بررسی تعداد پتاسیم-کلسیم در برخی از خاک‌های آمکی خراسان

ratio خراسانی و غلامحسین حسنی

چکیده
در خاک‌های آمکی مناطق شرق و شمال خلیج فارس مقدار زیاد کلسیم کلسیم در سیستم تعادلی خاک (محصول و تبادلی)، همواره واکنش‌های شیمیایی فاز محلول و تبادلی خاک را تحت تأثیر قرار می‌دهد. پیدایش تبادلی از جمله این واکنش‌های شیمیایی است. که تأثیر کلسیم و گیاهان کلسیم در سیستم شیمیایی خاک‌های آمکی از اهمیت بیشتری برخوردار است. تعادل پتاسیم-کلسیم این خاک‌ها در سیستم شیمیایی و حاصل خرید خاک و قابلیت استفاده این عناصر، به ویژه پتاسیم پاشان، با توجه به اهمیت موضوع، در خاک‌های آمکی کشور در این زمینه پژوهش زیادی انجام نشده است. این بررسی در شماری از خاک‌های آمکی شمال خراسان انجام شد.

در مرحله نخست، رابطه رگرسیونی بین \(EKR\) (نسبت جذب پتاسیم) و \(KAR\) (نسبت پتاسیم تبادلی) در 24 نمونه خاک تعیین گردید.

\[EKR = 0.02 + 2.48X, R^2 = 0.77\]

(ضریب گوریش میانگین گاوان) خاک‌ها حاصل‌های 0/48 برآورد شد. در مرحله دوم، در 14 نمونه خاک اشکال با انزویه غلظت‌های مختلف پتاسیم و بزرگری تعادل، رابطه بین \(EKR\) با تغییر زیاد در خاک تعیین شد. دامنه مقدار \(K_0\) در این خاک‌های بین 0/21 تا 0/9/72 با ضریب تبیبن (\(R^2\)) بالای 9/41 به دست آمد. در محدوده خاک‌های سورد در دامنه دامنه\(K_0\) در دامنه مقدار انرژی ثابت، تغییر می‌نماید با \(K_0\) در مرحله اول است. مبدل \(K_0\) بررسی کلسیم در دامنه \(EKR\) در خاک‌های خرسانی، به ویژه خاک‌های کلسیم و گیاهان کلسیم در بیشتر به خاک‌های کلسیم و پتاسیم تبادلی است. به اساس آن می‌توان در خاک‌های آمکی این تغییرات پتاسیم محلول را بر پتاسیم تبادلی در حضور کلسیم و میژده‌پر بروز نمود.

\[K_0, EKR, KAR\]

واژه‌های کلیدی: تعداد پتاسیم-کلسیم در خاک‌های آمکی

1. به‌ترتیب مربی و استاد خاکشناسی دانشگاه کشاورزی، دانشگاه فردوسی مشهد

25
مقیده
بتسمپی یکی از عناصر غذایی اصلی گیاه است که در خاک به شکل‌های مختلف محلول، تبدیل، غیرقابل تبدیل و ساکن‌مانند وجود دارد (۲). تعداد میان شکل‌های بتنام محلول و تبدیل، که در ارتباط مستقیم با پیدایش تبدیل و معادلات مربوط به آن است، می‌توانند نشان‌دهنده و وضعیت قابلیت استفاده با (Ca+Mg)-K (Schofield Ratio Law) از "قانون نسبت استکوفیلد" در فاز جاده خاک به‌کنار می‌گذارند (Mg و Ca K)
قابلیت استفاده این عناصر تا حد زیادی به پتانسیل شیمیایی این عناصر در فاز جاده خاک بستگی دارد. بنابراین برای ارزیابی وضعیت تبدیل Ca+Mg و K و عنصر در خاک نیاز گردید و لی این ناسیل‌ها به طور مستقیم قابل اندازه‌گیری نیستند، حتی راه طریق دقیق تعیین نشدند (۹). بنابراین، برای بررسی وضعیت تبدیل و ارتباط فاز محلول و تبدیل از معادلات تبدیل استفاده می‌شود که از جمله آنها می‌توان به معادله گاپون (Gapon) اشاره کرد (۴، ۵ و ۶)

$$\text{EKR} = \frac{\text{Ex}}{\text{E}} \times \text{Ca} + \text{ExMg}$$

با نسبت جذب (Potassium Adsorption Ratio) KAR و تبتسمپی برابر است با:

