز) و ورد (X=23-44 روز)‌

<table>
<thead>
<tr>
<th>جویه‌ها</th>
<th>همبستگی</th>
<th>درجه مورد</th>
<th>اضافه وزن (X)</th>
<th>ضریب تبدیل غلابی (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>گلکوئسیلونهای چربه (X)</td>
<td>0.05</td>
<td>0.09</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>گلکوئسیلونهای شده (Y)</td>
<td>0.03</td>
<td>0.07</td>
<td>0.03</td>
<td>0.07</td>
</tr>
</tbody>
</table>

t-پیوسته و **t-پیوسته با قدر معنادار 0.05\(<P<0.01\)

نمیت با مشاهده، نتایج محدود شده است. سطح برای این‌که گلکوئسیلونهای چربه و گلکوئسیلونهای شده در گرم جویه‌ها (21-44 روز) با همیشه کلنای اضافه وزن گلکوئسیلونهای چربه و گلکوئسیلونهای شده دیده شده است. (جدول 2). در دوره‌بندی‌های افراشین سطح گلکوئسیلونهای چربه، اضافه وزن جویه‌ها تحت تأثیر قرار گرفت (P<0.01). ت سورية اضافه وزن در تیمارهای رشد 2 و 3 دیده شد ولی اختلاف بین این دو تیمار معنادار نبود (P>0.05) (شکل 3). در این دوره نیز همبستگی معنادار نبود (P>0.05) بین اضافه وزن جویه‌ها و سطح گلکوئسیلونهای چربه و گلکوئسیلونهای شده (جدول 2).

به طور کلی بر اساس نتایج، همبستگی بین اضافه وزن جویه‌ها و سطح گلکوئسیلونهای چربه و گلکوئسیلونهای شده در دوره رشد 2 و 3 دیده شد. این نتایج به این ترتیب معنادار بود که اضافه وزن جویه‌ها در دوره‌های آغازین (X=21-22 روز) و ورد (X=23-44 روز) با سطح گلکوئسیلونهای چربه و گلکوئسیلونهای شده این ماده مثبت و تغذیه‌ای مثبت و تغذیه‌ای مثبت و تغذیه‌ای مثبت و T-پیوسته با قدر معنادار 0.05\(<P<0.01\). اضافه وزن جویه‌ها در دوره‌های آغازین (X=21-22 روز) و ورد (X=23-44 روز) با سطح گلکوئسیلونهای چربه و گلکوئسیلونهای شده این ماده مثبت و تغذیه‌ای مثبت و تغذیه‌ای مثبت و T-پیوسته با قدر معنادار 0.05\(<P<0.01\).
جدول 3: حداکثر مقدار گلوکوسیلتها های خورده شده و جیره بدن تاثیر معنی دار بر مصرف خوراک، اضافه وزن و ضرابی تبدیل غذایی جوجه‌ها در دوره‌های آغازین (تازه) و رشد (۲۱-۳۱ روز) در مرحله گچ‌های گوشته

<table>
<thead>
<tr>
<th>دوره</th>
<th>صفت مورد</th>
<th>گلوکوسیلتها های خورده شده (X)</th>
<th>گلوکوسیلتها های جیره (X)</th>
<th>پروپارگوسیت</th>
<th>اضافه وزن (گچ‌های جیره) (Y)</th>
<th>ضرابی تبدیل (گچ‌های جیره) (Y)</th>
<th>ضرابی تبدیل (گچ‌های خورده شده) (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تازه</td>
<td>اضافه وزن (گچ‌های جیره) (Y)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>تازه</td>
<td>ضرابی تبدیل (گچ‌های جیره) (Y)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>تازه</td>
<td>ضرابی تبدیل (گچ‌های خورده شده) (Y)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>رشد</td>
<td>اضافه وزن (گچ‌های جیره) (Y)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>رشد</td>
<td>ضرابی تبدیل (گچ‌های جیره) (Y)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>رشد</td>
<td>ضرابی تبدیل (گچ‌های خورده شده) (Y)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

توجه: این نتایج برای اینها که در این دوره جوجه‌های تیمار رشد ۵ بیشترین و تیمارهای رشد ۱ و ۲ کمترین ضرابی تبدیل غذایی و مصرف گلوکوسیلتها هستند. بیش از ۵/۰ میکرومول گلوکوسیلت در هر جیره کمترین مقدار ضرابی تبدیل غذایی و مصرف گلوکوسیلتها را دارد که به آنها تفاوت نسبی می‌گویند. در این دوره همین‌گونه تفاوت بین اینها معنی‌دار نیست (۵/۰>P). در این دوره ضرابی تبدیل غذایی و مصرف گلوکوسیلتها های جیره و گلوکوسیلتها های خورده شده به‌طور میانگین ۱۸ و ۱۸/۲۸ مصرف گلوکوسیلتها در هر جیره به‌طور میانگین ۱۰۰۰ میکرومول گلوکوسیلتها توسط جوجه‌ها مقدار ۶/۰ به ضرابی تبدیل غذایی اضافه شده است.

بحث

مصرف خوراک

بهمصرف کلی گلوکوسیلتها های جیره دارای تأثیر اضافه وزن و ضرابی تبدیل غذایی جوجه‌ها در این دوره در جدول ۳ ارائه شده است که این مقادیر به ترتیب معادل ۱۰۰/۰ درصد کنترل در جیره است.

