رسم منحنی‌های حداکثر بارش محتمل 24 ساعت به روش‌های مختلف آماری و مقایسه آن با روش سینوپتیکی برای ایران

مهدی خلیجی پریبستی و علیرضا سپاسخوایی

چکیده

حداکثر بارش محتمل مقدار بارشی است که امکان وجود آن در یک ایستگاه، یک منطقه یا یک جوهره آبیخ و وجود دارد، یا حداکثر کردن منطقی عوامل هوشمندبه گونه‌ای که رگبار حداکثر تولید شود. حداکثر بارش‌های محتمل از این نظر حداکثر امکان‌پذیر است که تأسیسات هیدرولیک، همچون سربردی‌های اضافی‌تری سد، را بهتری، آب‌رسانی، نیرویی و شبکه‌های زیرکشی شهری بر پایه آن طراحی می‌شود. حداکثر بارش روزانه به در روش کلی تخمین زده می‌شود. در روش اول از عواملی مانند دمای نقطه شیب، سرعت باد و شکاف هوا در ایستگاه‌های هوشمند استفاده می‌شود. در روش دوم روش آماری است که در آن از بسط و جریان آماری حداکثر بارش‌های ایستگاه استفاده می‌گردد. در این پژوهش با استفاده از حداکثر بارش 24 ساعت جمع‌آوری شده از گزارش‌های ایستگاه‌های سازمان هوشمند و وزارت نیرو در یک دوره 15 ساله یا پیشرفت حداکثر بارش محتمل 24 ساعت به روش‌های مختلف آماری، برای مناطقی از ایران که در آن‌ها مقادیر حداکثر بارش محتمل 24 ساعت به روش سینوپتیکی محاسبه شده بود، برآورد گردید.

بررسی‌ها نشان داد که مقادیر حداکثر بارش محتمل به وسیله محاسبه شده با روش سینوپتیکی دارای اختلافاتی با آماری است که در تاکید بر روش آماری و حداکثر است. پژوهش این انتخاب رساندن این اختلافات، با اعمال ضریب رطوبی، روش پیشنهادی و تصمیمی گردید. سپس مقادیر حداکثر بارش محتمل 24 ساعت محاسبه شده برای کلیه ایستگاه‌های موجود بررسی ایران محاسبه، و منحنی‌های حداکثر بارش محتمل 24 ساعت رسم گردید. نتایج نشان داد که کمترین مقادیر حداکثر بارش محتمل 24 ساعتی ایران در مناطق مرکزی با 110 میلی‌متر اتفاق افتاده، و پیشرفت مقدار آن در نقاط شمالی و جنوبی ایران برای 220 میلی‌متر بود.

واژه‌های کلیدی: حداکثر بارش محتمل، روش آماری، روش سینوپتیکی، روش پیشنهادی، استودیو، دانشگاه کشاورزی، دانشگاه شیراز

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استاد آبیاری، دانشگاه کشاورزی، دانشگاه شیراز
مقدمه
به همگامی بررسی روش‌های نادرت هیدرولوژی، ممکن است این‌گونه محققین پرسش مطرح شود که یا حداکثر سیالپ محتمل PMF (Probable Maximum Flood) بررسی‌های احتمالی گویایی بیرندهای بودن مقدار حداکثر سیالپ محتمل است، زیرا یک باکالیس احتمال وقوع بیشتر واقعی افزوده می‌شود و هنگامی که احتمال وقوع سیالپ بیش از صفر می‌باشد، شدت این نهایی می‌خواهد کردد ولی چون سیالپ ممکن است بسیار قوی، می‌توان یادداشت که حداکثریتی می‌تواند تکیه شد بارش و در تنهایی سیالپ خوافظ شد. به سخن دیگر، می‌توان ادعای کرد که شدت بارش دارای یک حد نهایی منطقه است، که به‌نام PMP (Probable Maximum Precipitation) حداکثر بارش محتمل (11) معروف می‌باشد (17). چاپ و همکاران (12) سقف بارش را که به لحاظ فیزیکی و بالاترین در یک دام معین از سال در محصولات مشخص قابل وقوع باشد، عنوان حداکثر بارش محتمل تعیین نموده‌اند. کاریکان و همکاران (13) در سال 1998 شرایط جغرافیایی را نیز به تعیین فوق افزودند. حداکثر بارندگی محتمل از این نظر اهمیت است که تأثیرات هیدرولیک بر اساس آن طراحی می‌شود. بنابراین، چنین تأکیدی برداشته‌ها از نظر بارندگی و سیالپ در معرض خطر قرار گیرند. از جمله این تأکیدات اینه می‌توان سرریزه‌ای اطرافی سدها را نام برد (18). به خاطر شکست و خراب شدن شماری از سدهای ساخته شده، مانند سد ماجد در ایالت جنگور، هندوستان (19) و سد جاونست در ایالت پنسلوانیا آمریکا (20)، و همچنین دیگر اینه هیدرولیکی، توجه بیشتری به استاندارد‌های طراحی بارشی‌های باران به عمل آمده است.