$$KAR = \frac{(K^+)}{(Ca^{2+} + Mg^{2+})^{1/2}}$$

از تلفیق معادلات ۳ و ۴ داریم

$$K_{G} = EKR/KAR$$

رابطه حذفی میان KAR و EKR را می‌توان با توجه به معادله گاپون به این صورت بیان کرد:

$$KAR = K_{G} \times KAR + C$$

که C عضو از مبدأ خط و K_{G} شبیه خط است، با به دست
در معادلات فوق، میزان مقدار اوردن مقادیر EKR و KAR را از معادله خطر بروز کرد. البته با توجه به پیچیدگی گره محلول خاک، شاید نمونه در همه خاکها رابطه‌ای کاملاً مشخص بین EKR و KAR نظر گرفته، ولی رابطه خطی مذکور را برخی از پژوهشگان گزارش کرده‌اند (۶ و ۱۴). در پژوهشی که با ۴۰ نمونه خاک غير آهکی انجام شد، میزان EKR و KAR معادله خطي زیر مشاهده شد (۱۴):

\[
EKR = 0.0113 + 7.76 KAR \\
R^2 = 0.845
\]

همین پژوهش نشان داد معادله خطی از طریق ریسیندجو و \(\text{ExK}/(\text{CEC}-\text{ExK})\) وجود دارد:

\[
\text{ExK}/(\text{CEC}-\text{ExK}) = 0.0037 + 6.68 KAR \\
R^2 = 0.954
\]

الکتکالو و همکاران (۶) در پژوهش دیگری که با ۲۰ نمونه خاک آهکی انجام دادند، معادله زیر را بین اثر EKR و KAR در کردن به دست آورد:

\[
EKR = 0.0287 + 4.17 KAR \\
R^2 = 0.963
\]

در همین پژوهش، با در نظر گرفتن اثر جفت و کمپلکس‌یونی در محاسبات، معادله زیر به دست آمد:

\[
EKR = 0.0104 + 3.35 KAR \\
R^2 = 0.874
\]

معادله فوق در دامنه EKR کمتر از ۱/۱۰ به صورت زیر تغییر کرده:

\[
EKR = 0.0154 + 5.16 KAR \\
R^2 = 0.943
\]

به طور کلی، هدف از پژوهش، با توجه به نتایج کلسیم در خاک‌های آهکی بر وضعیت پاسیفیسم به عنوان یک عنصر غذایی مهم، تعیین EKR و KAR و روابط بین آنها و همچنین پیشنهاد یک معادله خطي از طریق ریسیندجو و نتایج آن را بر مقدار EKR در اثر افزودن کود آبی شویی، برداشتک غیاب و سدیم و پاتاسیم به فیلم فلزی، کلسیم و دیگر آنسیپسیون یک نیترات نیترات، سولفات‌ها و روش تری‌بی‌دی‌متری و کلسیم و پاتاسیم با روش تری‌بی‌دی‌متری با نتایج مشاهده شد.

EKR و KAR مقدار معادله است. (۱۴). PDE

کلسیم و الکلی–بلک (۱۹)، در گل اشیاب EC در عصاره اشیاب، در حالت اشیاب و پاتاسیم و میزانی که در آنها بیشتری از این نشان دادند به وسیله روش پرادرنک تغییر شد. البته با توجه به بازگشت و استخراج عصاره اشیاب، کلسیم‌های منیزیم، کلسیم و پاتاسیم و آن‌ها به کلسیم و سولفات‌ها اندژس کردن. از سوی دیگر، برای تعیین کلسیم‌های منیزیم و سدیم (مجمور محلول و تبدیل) از عصاره‌گیری استات آمونیوم نرمال و خنثی استفاده شد. به سبب حالت بی‌خشی از کلسیم و دیگر کلسیم در استات آمونیوم، مجموع کلسیم و منیزیم تبدیل از تعادل CEC و مجموع پاتاسیم و سدیم به

است (۱۳)، ولی در تعادل پاتاسیم–کلسیم پزه‌های جنگلی صورت نگرفته است.

