مطالعه تغییرات مکانی شوری خاک در منطقه رامهرمز (خوزستان)

با استفاده از نظریه زئوستاتیستیک

2- کوئریچیگی

چهارگرد محمدی

چکیده

تجلیل داده‌های شوری ناشی از پراکنش مکانی نمونه‌های شوری در اعماق مختلف نیم‌رخ خاک به‌هم وابسته می‌باشند. در

چنین حالتی داده‌های مزبور را می‌توان هم یک پیش‌بینی دانست. این بدان معنی است که مقادیر شوری در یک عمق به‌صورت حاکی

از اطلاعات مقداری درباره وضعیت شوری در دیگر اعماق نیم‌رخ خاک، به‌صورت دوباره نیم‌رخ خاک، به‌صورت دوباره نیم‌رخ خاک

کنار گذاشته شده است. لهجه این مطالعه بررسی اثرات اطلاعات از دیگر اعماق را با توجه به شوری در دو عمق نیم‌رخ خاک

جهت تخمین این مشخصه در عمق سوم می‌باشد. بدین ترتیب از روش کوئریچیگی با استفاده از داده‌های محاسبه‌ی داده‌های مربوط به شوری در

کوئریچیگی به عنوان سیاله‌ی جهت نیمه‌شکافه شوری، این روش با استفاده از داده‌های عضوی با تایپی کریچیگی معنی مقوی دارد. روند نتایج مشاهده شده که کوئریچیگی می‌تواند در مسائل سیالات شوری ولجیکی، برتری انلکی نسبت به کوئریچیگی معنی‌داری دارد. این به‌اردیک

می‌توان ناشی از حجم تفاوت بین متغیر اولیه و متغیرهای دیگری که از نظر تعداد نمونه‌ها و همجنسی پیش‌بینی نمی‌شوند. این امر به

توجه می‌گیرد که در چنین شرایطی کاربرد روش کوئریچیگی معنی‌دار از ارتجعی برخورد می‌باشد.

واژه‌های کلیدی - همبستگی مکانی، واریوگرام و جنبه مدل LMC

LMC

مقدمه

تغییرات مکانی هدایت الکتریکی عصاره اشباع در سه عمق

متغیر نیم‌رخ خاک، با استفاده از تئوری متغیرهای مکانی

مورد مطالعه قرار گرفت (1). از آن مطالعات ساختار تغییرات

مکانی شوری، با ماهواره و ترسیم واریوگرام‌های مختلف

شناسایی و تحلیل با استفاده از این اطلاعات میزان شوری در

نقطه که نمونه‌برداری شده‌بود، با روش کوئریچیگی تخمین و

1

- استادیار گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهیدرود
از اهمیت زیادی برخوردار است. به عنوان مثال، ولت و گوورد (17) از همبستگی بین میزان رطوبت خاک و مکش‌های مختلف اعمال به منظور افزایش مقدار و نسبتی خاک، در تقاطع که نموداری در نشان دهنده است، استفاده کرده‌اند. در آزمایش آنها گرچه تعداد نمونه‌ها کم بوده است، لیکن از آن جایی که میزان رطوبت در مکش‌های مختلف می‌باشند با کاهش فشار ایستایی به صورت یک‌نحوی کاهش یافته، لذا کاربرد روش کوکریجینگ می‌تواند توجه چند ارتقاء را در فرآیند تخمین آماری تضمین نماید.

هدف از مقاله حاضر بررسی اثرات استفاده از اطلاعات شوری مربوط به عدم مختل در تأثیر بر رشد فلز در یک عدم مورد نظر است. همچنین ارزیابی و مقایسه نتایج حاصله از روش کوکریجینگ (2) و کوکریجینگ با استفاده از مجموعه داده‌های معیار صورت گرفته است.

می‌توان گفت که این روش به کاهش و محدود کردن عدم در صورت حاوی میزان اطمینان نسبت به نتایج روش کوکریجینگ و کوکریجینگ با استفاده از مجموعه داده‌های معیار استفاده شده است.

می‌توان گفت که این روش به کاهش و محدود کردن عدم در صورت حاوی میزان اطمینان نسبت به نتایج روش کوکریجینگ و کوکریجینگ با استفاده از مجموعه داده‌های معیار استفاده شده است.