مواد و روش‌ها
حداکثر بارش‌های محتمل را می‌توان به دو روش آماری و سیستمیک پرورده می‌نماید. ذیلاً به شرح مختصر روش‌های آماری مورد استفاده در این پژوهش و روش سیستمیک پرداخته می‌شود.

روش‌های آماری
روش هرشفیلد (11) درابین روش حداکثر بارش محتمل با توجه به ماحولاً عمومی فرکانس، ارائه شده توسط چاپ (12) به صورت زیر محاسبه می‌شود:

\[X = \bar{X} + KS \]

که در آن:

\[\bar{X} = \text{میانگین تبدیل شده داده‌ها} \]
\[S = \text{انحراف معیار تبدیل شده داده‌ها} \]
\[K = \text{ضریب فرکانس} \]

این مقادیر بر پایه منحنی‌های مربوط به دست می‌آید (21).

روش پیلائمویل (12)
پیلائمویل برای یادآوری مشکل کمبود آمار و کم درکن تأثیر زیاد

عکس و نمونه کشی‌های و متای طبیعی / جلد ششم / شماره اول / پیام 1381
مشاهدات استنباطی، روشن ترتیب‌هایی تحلیلی برای تعیین یک
واقعه هیدرولوژی، با دوره برگشتی به مراتب بهتر از مقدار
سالانه آماری یپشنهال که است در این روش برای مقایسه با
مشکلات کمیو آمار و چگونگی ارقامی می‌توان از مقدار میانه آمار
موجود که توصیف خوبی از تراکم مقداری جمعیت‌های نرمال و
جمعیت‌های دارای چگونگی ارائه نیسته دهد، به‌هیله گرفته. در این
روش مرتبت و شمار مشاهدات به شرح زیر، به صورت بدن
بعد تعريف مي شود:

\[M = \frac{(N+1)}{2} \]

\[q_i = \left(\frac{Q_i}{N_i + Q_M}\right)^{1/2} \]

\[n_i = \left(\frac{N_i}{N_i + N_M}\right)^{1/2} \]

که در آنها:

\[M \] شماره میانه داده‌ها

\[N \] شمار کل داده‌های موجود

\[Q_i \] مقادیر تغییر یافته نیسته

\[n_i \] مقادیر تغییر یافته

\[N_i \] هنگامى که مقادیر N به شکل

افزایشی مرتبت شده باشد.

\[Q_i \] مقادیر آمار مسحت یافته

\[q_i \] مقادیر تغییر یافته نیسته

\[n_i \] مقادیر تغییر یافته

از روابط فوق می‌توان مقدار واقعه هیدرولوژی را که مربوط
به نظر آن در داخل سری داده‌ها وجود دارد محاسبه کرد. برای
محاسبه مقدار واقعه نیاز دارد چگونگی ارقامی T به‌صورت از شمار
مشاهدات جمعیت‌های N، T به‌صورت X-ها محاسبه می‌شود با توجه به این که مقدار واقعه که محاسبه می‌شود
از مقدار حداکثر شده Q_i توسط مقدار شده بود، محاسبه 4 با الاسته
شکل زیر نوشته شود:

\[n_T = \frac{1+((T+1)/2)}{n_i} \]

که در آن:

\[T \] مقدار پست داده شده

\[n_i \] مقدار سال آماری گسترش داده شده

\[n_T \] تناویت به این که نسبت

\[T/n_i \] ثابت باقی می‌ماند، به طور منطقی، می‌توان انتظار داشت که یا

افزایش بدون حد نسبت

\[n_T/n_i \] تنازی به حد معنی‌مند کنندر

روش ترکیبی

در این روش، رگ‌های مسحت‌های به عنوان یک‌شاخه
مورد بررسی قرار می‌گیرد، و پس از تخمین رطوبت اتصال و

دادرهای بررسی

در این پژوهش، آمار لازم در مورد حداکثر بارش 24 ساعتی استگاه تهیه گردید. سپس، ایستگاه‌های داشتگی آمار برای مراجعه و انتخاب مورد بررسی قرار گرفت. سپس، پژوهش برای اندازه‌گیری 15 سال پیش از صورت پذیرفت.

