پرسی تولید کنسرو سوسیس و تغییرات فیزیکی-شیمیایی آن در مراحل فرابند و نگهداری

سیما چراغی دهدزی، شهرام دخانی، محمد شاهد

چکیده

یکی از راه‌های افزایش زمان نگهداری تهیه کننده‌ی سوسیس و کاهش مصرف انرژی‌های برقی تولید کنسرو آن است. تولید کنسرو و کاهش آن با فرمان خاص و آزمایش‌ها و ارزیابی‌های مختلف در دو مرحله انجام گرفت. مرحله اول شامل تهیه چهار نوع سوسیس با چند فرمان و تولید کنسرو آن در کارخانه صنعتی اسفهان بود. در مرحله دوم آزمایش‌های فیزیکی-شیمیایی داخلی و حسی انجام شد. کنسرو سوسیس در فتوطی (24±4) هالدها درجه شماره 77-100 تولید گردید. و نتایج نشان داد که سوسیس بسته به قطعات و شرایط زیر دو درصد با دمای 75 درجه سانتی‌گراد با نسبت یک به پنج فنگی و آزمایش‌های شیمیایی میزان رطوبت، چربی و پروتئین و بر اساس روش‌های استاندارد را و آسیابهای شیمیایی میزان مقدار متقابل برخی بانی سوسیس‌های فلزی کنسروی و کنسرو بین تولید سوسیس‌های نمونه‌های دارای خواص، نمونه‌های دارای خواص در حساسیت آزمایش‌های نمونه‌های سوسیس نمره 1 و کنسروی، آزمایش‌های نمونه‌های سوسیسی دافع‌وی در جاروی طرح کاملاً تصادفی، یک مقایسه موکبی‌ها آزمون‌های جند دانشگاهی دانشگاهی با کار برد شد.

واژه‌های کلیدی: کنسرو سوسیس، استریپلیزاسیون، تغییرات فیزیکی-شیمیایی، مقاومت برشی، نگهداری

1. دانشجوی سابق کارشناسی ارشد صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. استاد علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

185
مقدمه

پیشینه تولید سوپرس حذف سال 200 سال است. جترین (George Lehner) سوپرس وینر (Wiener) با پرداخت بررسی کرد (2). نگه‌داری گوشته و فراورده‌های سوپرس از طریق کنسر کردن به پیش از یک قرن پیش ما گردید (3). تا سال ۱۹۹۰ اکثر ساخت کنسر سوپرس پیش‌تر نکرد. معمولاً محصول را در قوطي پر می‌کردند و آن را در حماق آبی بار، و به ندرت در بی‌پی از ۱۰۰ درجه سانتی‌گراد، و حداقل‌تر نا ۱۰۸ درجه سانتی‌گراد قرار می‌دادند (4). پیشرفت‌هایی که در استریل کننده‌های متخرج با فشار زیاد به‌عث شد در صنعت تولید کنسره‌های گوشته، از حدود سال ۱۹۷۵ کنسر سوپرس با استریل‌پرایزیابی واقع کردند (5).

برای پایه پذیرش نیک (۶)، خمیر سوپرسی‌ها کنسر عادی به کمک‌رسانی بوده و پیوند خوبی داشته‌باشد. وجود این پروتئین‌ها مانند آبجو و جریان موجب مقاوم شدن آن در برای حرارت می‌گردد (عواملی مقاوم به حرارت).

ویرت (۷) دریافت که تجمیع فشار حرارتی خمیری که برای کنسره‌های با فراورده حرارتی کامل (استریل‌پرایزیابی) در نظر گرفته می‌شود، با پایه خیلی پیشرفت از کنسر با فراورده حرارتی تاکس (بیکس و پایسترزیابی) باشد. نتایج این گونه سوپرس‌ها به‌دراز دارای مزیت‌های بوده، نردامیده و یک‌نواختی بافند از در مسال فراورده حفظ شود. برای گزارش این استریل کنسر سوپرسی‌ها (۸) پایه‌ای بعد از این کنسر کردن به آن افزوده شود، چون در غیر این صورت، سوپرسی‌ها در هنگام کنسر شدن آب جذب کرده، و به علت افزایش حجم، پوشش آنها یاره می‌شود.

