کاربرد معادلات سینتیکی در توصیف سرعت آزاد شدن پتاسیم غیر تبادلی
در شماری از خاکهای همدان

عليضا حسین پور

چکیده

اشارات درباره سرعت آزاد شدن پتاسیم غیر تبادلی در خاکهای همدان محدود است. هدف این پژوهش کاربرد معادلات سینتیکی در بررسی سرعت آزاد شدن پتاسیم غیر تبادلی در تعادلات آزاد همدان به وسیله همبستگی میدان‌ها با استفاده از سیتریک رشته‌ای در 2000 ساعت و همین‌گونه تأثیر آزاد شدن معادلات با خصوصیات خاک بود.

نتایج این پژوهش نشان داد که آزاد شدن پتاسیم غیر تبادلی در اندازه سریع و سپس کننده بود. پتاسیم غیر تبادلی آزاد شده در دامنه 1/2-1/5 مول در کیلوگرم بود. پتاسیم غیر تبادلی آزاد شده به روش اسید سیتریک بین 250 ساعت با گنجایش تبادل کاتیونی، پتاسیم غیر تبادلی و در صدد افزایش خاک، مبتکر معمول داشت. با توجه به آنکه سرعت در حد 40 ساعت افزایش خاک داد که پتاسیم غیر تبادلی ریخته شده.

از آن به امتیاز خاک هم بستگی می‌داده داشت. نتایج این پژوهش نشان داد که در تعادلات آزاد همدان، انتشار همبستگی و تأخیر تعیینی تغییر شد. دامنه تغییرات سرعت در معادلات آزاد شده به وسیله همبستگی میدان‌ها با تست‌هایی مشابه شرایط شد. نتایج این پژوهش نشان داد که سرعت در تعادلات معادلات با خصوصیات سیتریکی خاک و در صدد افزایش خاک هم بستگی می‌داده داشت. نتایج این تحقیق همچنین نشان داد که اسید سیتریک ریخته می‌توانان در بررسی سرعت آزاد شدن پتاسیم غیر تبادلی استفاده شود.

واژه‌های کلیدی: پتاسیم غیر تبادلی، نتایج آزمایشات، سرعت سیتریکی، می‌بستگی

سیستم و اکتش در یک توضیح درده ضروری است. برای به دست آوردن معادله سرعت دانستن گلفش و اکتشده، معادله استوکورس و مکانیسم‌ها نشان می‌دهند که سرعت معادله معمول معادله سرعت به صورت زیر بیان می‌شود (24).

\[v = \frac{d}{dt} = K[A]^a \times [B]^b \]

که در این معادله:

[1] استفاده‌کننده، دانشکده خاک‌شناسی، دانشگاه پژوهشی سینا، همدان

مقدمه

در دلیل عدم بررسی سرعتی و اکتش‌های شیمیایی در خاک‌های خاکهای از دیگر پیشنهای اینکه اکتش‌های با چه سرعتی به تعادل بیش تر یا تعادل میدان‌ها بود (پ) پیش‌بینی مکانیسم‌ها (24) برای فهم کامل سیتریکی و اکتش‌های شیمیایی خاک دانستن معادله سرعت با قانون سرعت که
از تحقیقات معادله‌های مرزی، بتا و اکتشافات دیگر، شدت استفاده دانشمندان در این زمینه افزایش یافته است. در پرسی انجام شده، نشان داده شد که شدت سرعت اکتشافات داده‌های و A و B a و b هستند. برای مواردی که شدت سرعت اکتشافات را در تاریکی یا تاریکی، کاهش و اکتشافات دیگر مشاهده می‌شود، نشان داده شد که شدت سرعت اکتشافات کاهش می‌یابد.

در این مقاله، از ارتباط‌های چندگانه بین شدت سرعت اکتشافات و شدت سرعت اکتشافات دیگر استفاده شد. نتایج این مقاله نشان داد که شدت سرعت اکتشافات و شدت سرعت اکتشافات دیگر باید به‌صورت مشابه با هم بیان شود. این نتایج با احتیاج به پژوهش‌های دیگر انجام شد.

1. کاربرد معادله‌های سیستمیکی

2. موانع و روش‌ها

این پژوهش در 10 نمونه از آزمایشگاه استان همدان انجام شد.

