کاربرد CCA به منظور ارزیابی و مقایسه توانایی و SOI زمستانه سواحل دریا خزر

سید محمد جعفر ناظم السادات و امین شیروانی

چکیده
در ایران، حدود 75% از تولیدات برنج داخلی در استان‌های گیلان و مازندران که از پر بارش ترین لواحی کشورند، تهیه می‌شود. بخش‌هایی از تولیدات برنج در این استان‌ها تحت تأثیر بارش‌های آبی منجر می‌شود. بر اساس گزارش‌های متعدد اخیر، تأثیر بارش‌های منفی و مثبت به‌طور مناسب بر روی کاهش یا افزایش قطاعه در میان‌خازن برنج تأثیر می‌گذارد. بنابراین، به کاربرد CCA به منظور ارزیابی و مقایسه توانایی و SOI زمستانه سواحل دریا خزر برای پیش‌بینی بارش در این استان‌ها و مزایاد کیفیت و درآمد تولید را در نظر می‌گیریم.

Nino's SST

Nino's SST
مقايسه با سایر استاتگیهای کشور، در این استادی و نوشته بیشتری حساسیت را به این بیده دارد. توضیحات
بیشتر در مورد پدیده ENSO، شاخص طبیعی و تأثیر آن بر
بازار کشور توسط ناظرین نسبت به این نکته است. این بیان
برای انتقال یافته باشد. بارش‌های بارش زمستان در برخی از نواحی
شرک آمیز کشور نیز بطور عادی و پایدار منتظر تأثیر از پدیده
ENSO در عین حال، به عنوان کمک‌دادهای مورد نیاز برای شرکت
و ضعیف تن بودن روابط استراتژیک شده در مقایسه با
استاتگیهای سایر این نواحی و توصیه، بررسی حاضری که راه را در
نتیجه داده جنبشی در گسترش خطر مقاومت در این نواحی است
اساسی که بارش شمال کشور در تولید برق و امین زعیر
مورد ایران در دارای بیشتر و دقت تأثیر یافته به
ENSO نظور بیشتر این نواحی خاج اهمیت می‌باشد.
بررسی‌های آنالیز شده (2) نشان داد که تنها به
شاخص دمای سطح آب در ناحیه مرکزی اقیانوس آرام
می‌توانند توانایی بیشتری را از افرادی داشته و برای
مطالعه شیب زمین و بارش بارش زمستان در این ناحیه از
کشور استفاده شود. یادآور می‌شود همانطور که در شکل
1 نشان داده شده، ناحیه استوایی اقیانوس آرام به کهرنگ
جداگانه تقییم شده است که ورودی‌های اقیانوس آمریکایی یا
و مخصوصاً دمای سطح آب در این نواحی که اصطلاحاً
که فصل نشود، تأثیر محاسبه بر آب و هوای ناهماهنگ
Nino’s SST مختلف جهانی دارد. علاوه بر
SOI، مقادیر
به عنوان شاخصی از پدیده در نظر گرفته شده و گرم و
سرد شدن شدت آنها به ترتیب تنش شناس و قرار دیده
البته می‌باشد. روشن شده است که با کاهش بارش در نقاط
مختلف دنیا به دمای سطح آب این نواحی نابی‌تر زمان و مکان
می‌باشد. اماً ممکن است بارش زمستان به ناحیه بیشتر
متأثر از Nino’12 و در بهار بیشتر متأثر از Nino’3.4
با دارد. می‌شود که پژوهش‌های قابل (12) و (13)
می‌توانیم
Nino’s SST و SOI ایران را با یکدیگر مقایسه نشانده و ارائه مدلی برای امر

مقدمه
استاتگیهای کیهان و مانند یافته واقع در سواحل جنوبی دریای
خزر بر بیشترین نواحی کشور ایران می‌باشد. بر اساس آمار
موجود در سایت اینترنتی وزارت جهاد کشاورزی، در سال‌های
زیادی به ۷۴% و ۷۸% بسته شد. در کل
تولید برق منلکت مرتبه به این دو استادی می‌باشد. علاوه بر
تولید، استاتگیهای کیهان و مانندی در این استادی مهم دارد.
کشور داشته، به‌طوری که بخش وسیعی از مخازن نفت و
نواحی اطراف در نواحی شمالی، زیاد تولید می‌شود. شناسایی عامل
موتور بیشتر استاتگیهای بارش در یک قصه و پیش بینی مقدار
یا منجر به آن زمان مدل نفت برای عمران و آبادی و
توسعه اقتصادی کشورها دارد. به همین دلیل، در نواحی داخل
جهان تحقیقات زیادی در این زمینه در حال انجام است.

پیش‌بینی بارش از اقدامات اساسی به‌نظر می‌رود

رسانایی تصمیم‌گیری‌های نسبیه و کیفیتی در هنگام و فوری
حوادثی مانند سیل و خشکسالی می‌باشد. اگر به پیش‌بینی می‌دازد
در مدت اقیانوسی مدیریت مانند آب و خاک علوم بر بازی
داخل، شدن در بحران و تصمیم گیری در موارد اختطری
استادی می‌باشد. پیش بینی دراز مدت بارش این ممکن را
می‌سازد که قبل از حادثه راهی انجام از آن و با به حداقل
رساندن خسارات را بررسی نمود. تکنیک می‌گردد که استادی
این‌طور عصر اقیانوسی بوده، افزایش با کاهش آن سایر عوامل
جویی - اقیانوسی و نم‌مار کارهای دامپری، شیلات، ساخته
سازی و صنعت تورم را تحت تأثیر قرار می‌دهد.

ناتین بایرین، لارم استاد که وزارت‌های اقیانوسیه و همچون
وزارت جهاد کشاورزی، وزارت نیرو، وزارت مسیره و برنامه
ریزی کشور و شرکت‌های مخصوصاً بهم محصولات
کشاورزی به خدمات آنها با فشار و استفاده یابند
مستقیم از استفاده پیش بینی‌های در مدت اقیانوسی را
منابع پیش‌بینی از تصمیم‌گیری‌های کل بخوان قرار دهد.

ناظر السادات و کورکی (۱۲) با بررسی
تاثیر پدیده
بر بارش زمستان ایران نشان دادند که در
ENSO مقدمه
پیش‌بینی از اهداف آنها نبوده است. علاوه بر این، پژوهش‌های Nino3.4 انجام شده مشخص نشاندهند که آیا باید استفاده از مدل‌های دمای سطح آب در دیگر نقاط قاره آمریکا نیز می‌تواند در امر پیش‌بینی استفاده شود یا خیر. تأثیر نتایج زمانی و نیز SOI در امر پیش‌بینی بارش هوا در ایران نیز مورد توجه پژوهش‌های یافته شده نبوده است. نکته دیگر آنکه در پژوهش سلسله مراتب تأثیر هژمون و Nino3.4 نشان داده شده است ولی در پژوهش حاضر وضعیت پیشگویی نشان داده شده است که فصل قبل از زمستان (زمستان سال قبل بهار)، نامناسب بوده است ولی برای پیش‌بینی بارش زمستان استفاده می‌شود.

d) ارزیابی پیش‌بینی بارش زمستان و ارزیابی مقادیر شبیه سازی شده با مشاهدات.

مواد و روش‌ها

داده‌ها

الف) داده‌های بارش سه ماهه زمانی، فوریت و مارچ ایستگاه‌های سیستمیک نویک و بندر اینلی برای دوره زمانی 1991-2019 از سیستم سینامیا شناسی نمونه‌برداری گردیدند. با میانگین‌گیری از داده‌های این ماه‌ها، سری زمانی بارش به‌دست آمد.

ب) داده‌های بارش نویک و بندر اینلی برای دوره زمانی 1991-2019 از سیستم سینامیا شناسی نمونه‌برداری گردیدند. با میانگین‌گیری از داده‌های این ماه‌ها، سری زمانی نویک و بندر اینلی به‌دست آمد.

۱۳
به‌عنوان دیگر شاخص پایه‌ای تعداد به‌صورت مورد استفاده قرار گرفت.

این داده‌ها نیز از یک بانک اطلاعاتی سازمان NOAA برای دوره‌های زمانی 1960-1996 استخراج شده و مانند داده‌های پیشین، به‌صورت مورد استفاده قرار گرفت.

به‌طور کلی سری‌های زمانی فصل‌بندی شده و هر فاصله از نتایج به‌صورت سری‌های زمانی استفاده شده و پیش‌بینی مورد استفاده قرار گرفت.

به‌طور کلی سری‌های زمانی فصل‌بندی شده و هر فاصله از نتایج به‌صورت سری‌های زمانی استفاده شده و پیش‌بینی مورد استفاده قرار گرفت.
(CCA) تحلیل همبستگی معنادار

1. همبستگی معنادار (W1, Z1), (W2, Z2),..., (Wm, Zm) در جامعه ی مورد پژوهش با یکدیگر ارتباط دارد.

\[
\text{corr}(Z_j, Z_k) = \text{corr}(W_j, W_k)
\]

2. به ترتیب این میانگین متغیرهای همبستگی (Wi, Z) و Wi، Pi و izi را مشخص کنید و در جامعه ی مورد پژوهش با یکدیگر ارتباط دارند.

\[
\text{corr}(W_j, Z_k) = \frac{1}{n-m} \sum_{i=1}^{n} (W_{ji} - \overline{W})(Z_{ki} - \overline{Z})
\]

ج) در صورتی که در مورد اثر ضریب همبستگی و Z بین متغیرهای معنادار (W1, W2, ..., Wm) و (Z1, Z2, ..., Zl) مشخص شود که در جامعه ی مورد پژوهش با یکدیگر ارتباط دارند، به یکسانی هستند. در حالتی که این حالت برقرار نباشد، میانگین همبستگی بر اساس معادله (1) محاسبه می‌گردد.

\[
\text{m}_{i(j)} = \frac{1}{n-m} \sum_{i=1}^{n} (W_{ji} - \overline{W})(Z_{ki} - \overline{Z})
\]

در صورتی که در جامعه ی مورد پژوهش با یکدیگر ارتباط دارند، به صورت زیر تعریف می‌گردد:

\[
\text{corr}(W_m, N_{i(j)}) = \text{corr}(W_m, S_i)
\]

ویژه که:

i = 1, 2, 3, 4

j = 1, 2, 3, 4

m_{i(j)}^{m} = \text{corr}(W_m, N_{i(j)})

ویژه که:

i = 1, 2, 3, 4

j = 1, 2, 3, 4

\[
W_1 = \beta_1X_1 + \beta_2X_2 + ... + \beta_pX_p
\]

\[
Z_l = \gamma_1Y_1 + \gamma_2Y_2 + ... + \gamma_qY_q
\]

روش CCA مقادیر مورد نظر به صورت زیر تعریف می‌گردد:

\[
\text{Re}_2 = \text{corr}(W_2, Z_2)
\]

ج) در صورتی که در جامعه ی مورد پژوهش با یکدیگر ارتباط دارند، به صورت زیر تعریف می‌گردد:

\[
W_2 = \beta_{21}X_1 + \beta_{22}X_2 + ... + \beta_{2p}X_p
\]

\[
Z_2 = \gamma_{21}Y_1 + \gamma_{22}Y_2 + ... + \gamma_{2q}Y_q
\]

این روش تا حد ممکن m ادامه می‌یابد. به صورت زیر تعریف می‌گردد:

\[
\text{m} = \min(p, q)
\]

این روش تا حد ممکن m ادامه می‌یابد. به صورت زیر تعریف می‌گردد:

\[
W_2 = \beta_{21}X_1 + \beta_{22}X_2 + ... + \beta_{2p}X_p
\]

\[
Z_2 = \gamma_{21}Y_1 + \gamma_{22}Y_2 + ... + \gamma_{2q}Y_q
\]

این روش تا حد ممکن m ادامه می‌یابد. به صورت زیر تعریف می‌گردد:

\[
\text{m} = \min(p, q)
\]
نیو و فونی کشاورزی و منابع طبیعی/ سال هشتم/ شماره اول/ بهار ۱۳۸۳

dر روایت بالا، می‌توان گفت که نیو و فونی سه متغیر می‌باشند. این متغیر فضای دو و فضای دو دارا هستند. فضای دو دارا هستند. در سوی W1 دارا هستند. به همین شاخص در SOI سر ری به این متغیرها می‌باشد. مناطق با این همبستگی، مقادیر بازه در استفاده بند انژل m

سال نیو و فونی شده می‌باشد. به عنوان نمونه یا ضریب همبستگی بین

دومین متغیر پیشگو شونده و بارش در استفاده بند انژل است. مقادیر m

و نوشته می‌باشد. به عنوان نمونه یا ضریب همبستگی بین

تا نویج به در رابطه ۷ و ۴، جانشین در نظر گرفته شکل، مقادیر واریانس توجهی از کل CCA واریانس همبستگی پیشگو بنده در تابع دقیق چهار مله به همراه دو و بازیکانه هر یک از

عناصر ماتریس با

به کدامیک از عنصر ماتریس NS و واریانس پیشتری دارند، در

مرحله اول عوامل بازگرداری (Loadings) چهارگانه با روشن واریانسکی درون داده شد و واریانس هر یک از عنصر این ماتریس با

اعداد قرار به توجه ۴۹ درصد از کل واریانس

EOF1 و نیوی SST (NS) با

(EOFs) SOI و Nino

\[
M_i \cdot r_{m_i} = \sum_{i=1,2,3,4} \sum_{j=1,2,3,4,4} \left(\left(m_i^{(n)} \right)^2 + \left(r_{m_i} \right)^2 \right)
\]

[۸]

به میزان اولین

در فصول بی Intersection با واریانس Nino SST در

نیوی SST و پاییز با توجهی در

نیوی SST و پاییز علاوه بر این، این SOI مؤلفه همبستگی بالایی با یک

در فصول بی Intersection با واریانس Nino SST در

نیوی SST و پاییز با علاوه بر این، این SOI

 مؤلفه همبستگی بالایی با باکله

در فصول بی Intersection با واریانس Nino SST در

نیوی SST و پاییز با علاوه بر این، این SOI

نیوی SST و پاییز با علاوه بر این، این SOI

نیوی SST و پاییز با علاوه بر این، این SOI

نیوی SST و پاییز با علاوه بر این، این SOI

باید ترکیب بی خلاف

EOF1
جدول 1 مقدار واریانس که توسط هر یک از مؤلفه اول تا چهارم تعیین می‌شود و واژگی هر یک از این مؤلفه‌ها با اعضای ماتریس NS

<table>
<thead>
<tr>
<th>واریانس تعیین (درصد)</th>
<th>EOF1</th>
<th>EOF2</th>
<th>EOF3</th>
<th>EOF4</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد واریانس تعیین</td>
<td>58/2</td>
<td>23/3</td>
<td>5/3</td>
<td>2/4</td>
</tr>
<tr>
<td>درصد تجمعی واریانس</td>
<td>58/2</td>
<td>81/5</td>
<td>92/2</td>
<td></td>
</tr>
</tbody>
</table>

MO، نشان‌دهنده که باعث تغییرات آن از همبستگی زیادی بروزهای است. علاوه بر این، نتایج به‌دست آمده، این است که نتایج این EA به عنوان یک شاهد دیگر ویژگی‌های هم‌بستگی در سطح میدان الکتریکی نشان دهد. نتایج نشان داد که این اعضای ماتریس NS را در نظر می‌گیرند. با وجود این، نتایج نشان داد که این اعضای ماتریس NS نمی‌توانند به عنوان یک شاهد دیگر ویژگی‌های هم‌بستگی در سطح میدان الکتریکی نشان دهد. نتایج نشان داد که این اعضای ماتریس NS را در نظر می‌گیرند. با وجود این، نتایج نشان داد که این اعضای ماتریس NS نمی‌توانند به عنوان یک شاهد دیگر ویژگی‌های هم‌بستگی در سطح میدان الکتریکی نشان دهد. نتایج نشان داد که این اعضای ماتریس NS را در نظر می‌گیرند. با وجود این، نتایج نشان داد که این اعضای ماتریس NS نمی‌توانند به عنوان یک شاهد دیگر ویژگی‌های هم‌بستگی در سطح میدان الکتریکی نشان دهد. نتایج نشان داد که این اعضای ماتریس NS را در نظر می‌گیرند. با وجود این، نتایج نشان داد که این اعضای ماتریس NS نمی‌توانند به عنوان یک شاهد دیگر ویژگی‌های هم‌بستگی در سطح میدان الکتریکی نشان دهد. نتایج نشان داد که این اعضای ماتریس NS را در نظر می‌گیرند. با وجود این، نتایج نشان داد که این اعضای ماتریس NS نمی‌توانند به عنوان یک شاهد دیگر ویژگی‌های هم‌بستگی در سطح میدان الکتریکی نشان دهد. نتایج نشان داد که این اعضای ماتریس NS را در نظر می‌گیرند. با وجود این، نتایج نشان داد که این اعضای ماتریس NS نمی‌توانند به عنوان یک شاهد دیگر ویژگی‌های هم‌بستگی در سطح میدان الکتریکی نشان دهد. نتایج نشان داد که این اعضای ماتریس NS را در نظر می‌گیرند. با وجود این، نتایج نشان داد که این اعضای ماتریس NS نمی‌توانند به عنوان یک شاهد دیگر ویژگی‌های هم‌بستگی در سطح میدان الکتریکی نشان دهد. نتایج نشان داد که این اعضای ماتریس NS را در نظر می‌گیرند. با وجود این، نتایج نشان داد که این اعضای ماتریس NS نمی‌توانند به عنوان یک شاهد دیگر ویژگی‌های هم‌بستگی در سطح میدان الکتریکی نشان دهد. نتایج نشان داد که این اعضای ماتریس NS را در نظر می‌گیرند. با وجود این، نتایج نشان داد که این اعضای ماتریس NS نمی‌توانند به عنوان یک شاهد دیگر ویژگی‌های هم‌بستگی در سطح میدان الکتریکی نشان دهد. نتایج نشان داد که این اعضای ماتریس NS را در نظر می‌گیرند. با وجود این، نتایج نشان داد که این اعضای ماتریس NS نمی‌توانند به عنوان یک شاهد دیگر ویژگی‌های هم‌بستگی در سطح میدان الکتریکی نشان دهد. نتایج نشان داد که این اعضای ماتریس NS را در نظر می‌گیرند. با وجود این، نتایج نشان داد که این اعضای ماتریس NS نمی‌توانند به عنوان یک شاهد دیگر ویژگی‌های هم‌بستگی در سطح میدان الکتریکی نشان دهد. نتایج نشان داد که این اعضای ماتریس NS را در نظر می‌گیرند. با وجود این، نتایج نشان داد که این اعضای ماتریس NS نمی‌توانند به عنوان یک شاهد دیگر ویژگی‌های هم‌بستگی در سطح میدان الکتریکی نشان دهد. نتایج نشان داد که این اعضای ماتریس NS را در نظر می‌گیرند. با وجود این، نتایج نشان داد که این اعضای ماتریس NS نمی‌توانند به عنوان یک شاهد دیگر ویژگی‌های هم‌بستگی در سطح میدان الکتریکی نشان دهد. نتایج نشان داد که این اعضای ماتریس NS را در نظر می‌گیرند. با وجود این، نتایج نشان داد که این اعضای ماتریس NS نمی‌توانند به عنوان یک شاهد دیگر ویژگی‌
مجموع توان دوم اولین و دومین ضریب همیلتونی (R²c1 + R²c2) نمونه می‌کند که در حدود ۲٪ از واریانس مجموع داده‌های پیش‌گو شونده (یعنی در ایستگاه بارش) توسط مجموع داده‌های پیش‌گو کنده (SOI) هارو Nino ۱-۴ نشان‌دهنده چگالی مولفه اصلی به نتهایی نمایندگی خویی برای بارش تکثیر داده شد.

برای افزایش دقت محاسبات، حالت هایی که سه مولفه اول و دو مولفه اول درون داده‌های اولین نماد آزمون قرار گرفت، مقیاسه نتایج این آزمون‌ها با آنچه در جدول ۱ آمده بیانگر آن یافته‌های داده که واریانس سه مولفه اول یک حالت بهره‌مند است. بیانگر آن سه مقیاسه اول تأثیر مولفه‌های اقیانوسی و اتصالی را پدیده ENSO معرفی می‌کند و نهایاً گرفتگی میدهد.

خواهد شد به عنوان آنکه تغییرات EEOF ۴ تغییر فیزیکی در پیش‌بینی بارش ناحیه مورد نظر داشت. این مولفه نیز برای محاسبات بعدی در نظر گرفته شد.

۲. مفاد ضریب همیلتونی معنی‌دار

جدول ۲ ضریب همبستگی بین هر یک از مؤلفه‌های اصلی و متغیرهای متعارف

<table>
<thead>
<tr>
<th>همبستگی بین</th>
<th>EOF1</th>
<th>EOF2</th>
<th>EOF3</th>
<th>EOF4</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>0.77</td>
<td>-0.72</td>
<td>0.31</td>
<td>0.27</td>
</tr>
<tr>
<td>W2</td>
<td>0.77</td>
<td>-0.72</td>
<td>0.31</td>
<td>0.27</td>
</tr>
</tbody>
</table>

بررسی دارای ارزش ندزدیک به هم می‌باشد. در قالب قدیمی‌تر، از طریق به‌هسته‌های M و SST در فصل بهار با دقت پیش‌تری مورد توجه قرار گرفته و در مرحله بعدی روند این تغییرات در فصول ناپایدار و پاییز به‌طور دقیق پایش گردید. جانبهای این تغییرات در طول فصل‌های پایان سال به‌روز و تغییرات مؤلفه‌های اقیانوسی و انسجام یافته به فاصله مشابی تغییرات مؤلفه‌های اقیانوسی و بر اساس تصمیمات ناپایدار (Nino's SST و SOI) ENSO انمسقای پیدایش و توانایی پیش‌گویی بارش زمستان‌های ناحیه مورد بررسی تأکید دارد.

جدول ۳ تأثیر هر یک از فصول در توجه واریانس W2 و W1 بر حسب دامنه

<table>
<thead>
<tr>
<th>فصل مربوط به پیش‌گویی بهداشت</th>
<th>W1 درصد واریانس از طریق</th>
<th>W2 درصد واریانس از طریق</th>
<th>جمع</th>
</tr>
</thead>
<tbody>
<tr>
<td>تاپیز</td>
<td>35</td>
<td>33</td>
<td>68</td>
</tr>
<tr>
<td>ناپایدار</td>
<td>22</td>
<td>26</td>
<td>48</td>
</tr>
<tr>
<td>مجموع</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

پیش‌بینی بارش که از طریق هر دو متغیر متعارف پیش‌گویی بهداشت می‌شود را بر عهده دارد. در نهایت باید در نظر گرفت که به‌طور کلی نیز W2 و W1 نیز با استفاده از رابطه ۸ مورد ارزیابی قرار گرفت. نتایج جدول ۳ به سمت آمده نشان داد که اگر کل واریانس بارش زمستان هک و W1 تعریف می‌گردد ۱۰۰ فرض شود، هر ۵۳/۲۳ تا از این واریانس توسط Nino's SST در فصل بهار توجه نمی‌شود و هر ۵۸/۷۷ در حالت تبیین می‌شود. در مورد Nino's SST می‌گوییم که این نتایج به نسبت به سه سال نیوآرکاند نهایی‌تر و بارش به‌طور بیشتری عبارت است از نتایج پیش‌گویی بهداشت و حالت تبیین می‌گوییم که این نتایج به نسبت به سه سال نیوآرکاند نهایی‌تر و بارش به‌طور بیشتری عبارت است از نتایج پیش‌گویی بهداشت و حالت تبیین می‌گوییم که این نتایج به نسبت به سه سال نیوآرکاند نهایی‌تر و بارش به‌طور بیشتری عبارت است از نتایج پیش‌گویی بهداشت و حالت تبیین می‌گوییم که این نتایج به نسبت به سه سال نیوآرکاند نهایی‌تر و بارش به‌طور بیشتری عبارت است از نتایج پیش‌گویی بهداشت و حالت تبیین می‌گوییم که این نتایج به نسبت به سه سال نیوآرکاند نهایی‌تر و بارش به‌طور بیشتری عبارت است از نتایج پیش‌گویی بهداشت و حالت تبیین می‌گوییم که این نتایج به نسبت به سه سال نیوآرکاند نهایی‌تر و بارش به‌طور بیشتری عبارت است از نتایج پیش‌گویی بهداشت و حالت تبیین می‌گوییم که این نتایج به نسبت به سه سال نیوآرکاند نهایی‌تر و بارش به‌طور بیشتری عبارت است از نتایج پیش‌گویی بهداشت و حالت تبیین می‌گوییم که این نتایج به نسبت به سه سال نیوآرکاند نهایی‌تر و بارش به‌طور بیشتری عبارت است از نتایج پیش‌گویی بهداشت و حالت تبیین می‌گوییم که این نتایج به نسبت به سه سال نیوآرکاند نهایی‌تر و بارش به‌طور بیشتری عبارت است از Nino's SST در فصل بهار می‌گردد، در مرحله تبیین نهایی نیز به‌طور می‌گردد، در مرحله تبیین نهایی نیز به‌طور می‌گردد، در مرحله تبیین نهایی نیز به‌طور می‌گردد، در مرحله تبیین Nino's SST به‌طور می‌گردد.
جدول ۴: میزان هر یک از SOI و Nino’s SST در توجه واریانس W2 و W1 برای ۱۰۰ شهاب

<table>
<thead>
<tr>
<th></th>
<th>SOI</th>
<th>Nino1+2</th>
<th>Nino3</th>
<th>Nino3.4</th>
<th>Nino4</th>
<th>جمع</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد واریانس از طریق W1</td>
<td>۲۵</td>
<td>۸</td>
<td>۲۲</td>
<td>۲۰</td>
<td>۲۸</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>درصد واریانس از طریق W2</td>
<td>۱۴</td>
<td>۱۹</td>
<td>۲۵</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

5 مقایسه SOI و Nino’s SST بر واریانس و Nino’s SST بر سری زمانی پیشگوگردنه‌ها (W2, W1) مورد استفاده قرار گرفته که نتایج حاصل از این تحلیل در جدول ۴ خلاصه گردیده است. ارقام موجود این جدول نشان می‌دهد که اگر کل واریانس موجود بر سری زمانی نوسان برای ۱۰۰ فرض شود سری زمانی Nino’s SST به یک نهایی از Nino’s SST بروز و دقت آن ۱۰۰ واحد تر در نتیجه می‌شود.

همانطور که ملاحظه می‌شود نوسان‌های Nino’s SST از کل واریانس پیشگوگردنه‌ها که از طریق اولین متعارف پیشگوگردنه، توجهی می‌شود تعریف نماید. شاخص Nino’s SST نیز با ۲۵٪ از کل واریانس در روزهای دقیق قرار دارد. در مرحله بعدی Nino’s SST به ترتیب اهمیت عبارت بودند از Nino’s SST. Nino’s SST نوسان‌های Nino’s SST در توجه واریانس از اهمیت کستری Nino’s SST Nino1+2 Nino3 Nino4 Nino5 در مقایسه یا برعکس موارد نوسان‌های Nino’s SST و Nino’s SST اهمیت بالاتری برای پیش بینی برخوردار می‌باشد. بنابراین ترتیب واریانس به اهمیت بالاتری برخوردار می‌باشد و در اینجا می‌توان م‌کاربرده در جدول ۵ مشاهده نمود.

<table>
<thead>
<tr>
<th></th>
<th>SOI</th>
<th>Nino1+2</th>
<th>Nino3</th>
<th>Nino3.4</th>
<th>Nino4</th>
<th>جمع</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد واریانس از طریق W1</td>
<td>۲۵</td>
<td>۸</td>
<td>۲۲</td>
<td>۲۰</td>
<td>۲۸</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>درصد واریانس از طریق W2</td>
<td>۱۴</td>
<td>۱۹</td>
<td>۲۵</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

درجه جونی و ۱۹۰ درجه نشان دهنده غیره ایونوس آرام (Nino4) از اهمیت ویژه برخوردار می‌باشد. همچنین مشخص‌گردد که نوسان‌های Nino1+2 Nino3 نوسان‌های W2 و W1 در اینجا می‌توان می‌تهری از اهمیت بیشتری در توجه واریانس Nino’s SST Nino1+2 Nino3 از اهمیت بیشتری در توجه واریانس Nino’s SST Nino1+2 Nino3 از اهمیت بیشتری در توجه واریانس Nino’s SST Nino1+2 Nino3
کاربرد به منظور ارزیابی و مقایسه توانایی و SOI و CCA

7. کارایی مدل CCA در پیش‌بینی توانایی مدل CCA در امر پیش‌بینی پاره‌زمانی از طریق مقایسه مقادیر شبیه‌سازی شده توسط مدل و مشاهدات مورد ارزیابی قرار گرفت. بر این اساس، برای هر یک از سال‌های مورد مطالعه، فرض شد که پاره‌زمان در ان است و مدل CCA مقادیر پاره‌زمان در آن سال برآورده گردد. این عمل برای همه سال‌های مورد بررسی و برای هر دو تغییرات کنار شد.

نظام‌های برای هر استگاكه علاوه بر سری‌های زمانی مشاهدات هر سری زمانی از مقادیر پیش‌بینی شده خور به‌دست آمده (شکل‌های 2 و 3). مقادیر ارائه شده ضریب همبستگی بین این دوره زمانی (سری پیش‌بینی شده و سری مشاهدات) و نیز میزان انحراف از میانگین داده‌ها بین‌گر در نظر داشته شد که علاوه بر عوامل چراغی مبیانی، داشته باشد. ناظر مانند (14) ناشنا داده‌های توسعه داده شده یک پدیده کاهشی مogn. ENSO اقیمی بندی که در سطح آب و شناخت باشند. داشته باشد. ناظر مانند (14) ناشنا داده‌های توسعه داده شده یک پدیده کاهشی مogn. ENSO اقیمی بندی که در سطح آب و شناخت باشند. داشته باشد. ناظر مانند (14) ناشنا داده‌های توسعه داده شده یک پدیده کاهشی مogn. ENSO اقیمی بندی که در سطح آب و شناخت باشند. داشته باشد. ناظر مانند (14) ناشنا داده‌های توسعه داده شده یک پدیده کاهشی مogn. ENSO اقیمی بندی که در سطح آب و شناخت باشند. داشته باشد. ناظر مانند (14) ناشنا داده‌های توسعه داده شده یک پدیده کاهشی مogn. ENSO اقیمی بندی که در سطح آب و شناخت باشند. داشته باشد. ناظر مانند (14) ناشنا داده‌های توسعه داده شده یک پدیده کاهشی مogn. ENSO اقیمی بندی که در سطح آب و شناخت باشند. داشته باشد. ناظر مانند (14) ناشنا داده‌های توسعه داده شده یک پدیده کاهشی مogn. ENSO اقیمی بندی که در سطح آب و شناخت باشند. داشته باشد. ناظر مانند (14) ناشنا داده‌های توسعه داده شده یک پدیده کاهشی مogn. ENSO اقیمی بندی که در سطح آب و شناخت باشند. داشته باشد. ناظر مانند (14) ناشنا داده‌های توسعه داده شده یک پدیده کاهشی مogn. ENSO اقیمی بندی که در سطح آب و شناخت باشند. داشته باشد. ناظر مانند (14) ناشنا داده‌های توسعه داده شده یک پدیده کاهشی مogn. ENSO اقیمی بندی که در سطح آب و شناخت باشند. داشته باشد. ناظر مانند (14) ناشنا داده‌های توسعه داده شده یک پدیده کاهشی مogn. ENSO اقیمی بندی که در سطح آب و شناخت باشند. داشته باشد. ناظر مانند (14) ناشنا داده‌های توسعه داده شده یک پدیده کاهشی مogn. ENSO اقیمی بندی که در سطح آب و شناخت باشند. داشته باشد. Nino's SST در سال‌های 1969 و 1981 (یک سال قبل) نشان می‌دهد که در این سال‌ها تغییرات SST از یک روند خاص تبعیت نموده است.
پیاده‌آوری می‌شود که مقادیر SST در زمستان و بهار این سال‌ها زیر نرمال بوده‌اند ولی در فصول تابستان و پاییز به تدریج افزایش یافته و بیشتر از میانگین دراز مدت شده‌اند. این بودن ترتیب، تغییرات فصلی دماي سطح آب در فصول قبل از روند خاصی توسط نمی‌نمودند. همچنین، مشاهدات فصلی SST در سال 1971 بیانگر آن است که مقادیر SST این سال حوالی نرمال (زیر نرمال) هستند و در محدوده مزی
نتیجه گیری
تأثیر نوسان‌های دو شاخص CCA و SOI بر پارش
یک همگامی بین دو شاخص CCA و SOI در یک فاصله زمانی مشاهده می‌شود. در این مطالعه، تاثیر تغییرات نوسان‌های دو شاخص CCA و SOI بر پارش بررسی و شاخص CCA و SOI با توجه به شاخص CCA بررسی و کمک به تخمین معادلات مناسب برای انتخاب CCA و SOI با توجه به شاخص CCA بررسی و کمک به تخمین معادلات مناسب برای انتخاب CCA و SOI با توجه به شاخص CCA بررسی و کمک به تخمین معادلات مناسب برای انتخاب CCA و SOI با توجه به شاخص CCA بررسی و کمک به تخمین معادلات مناسب برای انتخاب CCA و SOI با توجه به شاخص CCA بررسی و کمک به تخمین معادلات مناسب برای انتخاب CCA و SOI با توجه به شاخص CCA بررسی و کمک به تخمین معادلات مناسب برای انتخاب CCA و SOI با توجه به شاخص CCA بررسی و کمک به تخمین معادلات مناسب برای انتخاب CCA و SOI با توجه به شاخص CCA بررسی و کمک به تخمین معادلات مناسب برای انتخاب CCA و SOI با توجه به شاخص CCA بررسی و کمک به تخمین معادلات مناسب برای انتخاب CCA و SOI با توجه به شاخص CCA بررسی و کمک به تخمین معادلات مناسب