انواع کنسر سوپرسی‌های است: افزایش کنسر با دمای فراورده کنسر از ۹۰ درجه سانتی‌گراد (K) کنسر با دمای فراورده، ۱۱۰ درجه سانتی‌گراد (C) کنسر با فراورده حرارتی کامل. که نگه‌داری آن هیچ مطالعه ندارد، و عددهای محدود، (۹)
به منظور تولید کنسرو، محلول آب نمک در دمای 75 درجه سانتی‌گراد و سوپرسیس به نسبت یک به یک، در قطره 0.09 (21 و 22) درجه شیشه می‌شود. در این مورد، به صورت تکراری و با توجه به شیشه، قطره 0.09 (21 و 22) درجه، محلول آب نمک که در آن شیشه شده کاهش دارد و بنابراین به صورت مجزا می‌توان به عملیات دود دادن، پوست‌های محافظ روی سوسیس‌ها نهایتاً انجام گردید (1).

کاهش مصرف نتیجه برای حفظ سلامتی انسان، افزایش عمر مندگاری سوسیس، کاهش هزینه ایزاردی و حمل و نقل، و آسانی مصرف از جمله مواردی هستند که در تولید کنسرو سوپرسیس اهمیت دارد.

مواد و روش‌ها

در این پژوهش، پس از آنچه به صورت مجزا می‌توان به عملیات دود دادن پوست‌های محافظ روی سوسیس‌ها، اصفهان، کنسرو رکند. این کنسرو، در برابر جهار حرارتی با F value اصفهان، کنسرو رکند آن و اعمال فراوان حرارتی با Fvalue

روش آماده سازی نمونه برای آزمایش‌های شیمیایی

نمونه‌های غیر کنسرویی، در دمای 5 درجه سانتی‌گراد به صورت مستقیم شیشه شده و بیش از آزمایش به ضریب 24 ساعت در دمای 37 درجه سانتی‌گراد قرار داده شد. در نمونه‌های کنسروی، سوپرسیس‌ها از محلول آب نمک خارج (1). و پس از یک‌ثانای در آسباب، در دمای 18 درجه سانتی‌گراد نگهداری شد. محلول آب نمک کنسروی نیز به صورت مستقیم در دمای 18 درجه سانتی‌گراد نگهداری و 24 ساعت بیش از انجام آزمایش در دمای چهار درجه سانتی‌گراد قرار داده شد.

روش آماده سازی نمونه برای آزمایش‌های فیزیکی

آزمایش‌های فیزیکی و شیمیایی

آزمایش‌های فیزیکی در مورد نمونه سوپرسیس پیش از کنسرو، شدن و سوپرسیس کنسرویی در آغاز نگهداری، و ماههای اول دوم و سوم نگهداری در فوطی و شیشه در دمای اندازه، و با استفاده از سیستم برادزهای (Warner bratzeler shear) اینترون (Instron) شماره 40-11، نصب شده روی دستگاه اینترون، ساخت انگشتان انجام شد (2 و 3) و میزان مقاومت بررسی

با استفاده از فرمول زیر محاسبه گردید:

\[S = \frac{F}{\pi r^2} \]

که F قدرت شکست و r بالایی صفر متغیر می‌باشد.
جدول 1. نوع و مقدار (درصد) مواد اولیه در چهار فرمول مختلف سوسیس تولیدی

<table>
<thead>
<tr>
<th>مقدار (درصد)</th>
<th>مواد اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>فروملاسیون 1</td>
<td>فروملاسیون 2</td>
</tr>
<tr>
<td>72/09</td>
<td>27/68</td>
</tr>
<tr>
<td>10/55</td>
<td>17/28</td>
</tr>
<tr>
<td>16/11</td>
<td>28/17</td>
</tr>
<tr>
<td>15/50</td>
<td>12/62</td>
</tr>
<tr>
<td>11/05</td>
<td>12/33</td>
</tr>
<tr>
<td>13/21</td>
<td>14/20</td>
</tr>
<tr>
<td>16/82</td>
<td>11/31</td>
</tr>
<tr>
<td>19/21</td>
<td>20/30</td>
</tr>
<tr>
<td>72/09</td>
<td>27/68</td>
</tr>
<tr>
<td>10/55</td>
<td>17/28</td>
</tr>
<tr>
<td>16/11</td>
<td>28/17</td>
</tr>
<tr>
<td>15/50</td>
<td>12/62</td>
</tr>
<tr>
<td>11/05</td>
<td>12/33</td>
</tr>
<tr>
<td>13/21</td>
<td>14/20</td>
</tr>
<tr>
<td>16/82</td>
<td>11/31</td>
</tr>
<tr>
<td>19/21</td>
<td>20/30</td>
</tr>
</tbody>
</table>