اگرچه در این پژوهش لازم استگاه، 338 استگاه ایستگاه‌های داشتگی و 411 استگاه ورزشی تیپ انتخاب شده و در تحلیل مورد استفاده قرار گرفتند. مسئولیت ایستگاه‌های در شکل 1 ارائه شده است. مقادیر حداکثر بارش محتمل 24 ساعتی استفاده شده روش باین‌لیمر نسبت به روش‌های آماری دیگر به مقادیر نظیر روش سیستم‌پیچت نزدیکتر است.

نتایج و بحث

مقدار حداکثر بارش محتمل 24 ساعتی به روش سیستم‌پیچت و روش‌های مختلف آماری برای حوزه‌های مطلوبی که در جدول 2 ارائه شده است. نتایج نشان می‌دهد که:

1. هیچ کدام از مقادیر حداکثر بارش محتمل 24 ساعتی در روستاهای مختلف آماری و سیستم‌پیچت با هم هم‌خوانی ندارند. زیرا، اولاً ایستگاه‌های انتخاب شده در روش‌های آماری، دقت همان استگاه‌های استفاده شده در روش سیستم‌پیچت برای تحلیل نمی‌باشند و در طول دوره آماری نیز دقیقاً یکدیگر نیست. ثانیاً، عموماً با در روش سیستم‌پیچت برای حداکثر نمودن بارش از آنها استفاده می‌شود، به صورت مستقیم در روش آماری تحلیل ایفا نمی‌نماید.

2. مقادیر حداکثر بارش محتمل 24 ساعتی محاسبه شده روش باین‌لیمر نسبت به روش‌های آماری دیگر به مقادیر نظیر روش سیستم‌پیچت نزدیکتر است.
شکل 1. اعضاگاه‌های بانوان و مردان به سازمان هواپیمایی مورد استفاده در پژوهش

شکل 2. مختصات هم‌مقدار حداکثر بارش محتمل 24 ساعت به روش هرشفند برای جنوب مازندران (میلی‌متر)
جدول 1. مساحت و حجم بارش با توجه به شکل 2 برای حویلی مارون به روش هرشتیلد

<table>
<thead>
<tr>
<th>مقدار بارش</th>
<th>شرایط تجمیع</th>
<th>میانگین بارش</th>
<th>سطح جزئی</th>
<th>حجم بارش (متر مکعب) (کیلومتر مربع)</th>
<th>(ملی متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td>< 480</td>
<td>280</td>
<td>280</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>240-280</td>
<td>480-620</td>
<td>280</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>210-240</td>
<td>620-760</td>
<td>280</td>
<td>420</td>
<td>280</td>
<td>420</td>
</tr>
<tr>
<td>230-240</td>
<td>760-800</td>
<td>280</td>
<td>380</td>
<td>280</td>
<td>380</td>
</tr>
<tr>
<td>220-230</td>
<td>800-840</td>
<td>280</td>
<td>320</td>
<td>280</td>
<td>320</td>
</tr>
<tr>
<td>210-220</td>
<td>840-880</td>
<td>280</td>
<td>280</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>200-210</td>
<td>880-920</td>
<td>280</td>
<td>240</td>
<td>280</td>
<td>240</td>
</tr>
<tr>
<td>جمع</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. میانگین حداکثر بارش محتمل 24 ساعت به روش‌های متفاوت آماری و سیستمیک برای حویلی‌های مورد بررسی

<table>
<thead>
<tr>
<th>حواشی</th>
<th>میانگین حداکثر بارش محتمل (میلی متر)</th>
<th>مساحت</th>
<th>(کیلومتر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شارفورد</td>
<td>380</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>مارون</td>
<td>840</td>
<td>1050</td>
<td></td>
</tr>
<tr>
<td>مدرسه</td>
<td>444</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>کرخه‌های پای بیل</td>
<td>484</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>مد 15 خرداد</td>
<td>481</td>
<td>540</td>
<td></td>
</tr>
<tr>
<td>شادگان</td>
<td>500</td>
<td>580</td>
<td></td>
</tr>
</tbody>
</table>

مقدار حداکثر بارش محتمل 24 ساعت به روش‌های متفاوت آماری و سیستمیک برای حویلی‌های محاسبه می‌شود.