۱- Co-Regionalization
۲- Co-Kriging
۳- Cross-variogram
نامی‌برن، به همراه حداکثر اورجینال تخمین خواهد بود. چنانچه دارای متغیر دو متغیری باشند، تخمین‌گیری را می‌توان به شکل زیر نشان داد:

\[Z_i (x_i) = \sum_{i=1}^{N_1} \lambda_{i1} Z_1 (x_i) + \sum_{j=1}^{N_2} \lambda_{i2} Z_2 (x_j) \]

طراحی کرده‌بود. چنانچه دارای متغیر دو متغیری باشند، تخمین‌گیری را می‌توان به شکل زیر نشان داد:

\[\hat{Z}_i (x_i) = \sum_{i=1}^{N_1} \lambda_{i1} \hat{Z}_1 (x_i, x_j) + \sum_{j=1}^{N_2} \lambda_{i2} \hat{Z}_2 (x_j, x_i) + \mu \]

که در (1) تعیین می‌شود:

\[\{ Z_1 (X_i) - Z_1 (X_i+h) \} \{ Z_1 (X_i) - Z_1 (X_i+h) \} \]

را با محاسبه موفق یک واریوگرام دو جایی به تعداد گذشته توجهی قطعه نمونه‌برداری شده مشترک نیازمند می‌باشد. از سوی دیگر چنانچه همبستگی دو متغیر ضعیف باشد واریوگرام دو جایی محاسبه شده یافته باستان مناسب جهت تجزیه و تحلیل‌های بعدی خواهد بود (2).

یکی از مهم‌ترین دشواری‌های کاربرد روش کووایج چگونگی مدل نمودن واریوگرام‌های تجربی است. این دشواری بدن سیب است که تمامی واریوگرام‌های ممفردا و یا جایی باشد به طور همزمان مدل شوند. از طرف دیگر منبع دیگری که می‌تواند به استفاده از یک مدل یا پا (به طور مثال مدل لایه) و یا مدل تشکیل از (مکان) مدل کروی ضعیف (3) می‌باشد. معمولاً در روش برای مدل کردن واریوگرام‌ها تحت شرایط فوق مدل خطی همه تابع‌های بود (4) است. (3 و (4) میانی نظری این روش توسط ایساک و سرویستا (5) شرح داده شده است. در این مطالعه از برنامه شرکت شرکت ترکیبی شد. در این مطالعه مدل داده‌های واریوگرام‌های داده‌های شوری استفاده گردیده است.

از نظر دیگر، کووایج یا کووایج نتیجه ندادند. چنانچه دارای متغیر دو متغیری می‌باشد، تخمین‌گیری را می‌توان به شکل زیر نشان داد:

\[Z_i (X_i) \]

به عنوان نتیجه از قاصد قه نشان می‌دهد، می‌توان به صورت جزئی بیان نمود.

\[\gamma_{ij} (h) = \frac{1}{(N - \sum_{i=1}^{N} (Z_i (X_i) - Z_i (X_i+h)))} \]

\[\{ Z_1 (X_i) - Z_1 (X_i+h) \} \{ Z_1 (X_i) - Z_1 (X_i+h) \} \]

1- Auto variogram
2- Double spherical
3- Linear Model of Co-regionalization
روش کریگینگ و کریگینگ، میزان شوری در محلهایی که دارای داده‌های معیار بوده‌اند تخمین زده شد. در روش کریگینگ، جهت تخمین میزان شوری در یک عمق، از داده‌های شوری در عمق دیگر به عنوان متغیرهای ثانویه استفاده شده است. سپس با در نظر گرفتن مقادیر تخمینی از هر دو روش و مقادیر حقیقی شوری و با استفاده از معیارهای آماری زیر اقدام به مقایسه دو روش فوقالاً گردید:

\[N = 5 \] استفاده گردید (1). از آن جایی که تعداد نمونه‌ها در هر سه عمق تقسیب‌یکسان بوده است با تغییر در این مطالعه مهم ترین دلیل جهت به کارگیری روش کریگینگ تلاش در جهت دخیل نمودن ارتباط مکانی بین داده‌های شوری در اعماق مختلف به منظور تخمین بهینه نرم‌خوری خاک در منطقه مطالعاتی می‌باشد. بنابراین ترتیب‌ها با استفاده از دو

شکل 1- واریوگرام‌های منفرد.