نمونه‌ها مانند 30 - 50 سانتی‌متر برداشته شد. سپس از انتقال به آزمایشگاه در هوای آزاد خشک و برای انجام آزمایش‌های
جدول ۱. خصوصیات فیزیکی و شیمیایی خاک‌های مطالعه شده

<table>
<thead>
<tr>
<th>شماره</th>
<th>محل نمونه</th>
<th>ب- هاش</th>
<th>تاپیت حادت</th>
<th>کانی‌های کالی‌شم</th>
<th>کالی‌شم‌های حلال</th>
<th>نمونه</th>
<th>برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>امام زاده کوه</td>
<td>۷۶۵</td>
<td>۱۱۰</td>
<td>۵۸۰</td>
<td>۱۱۰</td>
<td>۷۶۵</td>
<td>۱۱۰</td>
</tr>
<tr>
<td>۲</td>
<td>گل تپه</td>
<td>۷۶۷</td>
<td>۱۱۰</td>
<td>۵۸۰</td>
<td>۱۱۰</td>
<td>۷۶۵</td>
<td>۱۱۰</td>
</tr>
<tr>
<td>۳</td>
<td>دیسر بال</td>
<td>۷۶۷</td>
<td>۱۱۰</td>
<td>۵۸۰</td>
<td>۱۱۰</td>
<td>۷۶۵</td>
<td>۱۱۰</td>
</tr>
<tr>
<td>۴</td>
<td>حسین آباد</td>
<td>۷۶۷</td>
<td>۱۱۰</td>
<td>۵۸۰</td>
<td>۱۱۰</td>
<td>۷۶۵</td>
<td>۱۱۰</td>
</tr>
<tr>
<td>۵</td>
<td>حیاره</td>
<td>۷۶۷</td>
<td>۱۱۰</td>
<td>۵۸۰</td>
<td>۱۱۰</td>
<td>۷۶۵</td>
<td>۱۱۰</td>
</tr>
<tr>
<td>۶</td>
<td>پلیس راه همدان</td>
<td>۷۶۷</td>
<td>۱۱۰</td>
<td>۵۸۰</td>
<td>۱۱۰</td>
<td>۷۶۵</td>
<td>۱۱۰</td>
</tr>
<tr>
<td>۷</td>
<td>اول جاده قوامین</td>
<td>۷۶۷</td>
<td>۱۱۰</td>
<td>۵۸۰</td>
<td>۱۱۰</td>
<td>۷۶۵</td>
<td>۱۱۰</td>
</tr>
<tr>
<td>۸</td>
<td>قوامین</td>
<td>۷۶۷</td>
<td>۱۱۰</td>
<td>۵۸۰</td>
<td>۱۱۰</td>
<td>۷۶۵</td>
<td>۱۱۰</td>
</tr>
<tr>
<td>۹</td>
<td>قوامین</td>
<td>۷۶۷</td>
<td>۱۱۰</td>
<td>۵۸۰</td>
<td>۱۱۰</td>
<td>۷۶۵</td>
<td>۱۱۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>کوره‌چای</td>
<td>۷۶۷</td>
<td>۱۱۰</td>
<td>۵۸۰</td>
<td>۱۱۰</td>
<td>۷۶۵</td>
<td>۱۱۰</td>
</tr>
</tbody>
</table>
کاتیونی خاک‌ها ($\pm \%\text{mg/L}$)، درصد رس ($\pm \%\text{mg/L}$) و درصد شن ($\pm \%\text{mg/L}$) دارد.

الگوی مشابه آزاد شدن پتاسیم غیر تبادلی در خاک‌ها با استفاده از روش‌های شیمیایی مانند تست‌های بین‌ليل، تست‌های زوئس تبادل کاتیونی (2)، و اسیدهای آلی (1)، (19 و 20) دیده شده است. بلوه و همکاران (3) آزاد شدن سریع اولیه پتاسیم را به آزاد شدن پتاسیم لباهی و آزاد شدن کنترل را به آزاد شدن پتاسیم بین لایهای نسبت دادند.

عوامل زیادی بر آزاد شدن پتاسیم غیر تبادلی تأثیر دارد. خصوصیات کانی‌های حاری پتاسیم که نقش مهمی در آزاد کردن پتاسیم غیر تبادلی دارند شامل: ساختار نیافته بار و ترکیب

شکل 1. پتاسیم غیر تبادلی آزاد شده به عنوان تابعی از زمان در خاک‌های مطالعه شده

ادمی‌باشد. مقدار پتاسیم غیر تبادلی آزاد شده در مراحل اولیه

عصاره‌گیری در خاک‌ها متغیر است. طوری که

ساعت پس از شروع آزمایش بیشترین مقدار پتاسیم غیر تبادلی

از خاک شماهار 10 و کمترین آن از خاک شماره 2 آزاد شد.

