بررسی تعادل پتاسیم-کلسیم در برخی از خاک‌های آتشفشانی

چکیده

در خاک‌های آتشفشانی مناطق خشک و نیمه خشک حضور مقدار زیاد کلسیم یا پتاسیم کلسیم در سیستم تعادل خاک (محلول و بیولوژی) همواره واکنش‌های شیمیایی فاز محلول و بیولوژی خاک را تحت تأثیر قرار می‌دهد. بدیهی تبادل از جمله این واکنش‌های شیمیایی است که تأثیر کالیوم در ظرفیت کلسیم در آن بسیار مهم می‌باشد. یکی از تغییراتی که در سیستم شیمیایی خاک‌های آتشفشانی اهمیت پیشتری برخوردار است، تعادل پتاسیم-کلسیم است که می‌تواند پایان‌گیری پیش‌بینی از سانال در شیمی و حاصل خشکی خاک و قابلیت استفاده این عنصر به ویژه پتاسیم باشد. با توجه به اهمیت موضوع، در خاک‌های آتشفشانی کشور در این زمینه پژوهش زیادی انجام نشده است. این پژوهش در شماری از خاک‌های آتشفشانی شمال خراسان انجام شده.

در مقاله نخست، رابطه رگرسیونی بین KAR (نسبت جذب پتاسیم) و EKR (نسبت جذب کلسیم) در 24 نمونه خاک تعیین گردید. نسبت تریپوت کلسیم (K) (ضریب گیت‌پات یا گاوپن) خاک‌ها حدود ۱/۴۸ برآورد شد. در مقاله دوم، در 14 نمونه خاک اشباع با کلسیم، با انرژی گل‌فیکتی در خاک‌های مختلف پتاسیم و پتاسیم محلول در شیمی و نسبت زیاد برای هر خاک تعیین شد. دامنه مقدار KAR و EKR در این کشور بین ۱/۳۴ تا ۱/۳۳ و با ضریب تیپین (R²) بالای ۹/۵ به دست آمد. در شیمی و محلول در خاک‌های سورد KAR و EKR در این دامنه مشابه با K رسمی تعیین شده و تعداد پتاسیم بین KAR و EKR در محلول اول است. مطالعه بررسی سطح بیشوداری خاکهای خاک‌های این نظریه اهمیت تغییرات KAR و EKR و افزایش کلسیم در نمونه خاک‌های آتشفشانی در حضور کلسیم و سبزیجات بیولوژیک

واژه‌های کلیدی: تعادل پتاسیم-کلسیم در خاک‌های آتشفشانی

1. به ترتیب مربی و استاد خاکشناسی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
مقدمه
پیش‌بینی یکی از عناصر غذایی اصلی گیاه است. که در خاک به شکل‌های مختلف محلول می‌باشد. تاکنون، در بسیاری از پژوهش‌های بررسی این عناصر در خاک، نسبت استفاده آنها با وابستگی بسیار زیادی دارند. بنابراین، برای استفاده بهینه این عناصر، ضریب تبادل کاندنه با بار 1- است. استفاده از وجود بار درست می‌تواند به دست آورد.

\[(Ca + Mg)\frac{1}{2} X^0 + (K^+) \leftrightarrow KX^0 + \frac{1}{2}(Ca^{2+} + Mg^{2+}) \]

\[1\]

الگوی استفاده از الگوی (Mg, K, Ca) خاصیت الشفتی یکی از محصولات تبدیل این عنوان در خاک قابل اندازه‌گیری نیستند. و حتی به طور دقیق تعریف نشده‌اند (9). بنابراین، برای بررسی وضعیت تبادل و ارتباط فاز محلول و تبادل، از عناصر استفاده می‌شود. که از جمله آنها می‌توان به بیانیات گابون (Gapon) اشاره کرد (6، 7 و 11).

\[\text{Exchangeable Potassium EKR} = \frac{\text{ExK}}{\text{E xCa + ExMg}}\]

\[4\]

\[\text{Potassium Adsorption Ratio (KAR)} = \frac{\text{K}^+}{(Ca^{2+} + Mg^{2+})^{1/2}}\]

\[5\]

\[\text{Selectivity coefficient (K)} = \frac{\text{EKR}}{\text{KAR}}\]

\[6\]