(a) عمق اول 50 - 150 سانتی‌متر، (b) عمق دوم 100 - 200 سانتی‌متر، (c) عمق سوم 200 - 300 سانتی‌متر، (d) عمق اول و دوم، (e) عمق اول و سوم و (f) عمق دوم و سوم، به همراه مدل‌های پراش داده شده به روش LMC

1- Absolute Mean Estimation Error
جدول 1- ضرایب همبستگی بین داده‌های شوری در اعماق مختلف

<table>
<thead>
<tr>
<th>عمق (سانتی‌متر)</th>
<th>عمیق‌تر از ۵۰ سانتی‌متر</th>
<th>عمیق‌تر از ۱۰۰-۵۰ سانتی‌متر</th>
<th>عمیق‌تر از ۱۵۰-۱۰۰ سانتی‌متر</th>
</tr>
</thead>
<tbody>
<tr>
<td>عمیق‌تر از ۵۰ سانتی‌متر</td>
<td>۰/۸۵</td>
<td>۰/۸۲</td>
<td>۰/۸۰</td>
</tr>
<tr>
<td>عمیق‌تر از ۱۰۰-۵۰ سانتی‌متر</td>
<td>۰/۷۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>عمیق‌تر از ۱۵۰-۱۰۰ سانتی‌متر</td>
<td>۰/۶۸</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2- نتایج حاصل از مقایسه در روش کریجینگ و کوکریجینگ بر روی داده‌های معیار (۵۰-۷۰)

<table>
<thead>
<tr>
<th>r</th>
<th>MSEEE</th>
<th>AMEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۸۵</td>
<td>۳۹۱/۷</td>
<td>۱۲/۷</td>
</tr>
<tr>
<td>۰/۶۸</td>
<td>۳۹۰/۴</td>
<td>۱۵/۸</td>
</tr>
<tr>
<td>۰/۵۶</td>
<td>۳۶۷/۳</td>
<td>۱۵/۳</td>
</tr>
<tr>
<td>۰/۵۶</td>
<td>۳۶۶/۴</td>
<td>۱۱/۳</td>
</tr>
<tr>
<td>۰/۷۵</td>
<td>۱۱۵/۸</td>
<td>۷۵/۰</td>
</tr>
<tr>
<td>۰/۳۵</td>
<td>۲۰۲/۵</td>
<td>۶/۹</td>
</tr>
</tbody>
</table>

می‌شود این است که کوکریجینگ هیچ گونه ارتجاعی در تخمین شوری اعماق مختلف خاک در مقایسه با کریجینگ معمولی از خود نشان نداده است. از نظر تئوری، در شرایط مشخصی کوکریجینگ معمولی بهتر از کریجینگ هیچ-گونه بهبودی در امر تخمین به دست می‌دهد. بنابراین تعداد نمونه‌ها برای هر دو منغی اولیه به تناوبی یکسان باشد و همچنین در شرایطی که واریانس‌ها از نظر شکل و نوع مدل پراش داده شده با یکدیگر مناسب و به‌هم باشند، نتایج حاصل از روش کوکریجینگ و کریجینگ معمولی یکسان خواهد بود (۵). در مطالعه حاضر به نظر می‌رسد که وارد شرایط فوق اعث به دست آورده نتایج تقریباً یکسان باید در روشن شده است.

در شکل ۲ نمودار شوری برای داده‌های معیار و همچنین نمودار اخیر شوری تخمین زده شده، توسط روش‌های کریجینگ معمولی و کوکریجینگ نمایش داده شده است. در این شکل خروط قطعات شامل داده‌های استاندارد، حول میانگین مقدار شوری (مقدار حقيقة و برآورد) در دیس اعماق مختلف خاک می‌باشد. همان‌گونه که این شکل نشان می‌دهد در مقایسه با

1- Mean Square Estimation Error
2- Pearson Correlation Coefficient
روش به مراقب ساده‌تر کریجینگ معمولی نشان نداده است.

روش قومی، علی‌اکبریان در شرایطی که هر دو می‌توانند اولیه و ثانویه به طور
نسبتاً یکسانی نموده شده و تمامی واریوگرام‌ها شبیه به هم و یکسان باشد روی کریجینگ برتر نتیجه شده بود. لذا با در نظر گرفتن
پیچیدگی محاسباتی روش کریجینگ و همچنین دستورال
دل نمودن واریوگرام‌ها با استفاده از روش LMC در چنین
شرایطی استفاده از روش به مراقب ساده‌تر کریجینگ معمولی
در رفت و آمد دارد.

نیم‌خیه شوئی تخمین زده شده توسط روش‌های کریجینگ (OK) و کوکریجینگ (COK) در مقایسه
با نیم‌خیه واقعی شوئی (Test data) در منطقه مطالعاتی

منابع مورد استفاده

1. محمدی، ج. 1377. مطالعه تغییرات مکانیکی شوئی خاک در منطقه امهرمز (خوزستان) با استفاده از نظریه توئستاتیستیک.