مواد و روش‌ها

از میان نمونه‌های اولیه خاک که در آزمایش‌های مقدماتی تجزیه شد، ۲۲ نمونه بر اساس کستره‌بندی بودن خاک و یوزرک‌ها مانند کلسیم کلسیم معادله، بافت خاک و پاتاسیم قابل استخراج با استات آمونیوم، انتخاب گردید. نمونه‌های آزمایش شده از منطقه‌ای با پلو جغرافیایی ۷۵ درجه و ۵ دقیقه، و عرض جغرافیایی ۷۱ درجه و ۶ دقیقه با استفاده از دوربین شیران دیجیتالی.

Fine mixed mesic Aquic Xerochrepts

بافت خاک به روش هیدرومتر، کلسیم کلسیم به روش تیتراسیون با استفاده (۲۰)، ماده آلی به روش والکس–بلک (۱۹)، در pH در گل اشیاب، در عصاره اشیاب به روش جایی CEC، و پاتاسیم به روش استات آمونیوم تعیین شد. همچنین، میزان مولی ۲۲ نمونه از خاک‌ها در منطقه دشت شیران فقرار داشتند به وسیله روش پرادرنک. از وجود سایر یک نیترات نیترات، سولفات‌ها اندژس کردن. از سوی دیگر، برای تعیین کلسیم‌های منیزیم و سدیم (مجمور محلول و تبدیل) از عصاره‌گیری استات آمونیوم نرمال و خنثی استفاده شد. به سبب حالت بی‌خشی از کلسیم و دیگر کلسیم در استات آمونیوم، مجموع کلسیم و منیزیم تبدیل از تعادل CEC و مجموع پاتاسیم و سدیم به
محاسبه و رابطه بین آنها بررسی گردید.

در مرحکه‌ی دوم، با توجه به پیش آزمایش‌های که در همین قسمت انجام شد، برای موردی که غافل شده و نهایتاً، تأثیر خاص از یک مقطع به از آزمایش بعدی انتخاب گردید.

در این آزمایش مراحل مختلف زیر انجام شد (۱، ۷، ۱۵ و ۱۶):

الف) اضلاع‌سایزی با کلسیم

هر خاک در شرایط تکرار با نسبت ۱ به ۱۰، در مجاورت محلول کلسیم کلسیم‌های گیاهی مانند مدت پنج دقیقه در سطح سیسک و نکا داده شد. تمومی آن‌ها تا صاف شدن محلول فوقانی سانترافوژ و سپس محلول فوقانی دور ریخته شد. برحسب اطلاعات از اشاع کامل کلسیم بندهای مورد عمل سه ساعت تکرار گردید. پس از انجام آخرین مرحله، عکل شسته‌ها فاز محلول خاک با کلکل این پروکسی (شامل افزودن الکل، نکا دادن و سانترافوژ کردن) در جنس محلول انجام شد. که برای مشخص کردن تعداد این مراحل از نسبت کلی توسط نیترات نهایت استفاده گردید. بدین ترتیب، تمومی اشباع شده بندهای کلسیم آماده انجام عملیات بعدی شد.

ب) چاپکردنی کلسیم با پناسم

در ادامه کار محلول قبلی، غلظت‌های مختلف پناسم (صفر تا ده میلی‌مول بر لیتر) توسط محلول‌های حاوی مقدار مشخص پناسم به شکل کلسیم و کلسیم محلول با قدرت پریتی تابیت، که به وسیله کلسیم کلکل‌کردن خاک بود. روی شرایط تکرار از یک منبع شد. به هر کارخان جهت غلظت از پناسم، که در حقيقة یک تیم محبوب می‌شد، افزوده گردید. پس از در ساعت تکان دادن و برقراری تعادل، تیم ها سانترافوژ شده و محلول شاف محلول جمع آوری گردید (که به آن محلول تعادلی می‌گویند) در محلول تعادلی، کلسیم با سانترافوژدگی چسبانده و به پاناسی تعادلی و پناسم به شکل کلکل‌کردن، آماده محلول کلکل‌کردن و با توجه به مقدار فوق، مقدار کل که در این آخرین مرحله در خاک آگهی انجام شد، همبستگی میان کلسیم و EKR گردید و مقدار K۰ برای این خاکها یا ۱/۸ درصد آماده در یک پژوهش شناخته شد. در همین پژوهش، EKR برابر با ۱/۴ گزارش شد. در همین پژوهش،
جدول 1. دامنه و میانگین ویژگی‌های عمومی خاک‌ها

<table>
<thead>
<tr>
<th>انحراف معیار</th>
<th>میانگین</th>
<th>دامنه</th>
<th>ویژگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.90</td>
<td>44/14</td>
<td>36/76-26/76</td>
<td>رس (درصد)</td>
</tr>
<tr>
<td>6/29</td>
<td>17/26-29/33</td>
<td></td>
<td>ظرفیت تبادل کاتیونی (سانتی‌مول بر گیلگرم)</td>
</tr>
<tr>
<td>7/4</td>
<td>0/0</td>
<td></td>
<td>مواد آلی (درصد)</td>
</tr>
<tr>
<td>8/48</td>
<td>25/06-45/09</td>
<td></td>
<td>کربنات کلسیم معادل (درصد)</td>
</tr>
<tr>
<td>1/57</td>
<td>2/98</td>
<td></td>
<td>هدایت الکتریکی (علسی میلی‌میتر)</td>
</tr>
<tr>
<td>1/85</td>
<td>4/08</td>
<td></td>
<td>پتاسیم قابل استخراج با استاند آمونیوم (میلی‌مول بر لیتر)</td>
</tr>
<tr>
<td>0/18</td>
<td>8/44</td>
<td></td>
<td>پتاسیم تبادلی (درصد)</td>
</tr>
<tr>
<td>8/12-8/70</td>
<td></td>
<td></td>
<td>pH</td>
</tr>
</tbody>
</table>

جدول 2. میانگین مقدار کاتیون‌ها و آنیون‌های محلول

<table>
<thead>
<tr>
<th>انحراف معیار</th>
<th>میانگین (میلی‌مول بر لیتر)</th>
<th>یون</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/1</td>
<td>9/5</td>
<td>کلسیم</td>
</tr>
<tr>
<td>0/7</td>
<td>1/3</td>
<td>پتاسیم</td>
</tr>
<tr>
<td>3/1</td>
<td>3/6</td>
<td>منیزیم</td>
</tr>
<tr>
<td>9/5</td>
<td>1/6</td>
<td>سدیم</td>
</tr>
<tr>
<td>7/0</td>
<td>8/7</td>
<td>کلسیم</td>
</tr>
<tr>
<td>4/8</td>
<td>3/3</td>
<td>سولفات</td>
</tr>
<tr>
<td>3/0</td>
<td>4/0</td>
<td>کربنات</td>
</tr>
<tr>
<td>9/1</td>
<td>7/9</td>
<td>بیکربنات</td>
</tr>
</tbody>
</table>

جدول 3. میانگین مقدار کاتیون‌های تبادلی

<table>
<thead>
<tr>
<th>انحراف معیار</th>
<th>میانگین (میلی‌مول بر لیتر)</th>
<th>کاتیون</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/00</td>
<td>183/1</td>
<td>کلسیم + منیزیم</td>
</tr>
<tr>
<td>2/00</td>
<td>6/2</td>
<td>پتاسیم</td>
</tr>
</tbody>
</table>

جدول 4. میانگین قدرت بونی و فعالیت کلسیم، منیزیم و پتاسیم

<table>
<thead>
<tr>
<th>انحراف معیار</th>
<th>میانگین (میلی‌مول بر لیتر)</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/2</td>
<td>5/1/4</td>
<td>قدرت بونی</td>
</tr>
<tr>
<td>1/0</td>
<td>4/1</td>
<td>فعالیت کلسیم</td>
</tr>
<tr>
<td>1/0</td>
<td>1/7</td>
<td>فعالیت منیزیم</td>
</tr>
<tr>
<td>0/5</td>
<td>1/0</td>
<td>فعالیت پتاسیم</td>
</tr>
</tbody>
</table>
شکل 1. رابطه بین EKR و KAR

با در نظر گرفتن تأثیر جفت و کمپلکس پویای در فاز محلول خاک، مقدار K0 حداکثر 3.3 مورد است. در این جفت، که با افزایش همراه بود (1)، به معنی اساساً، برسی تأثیر جفت پوینی و minterq2 انجام شد و بر اساس تحقیق فعالیت با کلسم مبتنی به KAR تصدیق و KAR مقدار مجددی اگزایشی، و رابطه آن با EKR و KAR و بررسی توده در وضعیت ضربی تیپ (R²) معلوم شدید، افزایشی مشاهده