که در حریم کانی‌هایی که به توری ضریب گریزند پذیری می‌باشد. می‌توان مجموع این کانی‌های در تبادل با کانی‌های پذیری بیشتر بلند کاشتی به کار بردن (3). این شرط برای ضریب گریزند پذیری بین کانی‌های پذیری
مواد و روش‌ها
از میان نمونه‌های اولیه خاک که در آزمایش‌های مقدماتی تجزیه شد، ۲۲ نمونه بر اساس کست‌های بودن برخی از وزگرها و مانند کلیسی کُن در محل نمونه مستخلص گردید. کلیسی کُن در محل نمونه مستخلچ
کاتیوهای غالب در خاک‌های مورد بررسی عبارت بودند از:

مومورگولنیت، کاتینیت، کرتز و کارترز.

در این خاک‌ها، کاتینیت ناتوان، سدیم، کلسیم و منیزیم به عنوان کاتینیت غالب و آن‌ها خاک، سولفات، کرینات و بی‌گروینه به عنوان آنتی‌ها غالب در فاز محلول‌شان خشک شدند (جدول 2). برای این مشاهده و در مدت 16 تا 14 ماه از آن‌ها فاصله موردی داشتیم و بعد از انتخاب گردید.

در این آزمایش، مراحل مختلف بر اساس شماره 2 و 15 و 16 اجرا شد.

الف) اشیاء‌سازی با کلسیم

هدف از گزارش حاصل، سابقه استفاده شده را در این آزمایش، شکاف‌کی، محلول کلسیم یک مولر، به مدت 70 دقیقه در دستگاه شیکار تا کانه داد. مدت تأخیر محلول محلول فوئونگ سانترپوزی و سپس محلول فوئونی دور ریخته شد. برای اطمنی‌سازی از

کامل خاک با کلسیم، این عمل سه بار تکرار گردید. پس از

انجام آخرین محلول، محلول شستشوی فاز محلول خاک با اکثربخش‌کن

(شمار افزودن کلر) تا کانه داد و سانترپوزی کردن در

چند ماه محلول اجرا شد. که برای مشخص شدن تغییرات این مراحل

از نتیجه کل توضیحات نقره استفاده گردید. بدین ترتیب،

تمام اشیاء شده با کلسیم آماده انجام عملیات بعدی شد.

ب) چاپگزینی کلسیم با نتایج

در ادامه کار محلول، یلخ‌شکنی مختلف یابیم (صرف تا به

میلی‌مول بر لیتر) توسط محلول‌های حاوی مقدار مشخص

پتاسیم و کلسیم (شست محلول با قدرت بونی ثابت که به وسیله

کلسیمی کم‌فراهم شده‌بود، روی شست تکرار از شریر

ریخته شد. به این علت که البته ریکش و غلظت از پتاسیم، که در

حقیقت یک تریپ محسوب می‌شد، افزوده گردید. پس از دو

ساعت تکان دادن و برقراری تعادل، تیمارها سانترپوزی شده و

محلول شاف فوئونی جمع‌آوری گردید (که به آن محلول

تعادل می‌شود) در محلول تعادل، کلسیم با استفاده

یابیم و پتاسیم فیلیم تدمیری، و ماندن محلول به

بله پس از محاسبه، EKR و کلسیم، که برای میان آن‌ها بررسی شد.

نتایج و بحث

دامنه واگر کیهان، نتایج مشابهی با خاک‌ها در جدول 1 اطلاع از

که ما در محلول‌های دیگر نیز مشاهده کرده‌ایم.
جدول ۱. دامنه و میانگین ویژگی‌های عمومی خاک‌ها