که:

\[S = \text{میزان مقاومت پریش (گرم نیرو بر سانتی‌متر مربع)} \]

\[F = \text{حداکثر نریوی که دستگاه باید پرس نroupone وارد مکند (گرم نیرو)} \]

\[q = \text{شماره نمونه که زیر تیغه دستگاه قرار می‌گیرد (سانتی‌متر)} \]

آزمایش‌های شیمیایی شامل اندازه‌گیری رطوبت (1 و 8)، چربی با روش سوکسیل (11 و 9) و پروتئین با روش ماکروکلدل (1 و 9) در سوسیس غیر کنسروی و کنسرو شده در فصول از آغش‌های بزرگ‌داشت و ماه‌های اول، دوم و سوم تهیه‌داده انجام شد.

آزمون‌های حیات

برای بررسی عطر، طعم، بافت و رنگ سوسیس‌های کنسرو شده
که بین سوسیس و محلول آب نمک درون قوطی تبدیلاتی صورت گرفته و ییدیه‌های اسمر و انشار مواد جذب آب نمک در محلول شده است. نتایج به دست آمده از آنها بگونه‌رchied رطوبت با گزاره‌های اسمر کویچ و همکاران (19)، نیازهای می‌باشد (20) هم‌خوانی دارد.

برای جدول ۲ میران چربی در سوسیس‌های غیر کنسروی و کنسروی اختلاف معنی‌دار ندارد. نتایج تجزیه واریانس جدول ۳ نشان می‌دهد که اثر فرآیند حرارتی استریلیزاسیون بر میران چربی در هر چهار فرامل سوسیس معنی‌دار نیست.

نتایج تجزیه واریانس جدول ۵ نشان می‌دهد که اثر مدت نگهداری بر میران چربی در هر چهار فرامل سوسیس کنسروی شده در قوطی معنی‌دار است. برای جدول ۶، سوسیس‌های کنسروی شده در قوطی در آزگ نگهداری دارای حداکثر میران رطوبت بوده، این مقدار نپایان مانند دم افزایش یافته و در سه از سه تعبیه محسوسی نداشت است. جدول ۷ نشان می‌دهد که اثر مدت نگهداری بر میران رطوبت سوسیس‌ها با چهار فرامل در سطح احتمال یک درصد معنی‌دار است. برای ۶۲ میران قوطی در طول نگهداری کنسروی سوسیس نبادلاتی صورت گرفته و پیدایش ایام و انشار مواد خروج چربی از محلول می‌گردد. این نبادلاتی از بال و ۱۵ روز نگهداری شدیدتر است (۱۹)، در پهنه‌های حاضر نیز میران چربی یک بار آن نخست به تعادل رسیده و تابیده انجام‌شده بی‌صرف‌ریزی مک‌کوز، نوع ظرف (قوطی و شیشه) نیز بر سری داده می‌باشد. این میران تلاش برای مقیاس‌بندی‌ها از آنها جنگ دامنه‌ای دانسته استفاده شده. رسم نمودارها نیز با ترم‌فاز کامپیوتری کل انجام گرفت.

