انتقال زندهای VAP و OF2 به چنددرنده با کمک آگروباکتریوم ریزوزن برای بررسی مقاومت به نمادین

پیمان نوروزی، د. دکتر کاپور، محمد علی ملی‌پور و بهمن یزدی صمدی

چکیده
زندهای VAP، نوعی اکسپلراتور کننده اکسیداز و OF2، در آزمون‌های مقاومت به نمادین سیستمی در چنددرنده هستند. کیل‌ها به ترتیب به کمک تشکیل‌دهنده مولکولی AFLP و سپس در هم‌پوشانی در ناقل با کلربراکت‌های همسانه شدند. برای آزمون قابلیت این زندها در ایجاد مقاومت در چنددرنده، Zn سه ناقل میکروبی کرای حل شده بودند. زندهای VAP و OF2 از ایجاد مقاومت در تال دنگانه T-DNA CaMV35S در پابلست پرامتر ذاتی CaMV35S, T-DNA{

بعدی از تریاکسی پمپاری از نمادین سیستمی در چنددرنده هستند. کیل‌ها به ترتیب به کمک تشکیل‌دهنده مولکولی AFLP و سپس در هم‌پوشانی در ناقل با کلربراکت‌های همسانه شدند. برای آزمون قابلیت این زندها در ایجاد مقاومت در چنددرنده، Zn سه ناقل میکروبی کرای حل شده بودند. زندهای VAP و OF2 از ایجاد مقاومت در تال دنگانه T-DNA CaMV35S, T-DNA{

بعدی از تریاکسی پمپاری از نمادین سیستمی در چنددرنده هستند. کیل‌ها به ترتیب به کمک تشکیل‌دهنده مولکولی AFLP و سپس در هم‌پوشانی در ناقل با کلربراکت‌های همسانه شدند. برای آزمون قابلیت این زندها در ایجاد مقاومت در چنددرنده، Zn سه ناقل میکروبی کرای حل شده بودند. زندهای VAP و OF2 از ایجاد مقاومت در تال دنگانه T-DNA CaMV35S, T-DNA{

بعدی از تریاکسی پمپاری از نمادین سیستمی در چنددرنده هستند. کیل‌ها به ترتیب به کمک تشکیل‌دهنده مولکولی AFLP و سپس در هم‌پوشانی در ناقل با کلربراکت‌های همسانه شدند. برای آزمون قابلیت این زندها در ایجاد مقاومت در چنددرنده، Zn سه ناقل میکروبی کرای حل شده بودند. زندهای VAP و OF2 از ایجاد مقاومت در تال دنگانه T-DNA CaMV35S, T-DNA{

بعدی از تریاکسی پمپاری از نمادین سیستمی در چنددرنده هستند. کیل‌ها به ترتیب به کمک تشکیل‌دهنده مولکولی AFLP و سپس در هم‌پوشانی در ناقل با کلربراکت‌های همسانه شدند. برای آزمون قابلیت این زندها در ایجاد مقاومت در چنددرنده، Zn سه ناقل میکروبی کرای حل شده بودند. زندهای VAP و OF2 از ایجاد مقاومت در تال دنگانه T-DNA CaMV35S, T-DNA{

بعدی از تریاکسی پمپاری از نمادین سیستمی در چنددرنده هستند. کیل‌ها به ترتیب به کمک تشکیل‌دهنده مولکولی AFLP و سپس در هم‌پوشانی در ناقل با کلربراکت‌های همسانه شدند. برای آزمون قابلیت این زندها در ایجاد مقاومت در چنددرنده، Zn سه ناقل میکروبی کرای حل شده بودند. زندهای VAP و OF2 از ایجاد مقاومت در تال دنگانه T-DNA CaMV35S, T-DNA{

بعدی از تریاکسی پمپاری از نمادین سیستمی در چنددرنده هستند. کیل‌ها به ترتیب به کمک تشکیل‌دهنده مولکولی AFLP و سپس در هم‌پوشانی در ناقل با کلربراکت‌های همسانه شدند. برای آزمون قابلیت این زندها در ایجاد مقاومت در چنددرنده، Zn سه ناقل میکروبی کرای حل شده بودند. زندهای VAP و OF2 از ایجاد مقاومت در تال دنگانه T-DNA CaMV35S, T-DNA{

بعدی از تریاکسی پمپاری از نمادین سیستمی در چنددرنده هستند. کیل‌ها به ترتیب به کمک تشکیل‌دهنده مولکولی AFLP و سپس در هم‌پوشانی در ناقل با کلربراکت‌های همسانه شدند. برای آزمون قابلیت این زندها در ایجاد مقاومت در چنددرنده، Zn سه ناقل میکروبی کرای حل شده بودند. زندهای VAP و OF2 از ایجاد مقاومت در تال دنگانه T-DNA CaMV35S, T-DNA{

بعدی از تریاکسی پمپاری از نمادین سیستمی در چنددرنده هستند. کیل‌ها به ترتیب به کمک تشکیل‌دهنده مولکولی AFLP و سپس در هم‌پوشانی در ناقل با کلربراکت‌های همسانه شدند. برای آزمون قابلیت این زندها در ایجاد مقاومت در چنددرنده، Zn سه ناقل میکروبی کرای حل شده بودند. زندهای VAP و OF2 از ایجاد مقاومت در تال دنگانه T-DNA CaMV35S, T-DNA{

بعدی از تریاکسی پمپاری از نمادین سیستمی در چنددرنده هستند. کیل‌ها به ترتیب به کمک تشکیل‌دهنده مولکولی AFLP و سپس در هم‌پوشانی در ناقل با کلربراکت‌های همسانه شدند. برای آزمون قابلیت این زندها در ایجاد مقاومت در چنددرنده، Zn سه ناقل میکروبی کرای حل شده بودند. زندهای VAP و OF2 از ایجاد مقاومت در تال دنگانه
مقیمهد
نامنامه‌ی پیماری‌زای گیاهی همه‌ساله به شمار بیماری از گیاهان زراعی آسیب می‌رساند. البته چنانچه این بیماری بسیار زیاد است (14) مهم‌ترین نامنامه‌ی گیاهی از جنس ملویدوژاپن Globodera (Meloidogyne) هستند. که مواد مغذی گیاه را پس از ایجاد (Heterodera) ساختارهای تغذیه‌ای ویژه جذب می‌کند (13). حدود 29 گونه نامناد از 16 جنس می‌توانند اگر جنگرقد باشد. کاهش عملکرد چندهزاری در اثر نامنادها حدود 10 درصد بروز شده، که نامناد سیستی (Heterodera schachtii) چندهزاری سختی که 90 درصد این مقدار است و به عوامل مهم‌ترین عامل بیماری‌زای چندهزاری در جهان شناخته شده است (15). گیاه چندهزاری بیش مقارنی بر علیه نامناد سیستی (16). سیستی ندادار (13).

چرخه زندگی نامناد سیستی به چهار مرحله لاروی تقسیم می‌شود. لارو یک نامناد به رخته گیاهان حمله کرده، درون استان آلوده تشکیل ساختارهای تغذیه‌ای خیلی اختصاصی به نام سیستیوم (Sncytiaym) در می‌دهد. سیستیوم از سولوهای بی‌شماری تشکیل شده است که پروتئینی آنها به یکدیگر متصاعد می‌شوند. نامنادها می‌توانند بر بیان این سولوهای موجود در سولوهای تشکیلی کرده می‌توانند، با تشکیل استرلیت سیستیوم را فعال کنند. سیستیوم زندگی نامناد سیستی ماهی پس از تشکیل نخم درون یک سولوی سلولی به پایان می‌رسد. این نامنادها 10 سال قدرت زیست خود را در حفظ می‌کنند (17). علامت آئوگتی نامناد معمولاً کاهش رشد، تغییر در ظاهر و رشته و چرخه‌گذاری گیاه گاهی می‌گردد (9).

کشت نلمب با استفاده از تناوب گیاه‌ها و کاربرد نامناده‌کردن یک نمود مناسب باشد. وسیله بی‌سترس و مؤثرترین روش کشت نامناد استفاده از ارکام اصلاح شده می‌باشد به نامناد است. اصلاح واریته‌های مقارن در برنامه‌های اصلاح نات (9).