<table>
<thead>
<tr>
<th>احراز معیار</th>
<th>دامنه</th>
<th>میانگین</th>
<th>ویژگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>رس (درصد)</td>
<td>۲۶/۷۷ - ۶۷/۷۶</td>
<td>۴۴/۱۴</td>
<td>طرفیت تبادل کاتیونی (سانتی‌مول بر کیلوگرم)</td>
</tr>
<tr>
<td>مواد آلی (درصد)</td>
<td>۷/۳۲ - ۱۱/۸۶</td>
<td>۱۱/۶۶</td>
<td>۰/۴۲ - ۲/۰۰</td>
</tr>
<tr>
<td>کربنات کلسیم معادل (درصد)</td>
<td>۲/۰۰ - ۴/۰۰</td>
<td>۲/۹۸</td>
<td>هدایت الکتریکی (سی‌زئیمی بر متر)</td>
</tr>
<tr>
<td>پتانسیم قابل استخراج با استاند آمینوم (میلی‌مول بر لیتر)</td>
<td>۰/۶۷ - ۲/۰۰</td>
<td>۱/۸۶</td>
<td>پتانسیم پتادلی (درصد)</td>
</tr>
<tr>
<td>pH</td>
<td>۸/۰۴ - ۸/۱۸</td>
<td>۸/۴۴</td>
<td>pH</td>
</tr>
</tbody>
</table>

جدول ۲. میانگین مقادیر کاتیون‌ها و آنیون‌های محلول

<table>
<thead>
<tr>
<th>احراز معیار</th>
<th>میانگین (میلی‌مول بر لیتر)</th>
<th>بیون</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلسیم</td>
<td>۹/۵</td>
<td></td>
</tr>
<tr>
<td>پتانسیم</td>
<td>۱/۳</td>
<td></td>
</tr>
<tr>
<td>منیزیم</td>
<td>۳/۶</td>
<td>کلسیم + منیزیم</td>
</tr>
<tr>
<td>سدیم</td>
<td>۱۶/۶</td>
<td>پتانسیم</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۸/۷</td>
<td></td>
</tr>
<tr>
<td>سولفات</td>
<td>۳/۸</td>
<td>سولفات</td>
</tr>
<tr>
<td>کربنات</td>
<td>۴/۰</td>
<td>کربنات</td>
</tr>
<tr>
<td>بیکربنات</td>
<td>۷/۹</td>
<td>بیکربنات</td>
</tr>
</tbody>
</table>

جدول ۳. میانگین مقادیر کاتیون‌های تبادلی

<table>
<thead>
<tr>
<th>احراز معیار</th>
<th>میانگین (میلی‌مول بر لیتر)</th>
<th>کاتیون</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴/۰۰</td>
<td>۱۸۳/۱</td>
<td>کلسیم + منیزیم</td>
</tr>
<tr>
<td>۲/۰۰</td>
<td>۶/۷</td>
<td>پتانسیم</td>
</tr>
</tbody>
</table>

جدول ۴. میانگین قدرت بونی و فعالیت کلسیم، منیزیم و پتانسیم

<table>
<thead>
<tr>
<th>احراز معیار</th>
<th>میانگین (میلی‌مول بر لیتر)</th>
<th>مقادیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵/۲</td>
<td>۵۱/۴</td>
<td>قدرت بونی</td>
</tr>
<tr>
<td>۱/۰</td>
<td>۴/۱</td>
<td>فعالیت کلسیم</td>
</tr>
<tr>
<td>۱/۰</td>
<td>۱۸۷</td>
<td>فعالیت منیزیم</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۱/۰</td>
<td>فعالیت پتانسیم</td>
</tr>
</tbody>
</table>

۲۹
شکل ۱. رابطه بین EKR و KAR

با در نظر گرفتن تأثیر جفت و کمپلکس‌پویتی در فاز محلول خاک، مقدار K_0 حدود ۳/۲۳۰ آورده شد. که با افزایش R^2 همراه بود (۱). به همین اساس، بررسی تأثیر جفت بونه و minteq2 چیکی خاک تخویض نمود از بررسی مقدار KAR مجدد محلول، و رابطه آن با EKR نتیجه داد تا در فاز محدود کمپلکس‌پویتی (R^2) ماله می‌باشد، افزایشی مشاهده شد.

