Volume 23, Issue 3 (Fall 2019)                   jwss 2019, 23(3): 381-394 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

AmiriMijan F, Shirani H, Esfandiarpour I, Besalatpour A, Shekofteh H. Identifying the Determinant Factors Influencing S Index in Calcereous Soils Using Anneling Simulated– Artificial Neural Network Hybrid Algorithm. jwss 2019; 23 (3) :381-394
URL: http://jstnar.iut.ac.ir/article-1-3692-en.html
1. Department of Soil Science, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran. , fahime.amiri@gmail.com
Abstract:   (5464 Views)
Use of the curve gradient of the Soil Water Retention Curves (SWRC) in the inflection point (S Index) is one of the main indices for assessing the soil quality for management objectives in agricultural and garden lands. In this study Anneling Simulated – artificial neural network (SA-ANN) hybrid algorithm was used to identify the most effective soil features on estimation of S Index in Jiroft plain. For this purpose, 350 disturbed and undisturbed soils samples were collected from the agricultural and garden lands and then some physical and chemical soil properties including Sand, Silt, Clay percent, Electrical Conductivity at saturation, Bulk Density, total porosity, Organic Mater, and percent of equal Calcium Carbonate were measured. Moreover, the soil moisture amount was determined within the suctions of 0, 10, 30, 50, 100, 300, 500, 1000, 1500 KP using pressure plate. Then, the determinant features influencing the modeling of S Index were derived using SA-ANN hybrid algorithm. The results indicated that modeling precision increased by reducing the input variables. According to the sensitivity analysis, the Bulk Density had the highest sensitivity coefficient (sensitivity coefficient=0.5) and was identified as the determinant feature for modeling the S Index. So, since increasing the number of features does not necessarily increase the accuracy of modeling, reducing input features is due to cost reduction and time-consuming research.
Full-Text [PDF 643 kb]   (1410 Downloads)    
Type of Study: Research | Subject: Ggeneral
Received: 2018/04/8 | Accepted: 2019/01/22 | Published: 2019/12/23

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb