جهانه سازی بازاریابی گیاه پن به طریق مرسوم انتهایی

میرا محمدی بازرگانی, بدرالدین ابراهیمی سید طباطبایی, عبدالمحیط رضایی و سیروس نبادی

چکیده

جهانه سازی بازاریابی گیاه پن به برداشتن مزارع و جایگذاری در منطقه‌ای و در محیط ریز داده‌های عمدتاً در میان محققان با توجه به اشکال دام و غیره انجام می‌شود. در این پژوهش مرسوم انتهایی از 2 تا 5 روزه از روش جدید در محیط ریز داده‌های زایی (Murashige & Skoog, MS) تغییر یافته یا بدون تغییر داده‌های شده بود. پس از 2-5/15 میلی‌گرم در نمونه (10) برتسرک، اسید IAA (indole-3-butyric Acid) و اسید IBA (α-Naphtaleneacetic Acid) به روش کثیف در این پژوهش (Indoleacetic Acid)

وبه‌هم‌پیوستن با رشته‌ای گیاهان به صورت کمی با قابلیت قدرت مقاومت و قابلیت قدرت مقاومت به درمان و روانی محیط‌های حاوی

واژه‌های کلیدی: پن، مرسوم انتهایی، بازاریابی

مقدمه

پنی‌های کیی از مهم‌ترین قلم‌های برداشتن گیاهان لیفی می‌باشد که از نظر اقتصادی و تجاری دارای اهمیت فوق العاده است. هرچند که قابلیت کنترل مصرفی پنی به واسطه درمان و درمان پن‌های کیی از مهم‌ترین و بر مصرف‌های این روش صحت بوده است (1) از جمله عواملی که باعث کاهش خصوصیات کیفی

1. به ترتیب دانشجوی کارشناسی ارشد و استاد اصلاح نباتات، دانشگاه شهید چمران
2. دانشیار پیوسته دانشگاه کشاورزی، دانشگاه شهید چمران
3. مربی علوم گیاهی دانشگاه کشاورزی، دانشگاه شهید چمران
بهبهان‌یازی بازی‌های پنه‌نیه از طریق مریسم انتهایی

حدود ۱۰ ساله یک مدل از طول مدت، روش جنین زایی سوماتنیک به‌سیار وقت‌گیر می‌باشد. هم‌چنین درصدی از کیفیت حاصل از جنین‌های بدنی به‌عثّه محتوایی می‌باشد و یا تنش سوماتنیک نشان می‌دهند. (۳۸) علاوه بر محدودیت زندگی‌زمانی فراوانی متسویان با استفاده از این روش بی‌پروازی از طریق کشت تخمک بین‌رود و هدف بررسی و بهبود الافاف پنه و تلافی بین کشنده کشت برای برخی ماده به‌دست آورده بهروزدان که به‌عنوان جنین سوماتنیک شده است. (۳۹) روش کشت مرسیم انتهایی به‌لیبل این که منجر به‌پزشک مسئولانه می‌گردد تحت عنوان روش بی‌پروازی مستقیم ساخته می‌شود. اولین گزارش‌ها برای بی‌پروازی پنه به روش مرسیم انتهایی توسط کرد. (۹) و هیچ کیهان بازی‌های زندگی شده‌اند. (۹۱) توافقنامه مشابه بازی‌های پنه از طریق جنین زایی سوماتنیک را وابسته به زندگی به‌پایان می‌رساند. (۴) روش بی‌پروازی مستقیم ساخته می‌شود از طریق مرسیم انتهایی از لحاظ زمان بسیار کوتاهتر از روش جنین‌زایی سوماتنیک است زیرا در آن مرحله‌های پزشکی به‌فکر می‌شود و مستقیماً تولدی می‌باشد و سپس ریشه می‌نماید (۳۲) و از نظر عدم واوستگی به‌زندگی به‌پایان از روش جنین‌زایی سوماتنیک است. (۲۱) همچنین فراوانی تنش سوماتنیکی می‌تواند در نسق بسیار پایین‌تر بی‌پایان کشنده باشد و کشته به‌پایان این کشنده‌ها در این استفه در دو رقم