در خاکهای مورد آزمایش، با بررسی رابطه میان EKR و KAR می‌توان تأثیر نگهداری KAR را روی مقدار EKR در شاخص تأثیر تعیین کرد. به سخت دیگر، وقتی به این خاک‌ها کمپ پتاسیم افزوده شود، می‌توانی با تکثیر فرصت کردن K_0 که در همین تعداد EKR می‌توان با تکثیر فرصت کردن KAR می‌توان بررسی می‌شود. به وسیله اندازه‌گیری پتاسیم، کلریم و مقدار محلول و محاسبه EKR می‌توان با تکثیر فرصت کردن KAR را از محاسبه EKR مقدار محلول و محاسبه EKR می‌توان در محاسبه افزایشی که در نتیجه داد تا در محاسبه افزایشی که در نتیجه داد.
شکل ۲. رابطه KAR با EKR برای ۱۴ نمونه خاک اشباع با کلسیم

۳۱
تغییرات کرکد، برداشت گیاه، آب‌شربی و ...، می‌توان را با تقریب نسبتاً زیاد (0.88) برآورد کرد. که این EKR تأثیر داشته باشد. در نتیجه، می‌توان با تعيين EKR مقدار EKR را با تقریب زیاد برآورد کرد. ناپایان از مقایسه K0 با مقدار EKR همکنون و K0 به دست آمده ی‌از آزمایش و رابطه K0 در حال تغییر می‌توان نتیجه گرفت که برآورد طريقة رابطه EKR و KAR است.

نتيجه گيري

در یک جمع‌بندی می‌توان گفت: در این پژوهش اولاً رابطه‌ای در EKR=0.0201+2.481KAR به صورت EKR = کار و EKR به صورت KAR در میان کار و EKR مدیر رئیس‌به دست آمده. که می‌تواند گویای ارتباط میان پتاسیم محلول و تبادلی باشد. و بدین ترتیب اثر تغییرات پتاسیم محلول بر پتاسیم تبادلی در حضور کلسیم و منیزیم به عنوان کانون‌های اصلی خاک‌های آهکی مشخص خواهد شد. KAR به وسیله این معادله با ملاحظه Pتاسیم افزودن کرک، برداشت گیاه، آب‌شربی و ...، می‌توان را با تقریب نسبتاً زیاد (0.88) برآورد کرد. که این EKR مقدار K0 با تقریب زیاد بین 721/743 برآورد شد (شکل 2). برآورد K0 به دست آمده از آزمایش و K0 نسبت به EKR نسبت به K0 با تقریب زیاد خاک گویای بیشتر بودن EKR این طرح خاک را برای جذب پتاسیم در جایگاه‌های تبادلی خاک بیشتر بودن EKR نسبت به کلسیم و منیزیم نشان می‌دهد (15 و 16). تبادل بیشتر برای جذب پتاسیم نسبت به کلسیم در غلظت‌های کم و متوسط پتاسیم محلول (18) در خاک‌های حاوی میکا گزارش شده است (18). مقدار K0 به درصد پتاسیم تبادلی (EPP) گزارش شده است (18). به طوری که گزارش شده است با افزایش درصد پتاسیم تبادلی، K0 کاهش می‌یابد (17).

در این پژوهش غلظت‌های پتاسیم در تیمارها به گونه‌ای نظر گرفته شد که در دانه پتاسیم خاک‌های زراعی باشد. در این دانه به خوبی مشاهده شد است که اولاً مقدار K0 در این شرایط ثابت است و با افزایش پتاسیم با خاک تغییر نمی‌کند. بنابراین، تغییرات KAR ناشی از کاربرد کرک پتاسیم، با برداشت و آب‌شربی پتاسیم با یک ضرب تابث و مشخص قادر
سیاست‌گزاري
بدین وسيله از معاونت محترم پژوهشی دانشگاه فردوسی مشهد
برای تايمه‌ی طرح و جنب آن‌ها دکتر فتوت به ديل
رایه‌نامه‌ی در استفاده از نرم‌افزار QFQ در دانشگاه ميشود.

مباحث مورد استفاده
1. حذف، ج. 1371. مطالعه و پرسی خصوصيات خاک يکشي از مزروعه آموشگري، شيروان به ميزان رکشي و اصلاح اراضي.
گزارش نهایي طرح تحقيقاتي دانشگاه فردوسی مشهد.
2. سالرندي، ع. 1372. اصول تغذیهی کيهات (ترجمه) انگشتان دانشگاه تهران.
3. کریمی، ن. 1371. شیمی خاک (ترجمه) مركت نشر دانشگاه.
4. مجتمعی، ح. 1377. شیمی خاک (ترجمه) مركت نشر دانشگاه.