نامناده چندهزاری بسیاری از گیاهان زراعی آسیب می‌رساند. البته چنانچه این بیماری بسیار زیاد است (14) مهم‌ترین نامنامه‌ی گیاهی از جنس ملویدوژاپن Globodera (Meloidogyne) هستند. که مواد مغذی گیاه را پس از ایجاد (Heterodera) ساختارهای تغذیه‌ای ویژه جذب می‌کند (13). حدود 29 گونه نامناد از 16 جنس می‌توانند اگر جنگرقد باشد. کاهش عملکرد چندهزاری در اثر نامنادها حدود 10 درصد بروز شده، که نامناد سیستی (Heterodera schachtii) چندهزاری سختی که 90 درصد این مقدار است و به عوامل مهم‌ترین عامل بیماری‌زای چندهزاری در جهان شناخته شده است (15). گیاه چندهزاری بیش مقارنی بر علیه نامناد سیستی (16). سیستی ندادار (13).

مقدیده
نامنامه‌ی پیماری‌زای گیاهی همه‌ساله به شمار بیماری از گیاهان زراعی آسیب می‌رساند. البته چنانچه این بیماری بسیار زیاد است (14) مهم‌ترین نامنامه‌ی گیاهی از جنس ملویدوژاپن Globodera (Meloidogyne) هستند. که مواد مغذی گیاه را پس از ایجاد (Heterodera) ساختارهای تغذیه‌ای ویژه جذب می‌کند (13). حدود 29 گونه نامناد از 16 جنس می‌توانند اگر جنگرقد باشد. کاهش عملکرد چندهزاری در اثر نامنادها حدود 10 درصد بروز شده، که نامناد سیستی (Heterodera schachtii) چندهزاری سختی که 90 درصد این مقدار است و به عوامل مهم‌ترین عامل بیماری‌زای چندهزاری در جهان شناخته شده است (15). گیاه چندهزاری بیش مقارنی بر علیه نامناد سیستی (16). سیستی ندادار (13).

چرخه زندگی نامناد سیستی به چهار مرحله لاروی تقسیم می‌شود. لارو یک نامناد به رخته گیاهان حمله کرده، درون استان آلوده تشکیل ساختارهای تغذیه‌ای خیلی اختصاصی به نام سیستیوم (Sncytiaym) در می‌دهد. سیستیوم از سولوهای بی‌شماری تشکیل شده است که پروتئینی آنها به یکدیگر متصاعد می‌شوند. نامنادها می‌توانند بر بیان این سولوهای موجود در سولوهای تشکیلی کرده می‌توانند، با تشکیل استرلیت سیستیوم را فعال کنند. سیستیوم زندگی نامناد سیستی ماهی پس از تشکیل نخم درون یک سولوی سلولی به پایان می‌رسد. این نامنادها 10 سال قدرت زیست خود را در حفظ می‌کنند (17). علامت آئوگتی نامناد معمولاً کاهش رشد، تغییر در ظاهر و رشته و چرخه‌گذاری گیاه گاهی می‌گردد (9).

کشت نلمب با استفاده از تناوب گیاه‌ها و کاربرد نامناده‌کردن یک نمود مناسب باشد. وسیله بی‌سترس و مؤثرترین روش کشت نامناد استفاده از ارکام اصلاح شده می‌باشد به نامناد است. اصلاح واریته‌های مقارن در برنامه‌های اصلاح نات (9).

نامناده‌کردن یک نمود مناسب باشد. وسیله بی‌سترس و مؤثرترین روش کشت نامناد استفاده از ارکام اصلاح شده می‌باشد به نامناد است. اصلاح واریته‌های مقارن در برنامه‌های اصلاح نات (9).
با استناد به جنگردنده با کمک آگروباکتریوم برتریا برای بررسی مقاومت به این VAP و OF2 انتقال وزهای مختلف نشست همسانه شده، سپس به گونه زراعی جنگردنده انتقال یافت.