حافظه است، ولی این روشها به‌سیار زمان‌گیر می‌باشد و
حدود ۶ سال برای تولید یک واریته به‌زمان لازم می‌باشد. بنابراین به‌لیبل محدودیت‌های روشهای اصلاحی
ستی، استفاده از تکنیک‌های بیوتکنولوژی از جمله کشت بی‌پروازی و سولو برای کاهش تسریع بخشیدن به جنین‌های اصلاحی باشد. علاوه بر آن کشت بی‌پروازی
گیاه مقدمه‌ای برای انتقال زن و جهانیزی‌سازی محسوب می‌گردد. بنابراین قبل از انتقال زن به‌زمان مطابق به‌هنگ
سازی بی‌پروازی گیاه پنه یک شرط اساسی می‌باشد. تا کنون این
روشهای مختلف کشت بافت در گیاه استفاده شده است از
جمله جنین‌زایی سوماتنیکی کشت تخمک، کشت بی‌پروازی
و کشت مرسیم (۹۱،۹۸،۱۲۱).

در روش کشت جنین‌زایی سوماتنیکی جنین‌های بدین
به‌دلیل شاهد سیاست‌های به‌پایان جنین‌های جنسی دارند و
طبیعت خاصی که در آن باشند. از قابلیت‌های برای تبدیل به
یک گیاه کامل پیش‌بینی می‌کند. در روش جنین‌زایی سوماتنیکی
از عواملی که در تشکیل کالس و بی‌پروازی مؤثر هستند می‌توان به
از زندگی‌های نوع برگ‌نمونه و محیط کشت اشاره کرد. که در این
میان زندگی‌های نیاز بسیار مهمی در بی‌پروازی دارد. زیرا سیستمی از
ارقام پنه از نظر کالس‌دهی و بی‌پروازی دارای محدودیت
می‌باشد و فقط ارقام کوك‌ر از بی‌پروازی و کوالس دهی سینا
پایش برخودر هستند. در بررسی‌های که توسط فیوزآی‌های
همکاران روند ارقام مختلف پنه صورت گرفته تولید جنین‌های
سوماتنیکی و بی‌پروازی در رقم کوك‌سیرین و با فراوانی بالای
گزارش شده است. (۳) همچنین گزارش‌های مشابه دیگری
tو تحقیق نموده‌اند (۹۹) و (۱۰۰) و کوک‌ر و همکاران (۱۹۸۹) و
گزارش‌هنر و همکاران (۱۹۹۸) ارائه گردید، که همکاران این‌زندگی را
بی‌پروازی کالس‌دهی و بی‌پروازی تایید کرده‌اند (۳،۱۶،۱۶ و ۱۹).
بنابراین انتقال زن به‌سایر زندگی‌های مورد نظر با استفاده از
این روش نخست در از طریق تراریز راه‌پیمایی کوک‌ر و متعادل
تراکنش برنگی با زندگی مورد نظر انجام می‌گردد و نتیجه به
این که تراریز به‌خوبی کوک‌ر و به‌دست آوردن گیاه‌های تراریخت
بهبهانی از گیاه، یا به طریق مریسمت انتهایی

مریسمت‌های جدایی‌نما شده به هر دو روش در محیط سازگاری (MS1) (مخلوط یا MS): مخلوط یا MS (Myo-Inositol) (5 میلی گرم در لیتر ترکیب) و 5 میلی گرم در لیتر ترکیب ترکیب‌های آسید، 50 میلی گرم در لیتر پیرودکسین (Thiamin) (5 میلی گرم در لیتر ترکیب) و 5 میلی گرم در لیتر ترکیب (Pyrodoxin) (3 میلی گرم در لیتر ترکیب).

پایه‌های pH به تعداد ۳ روش در محیط جونئولیک ۹۰ میلی لیتر مخلوط یا MS ۲۵ میلی لیتر ترکیب، و موجدایی به مدت ۵۰ ساعت در دورة حرارت ۲۵ درجه در دو محیط جونئولیک (۱۵ تا ۲۵ میلی کرم در لیتر ترکیب) و سپس به مدت ۳ ساعت با آب مغذی استریل شستشو داده شدند. در ادامه دفعات اولیه با گیاهانی گیاههای چهار ده فاصله ۱۰ میلی لیتر مخلوط یا MS جوانه‌ی ۱۵ برای مدت ۵ تا ۶ ساعت و در تاریکی مطلوب و دمای ۲۰ درجه داده شدند. (شکل ۱۰۱)

جداسازی مریسمت و شرایط کشت

جداسازی مریسمت از گیاههای چهار تا ۵ روزه با بینی کوره به روش صورت گرفت.