بیشترین مقدار گلوکوسیلتها های جیره و گلوکوسیلتها های خورده شده بدون تأثیر معنی‌دار ضرابی تبدیل غذایی جوجه‌ها در این دوره در جدول ۳ ارائه شده است.
کنجهال کاهش می‌یابد و مصرف خوراک جوی‌ها در دوره رشد تحت تأثیر گلوکوسیلویت‌های کنجهال کارا قرار می‌گیرد. هرچند در مقایسه با سایر حیوانات پرورشی مثل نشتر کنجهال‌ها در طول سطح خوراک تأثیر انکار بر مصرف آن دارد، زیرا در این گروه از حیوانات خس‌های شدیدی و بویایی به خوبی سایرین تکامل نیافته است (14 و 23). با وجود این، مدارک وجود دارد که نشان می‌دهد خورشک‌های جیره‌ای از این گروه کنجهال کارا تحت تأثیر قرار می‌گیرد و مقدار گلوکوسیلویت‌های کنجهال کاهش یافته است. به علت این دو بروز قسمتی از این کنجهال، کاهش خورشک‌های جیره‌ای قابل توجهی این ایستگاه می‌باشد.

(14) 30 میکرومول در کیلوگرم و (5) میکرومول در کیلوگرم است که سطح پایین کنجهال کارا (6-20 آدرس جیره) برابر با مقدار گلوکوسیلویت‌های زایمیان کنجهال کارا با گلوکوسیلویت‌های زایمیان کنجهال کارا می‌باشد. بر خورشک‌های جیره‌ای گوشی و در نتیجه مصرف خوراک تأثیری ندارد (5) در این زوره نیز کنجهال کارا سطح 8/2 جیره تأثیری بر مصرف خوراک جیره‌ها در دوره شرید نداشته است. چون کنجهال گرفته مصرف خوراک جیره‌ها حاوی کنجهال کاهش‌های تنفسی است. اضافه وزن خوراک را تحت تأثیر قرار می‌دهد.

اضافه وزن
کاهش اضافه وزن جوجه‌ها در طی مراحل اختیاری از سطح بالایی گلوکوسیلویت‌های جیره (5) و نیز گردرد وجود در گلوکوسیلویت‌ها (21)(شکل) یکی دارد (گردرد زایمان اثر کاهش مصرف خوراک افزایش دفع کلیپ از دستگاه‌ها و ادار می‌گردد. باور اصلی سطح گلوکوسیلویت‌های موجود در جیره مصرف خوراک را تحت تأثیر قرار می‌دهد.
جدول 2: معادلات بیش‌تری محققین برای سطح گل‌گوشتی‌ها و کنجاله‌های جیره غذایی چوجهای گوشتخانه

<table>
<thead>
<tr>
<th>محققین</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>زب (1988)</td>
<td>گل‌گوشتی‌های جیره</td>
<td>اضافه وزن (گرم چوجهای)</td>
</tr>
<tr>
<td>(32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کلیس و همکاران (1992)</td>
<td>گل‌گوشتی‌های خودکشده</td>
<td>اضافه وزن در هفت دوم (گرم)</td>
</tr>
<tr>
<td>(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کلیس و همکاران (1994)</td>
<td>گل‌گوشتی‌های خودکشده</td>
<td>اضافه وزن در هفت سوم (گرم)</td>
</tr>
<tr>
<td>(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کارناته و همکاران (1993)</td>
<td>کنجاله‌های جیره (گرم کیلومتر)</td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کارناته و همکاران (1993)</td>
<td>کنجاله‌های جیره (گرم کیلومتر)</td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کارناته و همکاران (1993)</td>
<td>کنجاله‌های جیره (گرم کیلومتر)</td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کارناته و همکاران (1993)</td>
<td>کنجاله‌های جیره (گرم کیلومتر)</td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ضریب تبدیل غذایی

سطح بالایی گل‌گوشتی‌های کنجاله کازا در جیره باعث انفراش در ضریب تبدیل غذایی شد که این افزایش ناشی از کاهش شدید در اضافه وزن جوجه‌ها بخصوص در نیماتهایی که از سطح بالایی گل‌گوشتی‌های جیره استفاده کرده‌اند است. در تیمار رشد 5 ۶۵٪ نسبت مصرف خوراک نسبت به سایر تیمارها کاهش یافته (شکل ۲-۶). اما مقدار اضافه وزن این تیمار در دوره‌ی آغازین و رشد نسبت به سایر تیمارها کاهش نشان‌داده شد (شکل ۳-۱-۵). حداکثر مقدار کنجاله گازی که می‌تواند در دوره‌ی آغازین و رشد جوجه‌ها استفاده کرد به ترتیب یکبار بیا (۱/۵) و ۰/۲ ادرصد جیره است. نتایج این پژوهش با نتایج ليسوو و همکاران (۷) که سطح صفر نا۰۰۰ درصد از کنجاله کانولا در جیره غذایی چوجهای گوشتخانه و مرغان نشان داد که تیمار احتمالی جایگزین نمودند، مطابقت دارد که علت این تفاوت احتمالاً مربوط به استفاده این محققین از کنجاله کانولا در جیره‌های چوجهای گوشتخانه
سپاسگزاری
از آقایان دکتر جواد پوررضا و دکتر علیرضا علیکری به خاطر زحمات و تلاش‌هایی که نسبت به انجام این پژوهش تشکر می‌نمایم. این تحقیق بدون کمک‌ها و مساعدت‌های مرحوم دکتر علیرضا محمودزاده هرگز به ثمر نمی‌رسید. یاده‌گرامی و روحش قربانی حمایت الهی باد.