مدل مقدار حداکثر بارش محتمل به روش سیستمیک دخالت نشده و احتیاط کافی از میانگین مورد بررسی می‌باشد.

سپس بررسی‌های در مورد رابطه میان نتایج مقدار میانگین حداکثر بارش محتمل 24 ساعت به روش‌های مختلف آماری با میانگین نتایج مقدار حداکثر رطوبت نسبی به متوسط رطوبت حداکثر بارش محتمل به دست آمده از روش سیستمیک برای حویلی‌های مودر مطالعه به عمل آمد. بررسی‌ها نشان داد که این مقدار نسبی‌تر از حداکثر به روش بیشتر به روش سیستمیک در نقاط مختلف تخصص و تجهیز جهت‌های محاسبات حداکثر بارش محتمل نش داشته‌اند، برای دوره پایه 20 ساله
جدول 3: اندازه‌های حداکثر سالانه، میانگین سالانه و رطوبت نسبی و نسبت آنها برای حواشی‌های مورد بررسی

<table>
<thead>
<tr>
<th>حواشی</th>
<th>میانگین حداکثر</th>
<th>میانگین زمستان</th>
<th>نسبت حداکثر حداکثر به میانگین متوسط</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرخه تا چای بل</td>
<td>۲۶/۷۰</td>
<td>۴۹/۱</td>
<td>۰/۵۷</td>
</tr>
<tr>
<td>سد ۱۵ خرداد</td>
<td>۴۷/۱۰</td>
<td>۸۷/۳</td>
<td>۰/۸۷</td>
</tr>
<tr>
<td>سفرا رود</td>
<td>۸/۶۹</td>
<td>۵۷/۲</td>
<td>۰/۴۱</td>
</tr>
<tr>
<td>مارون</td>
<td>۶۳/۸۰</td>
<td>۶۳/۸</td>
<td>۱/۰۰</td>
</tr>
</tbody>
</table>

توضیحات:

ساعت های میانگین رطوبت نسبی سالانه طولانی مدت (ضرب و رطوبت) ضرب شده، پس منتظر نمی‌باشد هم‌مقدار می‌باشد. حواشی درصد می‌باشد و میانگین حداکثر بارش محاسبه گردید. مقادیر به دست آمده بیان می‌کند حداکثر حواشی در هر سال دارد. نتایج این محاسبات برای حواشی‌های مورد استفاده در پژوهش، در جدول ۴ ارائه گردید.

همان‌گونه که دیده می‌شود، مقادیر حداکثر بارش محمول به سنو استود ۲۴ ساعت در درون‌نظام است. در نتیجه، بیان می‌کند حواشی به دو کلیه، ایستگاه‌های آتشفشانی و بارش‌های دیگری، به این حداکثر دارد تا به این دلیل، باید برای رطوبت در سایر هواسپاران به سه‌گانه توجه و نگهداری می‌باشد. حداکثر بارش محصول ۲۴ ساعت و استعداد جهاد برای این است. این‌گونه‌که هر ساله به دست آمده به منظور تخمین نتایج به کلیه ایستگاه‌های استان هواسپاران و وزارت نیرو و پوشش کامل‌تر، باید میان مقدار حداکثر بارش محصول ۲۴ ساعت به دست آمده با روش میانگین حداکثر بی‌هم‌بینی و دیگر روش‌های آماری، برای ۱۷۱ ایستگاه برسی‌گر گردید.

توضیحات:

در محاسبه حداکثر بارش محصول ۲۴ ساعت، نقاطهای اصلی به دست آمده به منظور تخمین نتایج به کلیه ایستگاه‌های استان هواسپاران و وزارت نیرو و پوشش کامل‌تر، باید میان مقدار حداکثر بارش محصول ۲۴ ساعت به دست آمده با روش میانگین حداکثر بی‌هم‌بینی و دیگر روش‌های آماری، برای ۱۷۱ ایستگاه برسی‌گر گردید.
جدول 4. حداکثر بارش محتمل 24 ساعت برای حوزه‌های مورد بررسی به روشهای مختلف آماری