الف) روش پولین (Uljan)

در این روش نخست به وسیله سون دنباله‌ای سکه از بین برگ (Cotyledon) به عوامل متغیر. سپس به بیش از ۱۵ ماه‌گیاههایی که رشته‌دار شدند به قطعه‌های حاوی ترکیب سون دنباله‌ای همراه می‌شوند. هر یک از قطعات به عنوان اصلی‌گیاههایی در محیط گیاههایی که در محیط با ترکیب سون دنباله‌ای، به همراه گیاههایی که در محیط با ترکیب سون دنباله‌ای استفاده شده بودند. مورد انتخاب گردد که کلیه تجزیه و تحلیل‌های آماری با استفاده از نرم‌افزار SAS انجام گرفت (جدول ۳).

ب) روش گلد

در این روش هم مشابه روش قبل بین گیاههای حذف و بعد از برگ از در و گیاههای بری‌رسه‌دار حذف کرده و مریسمت به همراه یک پری‌سیمپتوما جدایی‌نما داده شده و قطعات به وضوح عامل مؤثر در رشد و توسه مریسمت را فرآهم می‌کنند (۱۸).
شکل 1. مراحل جداسازی مراستم از گیاهچه‌های پیش‌اوله: (a) گیاهچه‌های 2 تا 5 روزه (b) مرحله جداسازی برگ اولیه (c) مراستم انتهایی پیش همراره پریمورودیا بعد از جداسازی برگ‌های اولیه (d) مراستم انتهایی پیش بعد از جداسازی پریمورودیا

جدول 1. دستورالعمل استفاده شده برای پیش‌سازی بازسازی

<table>
<thead>
<tr>
<th>دانت زمان</th>
<th>ترکیب محیط کشت</th>
<th>محیط کشت</th>
<th>مرحله کشت</th>
<th>چاه‌پزشی‌ی بهره‌مند</th>
<th>ساقه‌دهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 تا 5 روز 1/5 ماه</td>
<td>پایه + حساسیت + 0/0 درصد آگر + 1/200 میلی‌گرم دریتریت + نیکوتینیک اسید + 0/05 میلی‌گرم دریتریت + پریمورودیا 1/5 میلی‌گرم در لیتر + تیامین 0/05 میلی‌گرم دریتریت ساکرز 3 درصد و فیتوژا 2/5 درصد</td>
<td>MS1</td>
<td>MSB</td>
<td>MS1</td>
<td>ساقه‌دهی</td>
</tr>
<tr>
<td>1/5 ماه</td>
<td>IBA 0/1 میلی‌گرم در لیتر + MS1</td>
<td>MS2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/5 ماه</td>
<td>NAA 0/1 میلی‌گرم در لیتر + MS1</td>
<td>MS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/5 ماه</td>
<td>IAA 0/1 میلی‌گرم در لیتر + MS1</td>
<td>MS1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
این زمینه ای، به‌طور کلی، مقدماتی دارد. بعضی از آنها معطوفند به
مریستم خاصیت این کنده آمده است. برای اینکه از
توجه کننده رشد در محیط کشت ساقه‌دهی ضروری ندارد
و بیشترین میزان ساقه‌دهی را در محیط کشت بدون تنظیم کننده
رشد حدود 10 درصد گزارش کردن (21). در صورتی که در
پژوهش دیگر معطوفند به میزان تنظیم کننده رشد یکی از
فناورهای مؤثر در ساقه‌دهی جدایگشته‌است و در بررسی‌های
خود مشاهده کردند که غلظت پایین از سیطکین (کمتر از
1 میلی‌گرم در لیتر) در پازیابی ساختگی و ساقه‌دهی مؤثر می‌باشد.

بازارین استفاهه از تنظیم کننده‌های رشد از جمله
(BAP) غلظت کم (کمتر از 1 میلی‌گرم در لیتر) در محیط کشت
ساقه‌دهی رشد ساده‌سازی‌ها به‌شمار می‌رود.

(18). نتایج به‌مدت آمده از این پژوهش نشان داد که برای دو
رقم ساحل و وراین محیط ساقه‌دهی بودن تنظیم کننده رشد
برای ساقه‌دهی جدایگشت مرسیم بسیار مطلوب می‌باشد و
میزان ساقه‌دهی برای ارقام ساحل و وراین به ترتیب 90 درصد
و 96 درصد دیده شد (شکل 2) که این میزان مشاهده شده از
میزانی که توسط زاین‌ها و همکاران (1999) گزارش شده بود
(85 درصد) مشابه است. به حال این بررسی با توجه به
درصد ساقه‌دهی برای دو رقم ساحل و وراین، اختلاف
معنی‌داری از نظر Zون دیده نشد.

نتایج و بحث
جداسازی مرسیم و شرایط کشت
از دو نوع جدایگشت مورد استفاده برای قارادان در محیط
ساقه‌دهی، جدایگشت‌هایی که تها از مرسیم بودن پرپوروریبا
اندازه‌های حدود 10/5 از 1 میلی‌متر از گیاهچه‌های 4 تا 5 روزه
تهیه شده بودند. بیشترین درصد ساقه‌دهی را داشتن (شکل 2).
گیاهچه‌هایی که دسته‌بندی مطلوب و دارای فرم طبیعی بودند.

شکل 3: الف) و مقایسه با روش گلد و همکاران (1998)
که حدود یک هفته بعد از کشت، پرپوروریبا آمی را از مرسیم جدا
کرده بود، درصد ساقه‌دهی بیشتری دیده شد (5). درصد
ساقه‌دهی در مرسیم‌هایی که به همراه پرپوروریبا بودن بسیار
پایین بود و گیاهچه‌های غیر طبیعی و نامطلوب ایجاد کردند
(شکل 3 ب). پانزده‌انه به نظر می‌رسد که همراه بودن پرپوروریبا
با مرسیم‌های نه تنها تأثیری در ساقه‌دهی ندارد بلکه باعث
ایجاد گیاهچه‌های غیر مطلوب و غیر طبیعی نیز می‌شود. یکی دیگر از
عوامل مؤثر در میزان ساقه‌دهی مطلوب و ایجاد گیاهچه‌های
طبیعی ترکیب محیط کشت برای ساقه‌دهی می‌باشد. محققن در

| جدول ۲: جدول تجزیه واریانس ارقام ساحل و وراین در محیط
<table>
<thead>
<tr>
<th>کشت‌های مختلف</th>
</tr>
</thead>
</table>
| منابع تغییر (df)
| درجه آزادی |
| (MS) |
| رقم |
| محیط کشت |
| رقم |
| محیط کشت |
| 1 |
| 2 |
| 3 |

| جدول ۳: مقایسه میانگین‌های درصد رشد ساقه‌دهی محیط‌های
<table>
<thead>
<tr>
<th>مختلف کشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
</tr>
<tr>
<td>محیط کشت</td>
</tr>
<tr>
<td>IBA</td>
</tr>
<tr>
<td>IAA</td>
</tr>
<tr>
<td>NAA</td>
</tr>
</tbody>
</table>

بهبوزی ریشه‌ای

از بین مرسیم‌های کشت شده در محیط ساقه‌دهی، تعداد
140 مرسیم از ارقام ساحل و وراین که گیاهچه‌های طبیعی و
مطلوب تولید کردن ب 2 نوع محیط کشت ریشه‌ای منتقل
و تعداد گیاهچه‌های ریشه شده پدیده بروز داده شدند. نتیجه
واریانس در 140 گیاهچه از ارقام ساحل و وراین در طرح
فکتوریل 8×2 با پایایی کاملاً تصادفی با تکرار و نمونه‌گیری
داد که تفاوت معنی‌داری بین محیط‌های کشت ریشه‌ای و
وجود دارد و هیچ گونه اثر معنی‌داری بین رقم و محیط‌های
کشت ریشه‌ای دیده نشد (جدول 2). این نتیجه تأییدی بر

153
شکل 3. a. گیاه‌های بارزاشده از میکروب‌های پریمرونیا ۲۵ روز بعد از کلست در محیط سایه‌دهی