در فاز محلول، مورد آزمایش، با بررسی رابطه میان KAR و EKR و EKR، را روش تغییرات KAR را روی مقدار KAR کرد. به سخن توقع افزوده، که در قسمت بعدی بررسی می‌شود. به وسیله اندوزه‌گیری یون‌های پاتایم، کلسم و متد توده محلول و محاسبه مقدار KAR. مقدار EKR و KAR مقدار EKR را از محاسبه اضافه شده در تعداد با کلسم و متد را به شکل پاتایم ترکی، که در حقیقت ذخیره پاتایم خاک است، تبدیل می‌شود، آگاهی از ذخیره و شدت پاتایم در خاک به همراه تمایل مقدار نیاز گیاه به پاتایم در پویش‌های بعدی، می‌تواند راهنمايی مفیدی در توصیه کودی پاتایم در این خاک‌ها برای محصولات

\[
R^2 = 0.768
\]
بررسی تعادل پتاسیم-کلسیم در برخی از خاک‌های آهکی خراسان

شکل ۲. رابطه KAR با EKR برای ۱۴ نمونه خاک اشباع با کلسیم
نتیجه گیری
در یک جمع‌بندی می‌توان گفت: در این پژوهش از رابطه

$$y = 2.035kx + 0.165$$

$$R^2 = 0.9018$$

$$y = 2.1916x - 0.0014$$

$$R^2 = 0.977$$

است بر تأثیر داشته باشد. در نتیجه می‌توان با تغییر EKR مقدار که همان شیب معادله خط است، در این خاکها مقدار K_0 با تقریب زیاد بین 1/34 و 3/2 از رابطه (شکل 3). زیاد

$$y = 2.035kx + 0.165$$

$$R^2 = 0.9018$$

$$y = 2.1916x - 0.0014$$

$$R^2 = 0.977$$

واحه میکا گزارش شده است (18). مقدار K_0 به درصد پتاسیم

بیشتر (EPP) تبدیل (18) و 22); به طوری که گزارش

شهد است با افزایش درصد پتاسیم تبادلی، که به کاهش می‌یابد

$$y = 2.035kx + 0.165$$

$$R^2 = 0.9018$$

$$y = 2.1916x - 0.0014$$

$$R^2 = 0.977$$

در این پژوهش غلظت‌های پتاسیم در تیمارها به گونه‌ای در

$$y = 2.035kx + 0.165$$

$$R^2 = 0.9018$$

$$y = 2.1916x - 0.0014$$

$$R^2 = 0.977$$

نگرفته شود که در دانه پتاسیم خاک‌های زراعی باشد.

$$y = 2.035kx + 0.165$$

$$R^2 = 0.9018$$

$$y = 2.1916x - 0.0014$$

$$R^2 = 0.977$$

در این دانه به‌خوبی مشاهده شده است که اولاً مقدار

$$y = 2.035kx + 0.165$$

$$R^2 = 0.9018$$

$$y = 2.1916x - 0.0014$$

$$R^2 = 0.977$$

این شرایط نشان است و با افزایش پتاسیم به خاک

$$y = 2.035kx + 0.165$$

$$R^2 = 0.9018$$

$$y = 2.1916x - 0.0014$$

$$R^2 = 0.977$$

تم کن. بنابراین، تغییرات KAR ناشی از کاربرد کود پتاسیم، با

$$y = 2.035kx + 0.165$$

$$R^2 = 0.9018$$

$$y = 2.1916x - 0.0014$$

$$R^2 = 0.977$$

برداشت و آب‌شویی پتاسیم با یک ضریب ثابت و مشخص قادر
سیاسی‌گزاری
بی‌دین و سیاست‌سازی معاونت محترم پژوهشی دانشگاه فردوسی مشهد
برای تامین هرکلیه طرح و جناب آقای دکتر فتوت به دلیل
راهنمایی در استفاده از نرم‌افزار minteq2
قردناهی می‌شود.

متن مورد استفاده
1. حسنی‌نژاد، ح. ۱۳۷۱. مطالعه و بررسی خصوصیات خاک با خاصیت
گزارش نهایی طرح تحقیقاتی دانشگاه فردوسی مشهد.
2. سالاری‌نژاد، ع. م. مجنونی. ۱۳۷۲/۱۳۷۳. اصول تغذیه گیاه (ترجمه).
حناییات دانشکده تهران.
3. کریمیان، ن. ۱۳۷۳. شیمی خاک (ترجمه). مرکز نشر دانشگاهی.
۴. مجلسی، ح. ۱۳۷۳. شیمی خاک (ترجمه). مرکز نشر دانشگاهی.