نتایج وبحث
نتایج آزمایش‌های شیمیایی
براساس نتایج جدول ۲ میران رطوبت در سوسیس‌های کنسروی شده در قوطی بیشتر از سوسیس‌های غیر کنسروی بود. جدول ۳ (نتایج تجزیه واریانس) نشان می‌دهد که اثر فرآیند حرارتی استریلیزاسیون بر میران چربی در هر چهار فرامل سوسیس در سطح احتمال یک درصد معنی‌دار است. همچنین، با توجه به جدول ۴، مشخص می‌شود که سوسیس‌بای فرامل ۳ حداکثر، و سوسیس‌بای فرامل ۴ حداکثر میران رطوبت را دارد. نتایج تجزیه واریانس (جدول ۵) نشان می‌دهد که اثر نوع فرامل‌بای میران رطوبت سوسیس‌های کنسروی شده در قوطی در مدت نگهداری در سطح احتمال یک درصد معنی‌دار است. برای جدول ۶، سوسیس‌های کنسروی شده در قوطی در آزگ نگهداری دارای حداکثر میران رطوبت بوده، این مقدار نپایان مانند دم افزایش یافته و در سه از سه تعبیه محسوسی نداشت است. جدول ۷ نشان می‌دهد که اثر مدت نگهداری بر میران رطوبت سوسیس‌ها با چهار فرامل در سطح احتمال یک درصد معنی‌دار است. از آن‌جا که در فرامل‌های ۳ پیش‌ترین میران یک بار به شده است (جدول ۶)، این فرامل‌بای میران رطوبت را بهتر است.
جدول 2. مقایسه و گروه‌بندی میانگین اثر فرآیند حراتی استرپلیزاسیون بر میزان رطوبت، پروتئین و مقاومت برشی یافت

<table>
<thead>
<tr>
<th>فرآیند حراتی استرپلیزاسیون</th>
<th>پروتئین</th>
<th>رطوبت</th>
<th>مقاومت برشی یافت</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون فرآیند حراتی استرپلیزاسیون</td>
<td>50/653<sup>b</sup></td>
<td>16/422<sup>a</sup></td>
<td>17/363<sup>a</sup></td>
</tr>
<tr>
<td>با فرآیند حراتی استرپلیزاسیون در قوطی</td>
<td>52/953<sup>a</sup></td>
<td>17/155<sup>a</sup></td>
<td>20/725<sup>a</sup></td>
</tr>
<tr>
<td>با فرآیند حراتی استرپلیزاسیون در بخش‌های</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1. اعداد میانگین در تکرار هستند.
2. اعداد میانگین سین تکرار هستند.

جدول 3. تجزیه و تحلیل اثر نوع فرولوماسیون و فرآیند حراتی استرپلیزاسیون بر میزان پروتئین، رطوبت و مقاومت برشی یافت

<table>
<thead>
<tr>
<th>نوع فرولوماسیون</th>
<th>پروتئین</th>
<th>رطوبت</th>
<th>مقاومت برشی یافت</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع فرولوماسیون و فرآیند حراتی استرپلیزاسیون</td>
<td>6477<sup>**</sup></td>
<td>80/056<sup>**</sup></td>
<td>20/597</td>
</tr>
<tr>
<td>نوع فرولوماسیون و فرآیند حراتی استرپلیزاسیون</td>
<td>6478<sup>**</sup></td>
<td>80/056<sup>**</sup></td>
<td>20/597</td>
</tr>
<tr>
<td>نوع فرولوماسیون و فرآیند حراتی استرپلیزاسیون</td>
<td>6479<sup>**</sup></td>
<td>80/056<sup>**</sup></td>
<td>20/597</td>
</tr>
</tbody>
</table>

جدول 4. مقایسه و گروه‌بندی اثر نوع فرولوماسیون بر میزان رطوبت، پروتئین و مقاومت برشی یافت

<table>
<thead>
<tr>
<th>نوع فرولوماسیون</th>
<th>پروتئین</th>
<th>رطوبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع فرولوماسیون</td>
<td>6474<sup>c</sup></td>
<td>19/777<sup>a</sup></td>
</tr>
<tr>
<td>نوع فرولوماسیون</td>
<td>6476<sup>a</sup></td>
<td>18/781<sup>b</sup></td>
</tr>
<tr>
<td>نوع فرولوماسیون</td>
<td>6478<sup>**</sup></td>
<td>19/777<sup>a</sup></td>
</tr>
<tr>
<td>نوع فرولوماسیون</td>
<td>6479<sup>**</sup></td>
<td>19/777<sup>a</sup></td>
</tr>
</tbody>
</table>
جدول 5. تجزیه و تحلیل نوع فرمولاسیون و مدت نگهداری بر میزان پروتئین، چربی و رطوبت سوسپس‌های کنسروی، و اثر نوع فرمولاسیون، مدت نگهداری و نوع ظرف بر میزان مقداری برای سوسپس‌های کنسروی