<table>
<thead>
<tr>
<th>حوزه‌های</th>
<th>دشت سینتیک</th>
<th>دشت نیم‌راده</th>
<th>دشت شفیلدخو</th>
<th>دشت لاهیما اصلاح شده</th>
<th>دشت لاهیما</th>
<th>دشت با لاهیما و اصلاح شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرخه‌های بیل</td>
<td>790</td>
<td>310</td>
<td>110</td>
<td>190</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>مارون</td>
<td>130</td>
<td>100</td>
<td>40</td>
<td>60</td>
<td>70</td>
<td>120</td>
</tr>
<tr>
<td>سد 15 خرداد</td>
<td>110</td>
<td>150</td>
<td>45</td>
<td>240</td>
<td>340</td>
<td>140</td>
</tr>
<tr>
<td>شفارود</td>
<td>130</td>
<td>230</td>
<td>330</td>
<td>190</td>
<td>210</td>
<td>320</td>
</tr>
</tbody>
</table>

جدول 5. معادله‌های به دست آمده بر اساس مقدار حداکثر بارش محتمل 24 ساعت حاصل از روش لاهیما و اصلاح شده و روشهای دیگر آماری محاسبه حداکثر بارش محتمل 24 ساعت

<table>
<thead>
<tr>
<th>معادله</th>
<th>ضربی تین</th>
<th>معیار خطای</th>
<th>شمار مشاهدات</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_m = \frac{1}{9}P_b$</td>
<td>0/80</td>
<td>0/000001</td>
<td>37/33</td>
</tr>
<tr>
<td>$P_m = \frac{3}{8}P_b + 1/10$</td>
<td>0/9</td>
<td>0/000001</td>
<td>37/99</td>
</tr>
<tr>
<td>$P_m = 4/4P_b + 1/4\frac{1}{2}P_s$</td>
<td>0/9</td>
<td>0/000001</td>
<td>37/02</td>
</tr>
<tr>
<td>$P_m = 40/0 + 1/4\frac{1}{2}P_h$</td>
<td>0/77</td>
<td>0/000001</td>
<td>57/60</td>
</tr>
</tbody>
</table>

$P_m = \text{مقدار PMP}$

$P_b = \text{مقدار PPM}$

$P_s = \text{مقدار Ps}$

$P_h = \text{مقدار Ph}$
روش میانگین و توجه به مناطق محدوده محور بین منحنی‌های هم‌مدار. مقادیر میانگین منطقه‌ای محاسبه شده. دارد.

منابع مورد استفاده
1. بهنام. 1364. بررسی حداکثر بارندگی محتمل (PMP) رودخانه‌های مارون‌الد، و کرخه. شرکت مهندسین مشاور مهاب قدس، وزارت نیرو، سازمان آب و برق خوزستان.
2. بهنام. 1364. بررسی حداکثر بارندگی محتمل (PMP) در شرکت مهندسین مشاور مهاب قدس، وزارت نیرو، سازمان آب و برق مازندران.
3. بهنام. 1364. بررسی حداکثر بارندگی محتمل (PMP) در شرکت مهندسین مشاور مهاب قدس، وزارت نیرو، سازمان آب و برق، اصفهان.
4. بهنام. 1364. بررسی حداکثر بارندگی محتمل (PMP) در شرکت مهندسین مشاور مهاب قدس، وزارت نیرو، سازمان آب و برق خوزستان.
5. خلیج بیرابولو. م. 1374. تحقیق حداکثر بارش محتمل 24 ساعت برای استان‌های باران‌سنگی ایران با روش‌های آماری و مقایسه با روش سنتی. پایان‌نامه کارشناسی ارشد، دانشگاه شیراز.
6. علیزاده، ا. 1368. اصول میدرژوئی کاربردی. انتشارات پنیاد فرهنگی رضوی، مشهد.
7. رشته‌ی، ز. 1371. برآورد حداکثر بارش محتمل به روش‌های مختلف. مطالعه‌ی موردی برای حوزه‌ی آبریز طالقان. پایان‌نامه‌ی کارشناسی ارشد، دانشکده‌ی کشاورزی، دانشگاه تهران.
8. قهرمان، ب. و. سپاسخواه. 1369. تعیین مقادیر حدی پایین‌گری (PMP) در نقاط جنوبی ایران. اولین سمینار مهندسی رودخانه‌های اهواز، 5-8 آبان 1369.