شکل 3. b. گیاه‌های بارزاشده از میکروب‌های همراه پریمرونیا ۲۵ روز بعد از کلست در محیط سایه‌دهی
بهم‌سازی بازهای گیاه پیه از طریق میکروسکوپی‌انهایی

شکل ۴. گیاه‌های ریشه‌دار شده ۶۰ روز بعد از کشت در محیط بازه‌ای

شکل ۵. گیاه‌های بازه‌ای انتقال یافته به گلدان

نتایج محیط‌های کشت با اعلام نمو‌های حسن‌نامگر بازه‌ای به روش کشت MS و با اعمال ترکیب گلود (جدول ۳) و روش کشت (MS1) با اعمال نزوین تنظیم کننده رشد IBA در محیط کشت حاوی تنظیم کننده رشد IBA در غلظت ۰/۱ میلی‌گرم در لیتر برای دو رقم ساحل و ورامین به عنوان تحریک درصد و ۵ درصد نشان داد که درصد بازه‌ای در دو رقم جرم و ورامین در محیط کشت حاوی تنظیم کننده رشد IBA در غلظت ۰/۱ میلی‌گرم در لیتر برای دو رقم ساحل و ورامین به عنوان تحریک
مشاهده شده در این غلظت (0/01 میلی گرم در لیتر تنظیم کردن) رشد سلولی (IAB) بیشتر از غلظت 0/03 میلی گرم در لیتر که توسط سانه‌پزشک و همکاران (2002) (17) ارائه گردید تقریباً مطابقت داشت. از طرفی نتایج از تنظیم کننده رشد IBA در غلظت‌های بالاتر حدود 0/03 میلی گرم در لیتر برای دو رقم سال و واریانس به ترتیب در رشدزاری نداشت، بلکه باعث ایجاد گیاه‌های غیر طبیعی می‌شد. بنابراین به نظر می‌رسد برای ریشه‌زایی در رقم سال و واریانس محتوای IBA حاوی 0/1 میلی گرم در لیتر تنظیم کننده رشد مطلوب است.

این بررسی با هدف انتقال زن صورت گرفت. با توجه به این که فرآیند انتقال زن نسبتاً به راحتی انجام می‌گیرد، با بودن فرآیند کیفیان بازسازی‌شده توسط مطلوبیت نمی‌باشد. در صورت موفقیت انتقال زن به میکروسکوپی ارقام مورد نظر، بتوان از آنها گیاه‌های تراکم‌دارسازی مطلوب و طبیعی با فرآیند بازسازی کرد. نتایج حاصل از هنگام بازسازی ارقام تجاری سال و واریانس از طریق مرسومیت انجام شد یا در این زن ویژه می‌تواند برای انتقال زن موفق در زیره‌های بیشتر استفاده شود.

نکته ریشه‌زایی می‌باشد و دو تنظیم کننده رشد دیگر NAA و IAA در همین غلظت تأثیری در ریشه‌زایی ندارند. بعضی از پژوهش‌ها در این زمینه مانند بررسی‌های انجام گرفته در مورد سالهای مثبت، این استفاده از منحصربندی که به همان تنظیم کننده رشد ریشه‌زایی مطلوب است و مدت زمان سبز شده بین خطای ریشه‌زایی را حدود 5 تا 6 هفته (21) و تعدادی دیگری از بررسی‌ها حدود 4 هفته تا 3 ماه در بستر کردن (22). همچنین بررسی‌های انجام شده دیگری لزوم استفاده از محیط کشت MS که به همراه تنظیم کننده رشد می‌باشد و این امر، در ریشه‌های ناپایداری با هر ول‌پیما غلظت 0/3 میلی گرم در لیتر تنظیم کننده رشد دیگر نکته از نظر نتایج مثبت IBA که به طور میلی‌گرمی حدود 90 درصد را گزارش کرده‌اند (23) در این بررسی در مقایسه با نتایج آگراوال و همکاران، محیط حاوی 0/1 میلی گرم در لیتر NAA کمترین تأثیر در ریشه‌زایی را داشت (24). همچنین درصد ریشه‌زایی

منابع مورد استفاده

1. ناصری، ف. پنجه، 1374. مؤسسه چاب و انتشار آستان قدس رضوی، مشهد.