<table>
<thead>
<tr>
<th>منبع</th>
<th>میانگین مربوط (درصد)</th>
<th>منبع</th>
<th>میانگین مربوط (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع فرمولاسیون</td>
<td>0.144/0.049</td>
<td>نوع فرمولاسیون</td>
<td>0.144/0.049</td>
</tr>
<tr>
<td>مدت نگهداری</td>
<td>0.144/0.049</td>
<td>مدت نگهداری</td>
<td>0.144/0.049</td>
</tr>
<tr>
<td>نوع ظرف</td>
<td>0.144/0.049</td>
<td>نوع ظرف</td>
<td>0.144/0.049</td>
</tr>
</tbody>
</table>

جدول 6. مقایسه و گروه‌بندی اثر مدت نگهداری بر میانگین میزان رطوبت، چربی و پروتئین سوسپس‌های کنسرو گرانی در فرآیند برای چهار فرمول (مایعات چهار فرمول)

<table>
<thead>
<tr>
<th>برای چهار فرمول (مایعات چهار فرمول)</th>
<th>مدت نگهداری (ماه)</th>
<th>مدت نگهداری (ماه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروتئین</td>
<td>0.144/0.049</td>
<td>0.144/0.049</td>
</tr>
<tr>
<td>چربی</td>
<td>0.144/0.049</td>
<td>0.144/0.049</td>
</tr>
<tr>
<td>رطوبت</td>
<td>0.144/0.049</td>
<td>0.144/0.049</td>
</tr>
</tbody>
</table>

1. اعداد میانگین در نتایج هستند.
2. مقدار مربوط در هر سونت نشان دهنده اختلاف معنی‌دار در سطح احتمال 1 پنجم درصد است.

اساس آزمون مقایسه میانگین‌ها روش دانکن (جدول 2). سوسپس‌های غیر کنسروی و کنسروی در یک گروه قرار گرفته‌اند. از نظر میزان پروتئین نتایج معنی‌داری با هم ندارند.

چنین که در جدول 2 دیده می‌شود، میزان پروتئینی سوسپس‌های غیر کنسروی و سوسپس‌های کنسرو شده در فرآیند مختلفی می‌باشد. بنابراین نتایج نشان می‌دهد که پروتئین در جدول 5، اثر نوع فرمولاسیون بر میزان پروتئین سوسپس‌های کنسروی در مدت نگهداری، در

شده است.
نتیجه تجزیه واریانس (جدول ۵) نشان داد که اثر مدت نگهداری بر میزان پروتئین در هر چهار فولوم سوسیس کنسرو شده در قطعی، در سطح احتمال ۰/۰۵ دو جدول معنادار است.

همچنین برای جدول ۶ سوسیس کنسرو در آغاز نگهداری دارای حداکثر میزان پروتئین است. این مقدار ناپایین ماه دوم کاهش یافته و در ماه سوم به معنی مشخصی نداشت. این نتایج با گزارش‌های استاتیک و همکاران (۱۸) و سپر و همکاران (۱۹) همخوانی دارد.

از آن جا که در فولوم‌سیون ۳ پیشرفت مقدار گیاه به کار رفته است (جدول ۱)، و گیاه هموار می‌تواند سوداگران را در انتخاب میزان سوسیس‌های کنسرو در هر چهار فولوم‌سیون انتخاب در طول مدت نگهداری کنسرو سوسیس میزان پروتئین در سوسیس کاهش داشته است.

نتیجه آزمایش‌های نیزیکی
برای جدول ۳ میزان مقاومت برنگی‌یافته سوسیس‌های غیر کنسرو یک رابطه منفی اوایل‌گذار در هر دو نوع فلورام و بصرف این بایان ماه دوم کاهش یافته و در ماه سوم به معنی مشخصی نداشت. این نتایج جدول ۵ نشان می‌دهد که اثر مدت نگهداری و نوع فلورام بر میزان مقاومت برنگی‌یافته سوسیس‌های کنسرو قابل توجه محسوب می‌شود و همکاران بایان در این پژوهش با گزارش‌های استاتیک و همکاران سطح احتمال یک درصد معنادار است. بر اساس آزمون مقایسه میانگین‌های بر میان دو گروه، بررسی داده می‌شود. این نتایج نشان می‌دهد که اثر فرآیند حرارتی استریلیزاسیون بر میزان مقاومت برنگی‌یافته سوسیس‌های غیر کنسرو قابل توجه محسوب می‌گردد.
شکل 1. تأثیر نوع فرمولاسیون و مدت نگهداری بر میزان مقاومت پرشی بافت سوسیس‌های کنسرو شده به‌روی دو نوع ظرف (میانگین دو نوع ظرف)