علاوه بر تفاوت پتاسیم غیر تبادلی آزاد شده در مراحل اولیه,

مقدار پتاسیم غیر تبادلی آزاد شده در مراحل بعدی نیز

متغیر است. طوری که بیشترین و کمترین مقدار پتاسیم غیر

تبادلی پس از 2500 ساعت از خاک شماره 2 و خاک شماره 3

آزاد شده (جدول 1). نتایج تجزیه‌های آماری نشان داد که پتاسیم

غیر تبادلی آزاد شده پس از 2500 ساعت هم بستگی معناداری

با پتاسیم غیر تبادلی شاخص‌ها ($\pm \%\text{mg/L}$) گنجایش تبادل

89
جدول ۳ معادلات سیستمی استفاده شده

<table>
<thead>
<tr>
<th>مادعنا</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلیه لیک</td>
<td>(\ln(K_a - K_c) = \ln K_c - K_a t)</td>
</tr>
<tr>
<td>کلیه لیک</td>
<td>(K_a = a + b \ln t)</td>
</tr>
<tr>
<td>کلیه لیک</td>
<td>(K_c = a + b \ln t)</td>
</tr>
<tr>
<td>کلیه لیک</td>
<td>(K_c = K_a + K_c t)</td>
</tr>
</tbody>
</table>

در این معادلات \(K_a \) و \(K_c \) به ترتیب پناسیم غیر تبادلی آزاد شده در زمان \(t \) و پناسیم غیر تبادلی که در حال تبادل آزاد می‌شوند \((\frac{1}{2})\).

شیمیایی کانی، جهت گیری هیدروکسیل ساختاری، منشا باز

اتباع استاداندارد برآورد می‌تواند آزاد شدن پناسیم غیر تبادلی را توضیح دهد. ضرایب این معادلات در جدول ۲ آردوه شده است.
چون سرعت آزاد شدن پناسیم غیر تبادلی از معادله مربوطه اول و انتشار هندسی پریوی می‌کند، آزاد شدن پناسیم غیر تبادلی به وسیله است. سیستم بینی انتهای انتشار می‌باشد. به خارج توده کانی با نواحی هواهای کنترل کرده آزاد شدن پناسیم غیر تبادلی در این خاک‌ها می‌باشد. تابع مشابه به وسیله یوپه وکانیک در دیگر نیز به دست آمده است \((\frac{1}{2})\).

مدلهای سیستمی
پنجم مدل سیستمی برای تشخیص سرعت آزاد شدن پناسیم غیر تبادلی استفاده شد. (جدول ۲). ضرایب تشخیص و خطای استاداندارد برآورد معادلات سیستمی در توصیف سرعت آزاد شدن پناسیم غیر تبادلی در جدول ۲ آردوه شده است. معادلاتی که سرعت آزاد شدن پناسیم غیر تبادلی را توضیح می‌دهند بر اساس ضرایب تشخیص و اشتباه استاداندارد برآورد، انتخاب می‌شوند. به عبارت دیگر معادلاتی که ضریب تشخیص بی‌دست‌مه و اشتباه استاداندارد برآورد کم می‌باشد به عنوان معادلاتی که سرعت آزاد شدن پناسیم غیر تبادلی را بهتر توصیف کنند

انتحاب می‌شوند.

با توجه به جدول ۲ مولکول‌روبی دیل پایین بودن ضریب تشخیص و معادله مربوطه ضریب آزاد شدن پناسیم غیر تبادلی استاداندارد برآورد می‌تواند آزاد شدن پناسیم غیر تبادلی از خاک‌های برسی شده را توصیف کند. در حالی که معادلات انتشار هندسی، تابع نمایی و مربوطه اول به دلیل بایدی بودن ضرایب تشخیص و کم بودن...
جدول 3 ضرایب تشخیص و انطباع استاندارد پراورده معادلات سرعت در خاکهای مختلف شده

<table>
<thead>
<tr>
<th>شماره خورک</th>
<th>معادله انتشار هندسی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R²</td>
<td>SE</td>
<td>R²</td>
<td>SE</td>
<td>R²</td>
<td>SE</td>
<td>R²</td>
</tr>
<tr>
<td>1</td>
<td>0.97</td>
<td>0.04</td>
<td>0.97</td>
<td>0.04</td>
<td>0.97</td>
<td>0.04</td>
<td>0.97</td>
</tr>
<tr>
<td>2</td>
<td>0.97</td>
<td>0.05</td>
<td>0.97</td>
<td>0.06</td>
<td>0.97</td>
<td>0.06</td>
<td>0.97</td>
</tr>
<tr>
<td>3</td>
<td>0.97</td>
<td>0.07</td>
<td>0.97</td>
<td>0.08</td>
<td>0.97</td>
<td>0.08</td>
<td>0.97</td>
</tr>
<tr>
<td>4</td>
<td>0.97</td>
<td>0.09</td>
<td>0.97</td>
<td>0.10</td>
<td>0.97</td>
<td>0.10</td>
<td>0.97</td>
</tr>
<tr>
<td>5</td>
<td>0.97</td>
<td>0.11</td>
<td>0.97</td>
<td>0.11</td>
<td>0.97</td>
<td>0.11</td>
<td>0.97</td>
</tr>
<tr>
<td>6</td>
<td>0.97</td>
<td>0.13</td>
<td>0.97</td>
<td>0.13</td>
<td>0.97</td>
<td>0.13</td>
<td>0.97</td>
</tr>
<tr>
<td>7</td>
<td>0.97</td>
<td>0.15</td>
<td>0.97</td>
<td>0.15</td>
<td>0.97</td>
<td>0.15</td>
<td>0.97</td>
</tr>
<tr>
<td>8</td>
<td>0.97</td>
<td>0.17</td>
<td>0.97</td>
<td>0.17</td>
<td>0.97</td>
<td>0.17</td>
<td>0.97</td>
</tr>
<tr>
<td>9</td>
<td>0.97</td>
<td>0.19</td>
<td>0.97</td>
<td>0.19</td>
<td>0.97</td>
<td>0.19</td>
<td>0.97</td>
</tr>
<tr>
<td>10</td>
<td>0.97</td>
<td>0.21</td>
<td>0.97</td>
<td>0.21</td>
<td>0.97</td>
<td>0.21</td>
<td>0.97</td>
</tr>
</tbody>
</table>
جدول ۴ ضرایب سرعت معادلات سیستمی در خاک‌های مطالعه شده

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>معادله متاب تابع نمایی</th>
<th>معادله انتشار هدولوی</th>
<th>معادله سرعت ظریف</th>
<th>a</th>
<th>b x 10^{-1}</th>
<th>a</th>
<th>b x 10^{-1}</th>
<th>a</th>
<th>b x 10^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2/81</td>
<td>2/86</td>
<td>2/81</td>
<td>1/7</td>
<td>2/86</td>
<td>2/81</td>
<td>2/86</td>
<td>2/81</td>
<td>2/86</td>
</tr>
<tr>
<td>2</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>1/7</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
</tr>
<tr>
<td>3</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>1/7</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
</tr>
<tr>
<td>4</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>1/7</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
</tr>
<tr>
<td>5</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>1/7</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
</tr>
<tr>
<td>6</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>1/7</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
</tr>
<tr>
<td>7</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>1/7</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
</tr>
<tr>
<td>8</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>1/7</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
</tr>
<tr>
<td>9</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>1/7</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
</tr>
<tr>
<td>10</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>1/7</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
<td>2/86</td>
</tr>
</tbody>
</table>

نتایج این پژوهش نشان داد که ضرایب سرعت آزاد شدن در معادله‌های وارونی اول همبستگی معنی‌داری با گنجایش تبادل کاتیونی (r = 0/74) و درصد سیلت (r = -0/12) داشت. ضریب سرعت آزاد شدن در معادله‌های انتشار هدولوی همبستگی معنی‌داری با گنجایش تبادل کاتیونی و درصد سیلت داشت. ضریب سرعت آزاد شدن در معادله‌های تابع نمایی و تابع هدولوی همبستگی معنی‌داری با گنجایش تبادل داشت. ضرایب سرعت آزاد شدن در معادله‌های تابع نمایی و تابع هدولوی درصد سیلت داشت. ضرایب سرعت آزاد شدن در معادله‌های تابع نمایی و تابع هدولوی درصد سیلت داشت. ضرایب سرعت آزاد شدن در معادله‌های تابع نمایی و تابع هدولوی درصد سیلت داشت.

نتایج این پژوهش نشان داد که معادله‌های سیستمی اول، انتشار هدولوی و تابع نمایی می‌توانند در توصیف آزاد شدن پتاسیم غیر تبادلی به وسیله سیستمیک رقیق استفاده شود. همبستگی ضرایب سرعت برآورد شده به وسیله این معادلات با

سپاسگزاری
این پژوهش بخشی از یک طرح می‌باشد که هر یک از آن‌ها توسط وزارت علوم، تحصیلات و فناوری آمیخت شده که مهندس جدید و سیستم فردیلویی می‌شود. همبستگی از سرشار خالص هستند. ندا هاشمی که در اینجا این پژوهش با این جدای همکاری داشته‌اند، صمیمانه تشکر و قدردانی می‌شود.
1. حسینی پور، ع. م. کلیمی و ح. خادمی. ۱۳۷۹. سرعت آزاد شدن پتاسیم غیر تبادلی از خاک و اجزای آن در تعدادی از خاک‌های گیلان. مجله علوم خاک و آب ۲۴: ۹۹-۱۱۲.