شکل 2. تأثیر نوع فرمولاسیون و نوع ظرف بر میزان مقاومت پرشی بافت سوسیس‌های کنسرو شده در مدت نگهداری (میانگین نتایج در زمان‌های مختلف)
گرفته است از نظر داران، عطر، طعم، بافت و رنگ چهار فرمول سوسیس کنسر شده در قوطی، در سطح احتمال رک دیده تفاوت معنی‌داری با هم ندارند.

نتیجه‌گیری
فرآیند حرارتی استریپرازاسیون باعث افزایش میزان رطوبت شده و بر میزان چربی و پروتئین سوسیس‌ها با هر چهار فرمول پی تأثیر بوده است. همچنین در طول مدیر نگهداری، دما و میزان رطوبت و کاهش میزان پروتئین و چربی در سوسیس‌های کنسر شده در قوطی برای چهار فرمول دیده شد.

در میان سوسیس‌های کنسر شده در قوطی فرمول ۳ بیشترین میزان رطوبت، فرمول ۱ بیشترین میزان چربی، و فرمول ۲ بیشترین میزان پروتئین را پس از سه ماه نگهداری دارا بوده است.

فرآیند حرارتی استریپرازاسیون باعث کاهش میزان مقاومت برخی بافت سوسیس‌ها به هر چهار فرمول شد، که این میزان مقاومت در سوسیس‌های کنسر شده در قوطی نسبت به بیشتر است.

نتایج ارزیابی حسی
برای روش نانک (برگرفته از منبع ۱۲)، هنگامی که شمار داران ۱۰ نفر و شمار نمایشگاه ۴ باشد، نمایشگاه‌های مجموع امتیازات آنها بین ۲۳ تا ۱۷ باشد، از نظر آماری در سطح احتمال یک درصد تفاوت معنی‌داری با هم ندارند. چون بر اساس نتایج جدول ۷ مجموع امتیازات کلیه نمایشگاه‌ها در این محدوده قرار

۱۹۴
چهار فرمول سوسیس کنسرو شده در فوتوپی، در سطح احتمال که درصد تفاوت معنی‌دار با هم نداشتهند.

در پایه نتایج این پژوهش، سوسیس با فرمول ۳ از نظر ویژگی‌های فیزیکی و شیمیایی در بیشتر مردان نسبت به دیگر فرمول‌های مناسبتر بوده و استفاده از این فرمول، بهبود می‌تواند در ارائه‌ای حسی از نظر داوران، عطر، طعم، بافت و رنگ، کنسرو توصیه می‌گردد.

توجه مورد استفاده

1. پرونده. و. ۱۳۷۴. کنترل کیفی و آزمایش‌های شیمیایی مواد غذایی. انرشیات دانشگاه تهران.
2. خسروی، ا. ۱۳۷۷. بررسی تغییرات فیزیکوchemیایی فراورده‌های گوشتی در طی تولید و فرآیند حرارتی و مدت نگهداری در انبار و سبب شدن‌یا مختلف. پایان‌نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
3. شفافی منصوری. م. ۱۳۷۸. فرآوری حرارتی در مواد غذایی استان، آزمایشات متعددی، انرشیات دانشگاه تهران.
4. ملکی، م. و. م. دخاشی. ۱۳۷۴. صنایع غذایی - نگهداری غذا با استفاده از حرارت. خمک کردن و بیخ زدن. انرشیات دانشگاه شیراز.
5. وزیری، صحالی. پ.، هاشمی، ر. و. م. ۱۳۷۸. پژوهش‌های آماری در پژوهش‌های کشاورزی. انرشیات دانشگاه تهران.