مواد و روش‌ها
در این پژوهش، دو زن VAP و OF2 که قبلاً به کمک ناشناگیر Amplified fragment length (AFLP) مولکولی (Two-hybrid system) و پاپولاریسم (polymorphism D. Cai, Personal) به ترتیب همسانه شده، به دیدن ناقل درگاه بهان شونده گیاهی (Clone) به درون ناقل دورکنگان بهان شونده گیاهی انگشت یافتند. سازه‌های آگروباکتریوم ریزولنز (Agrobacterium rhizogenes) یا کامبیو ترانسفل (Transformed) ریشه‌های مویی تارایه‌ای (Transformed) کشت باکتری و استخراج پلاسمید

پلاسمید pGEMT easy حامل E. coli های زن VAP و OF2 در اثر بردارانه (D. Cai, Personal communication) از دسته LB به همراه 50 میلی‌گرم در لیتر آمیپلین، در شیکر ظرفیت 370 در 20 درجه و دمای 37 درجه کشت شدند. سپس استخراج پلاسمید با استفاده از کیت (QIAGEN filter midiprep kit) کیان (Kiazan) کمک آگروباکتریوم برتریا برای براز سازی وزهای مختلف از VAP و OF2 از پلاسمید pGEMT easy با استفاده از EcoRI و XbaI از آزمونهای EcoRI استفاده گردید. براز تین غلظت مناسب آزمونهای EcoRI از 10، 11، 12 و 13 ناحیه آزمونهای همیشه 15 دقیقه به یک پایه فاقد استفاده و واکنش و نیز همیشه 15 دقیقه به یک پایه فاقد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای همیشه 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به روش تجاری با غلظت داخل آزمونهای H. O. 15 دقیقه به یک شاهد استفاده و XbaI به R.
کشت نکلئوانت از هفت یا بیشتر حداکثر 1000 نکلئون برداشت و در محیط‌های LB حاوی 50 میلی‌گرم در لیتر کانامایسین به صورت جداگانه کشت گردید. از باکتری‌های رشد یافته برای استخراج پلاسمیدی به روش لیز فلایایی (Alkaline lysis) استفاده شد.

هضم آنزیم‌های استخراج شده
برای تایید حضور زن OF2، با VAP BC121 و با pAM194 آنزیم‌ها کشته و XbaI و با EcoRI بسته به نوع ناقل استفاده شد و نمونه‌های دارای زن های OF2 انتخاب گردید.

آزمون برای پلاسمیدهای نوترکیب
برای تایید جهت همسوی زن های OF2 و با VAP BC121 و با pAM194 آزمون (Sense) وسیله‌ای کمیسیون در مجوازه پروموتر (در این مجاورت زن قابل تجزیه و بینان می‌باشد.) آزمون PCR روی پلاسمیدهای دارای زن های فوق (Primers) انجام گرفت. برای این منظور از جفت آغازگرها (MgCl2) که در تهیه پروموتر و درون زن های مورد نظر وجوه داشتن استفاده شد. همچنین آنها به شرح زیر است:

FloxR: in 5’ UTR of OF2 gene: 5’
CTTCTTAGGCTTTAGTTACTCG 3’
3NR1: in ORF of OF2 gene: 5’
GGCTACCGGTTTGTAGTTGATG 3’

FloxR: in 3’ UTR of OF2 gene: 5’
GAATTGAACAGCAATAGATGATC 3’
SR1: in ORF of OF2 gene: 5’
GAACGTATGCTGTGTTGCACC 3’
F2BVAP: in ORF of VAP gene: 5’
GTTGGAATCTGCAATGACCTGC 3’
FLVP: in ORF of VAP gene: 5’
GACTTCAATACGTTAAGTGGT 3’
35S: in CaMV35S promoter: 5’
CAATTCGACTATCCGGAACGT 3’
1832DKT1: in Hs100pro-1 promoter: 5’
CCATTGCGTCACATCTTACAGGCAG 3’

شماره PCR شامل یک سیکل در 94 درجه سانتی‌گراد در 1 دقیقه، سپس 35 سیکل (4 دوبله) هر سیکل در 94 درجه سانتی‌گراد در 1 دقیقه و در 72 درجه سانتی‌گراد در 1 دقیقه و سپس در 4 درجه سانتی‌گراد در 10 دوبله بود.

۲۱۶
نتایج و بحث

pGEMT easy هضم آنزیم لیپاسیدهای
برای یک توجه به غلظت‌های مختلف به کار رفته آنزیم EcoRI هضم بلاستمیدها و یک سازی زن کمک 2 و با تا
افراش کم‌غلظت آنزیم از 1/5 به 12 واقع آنزیم، حالت گردیدان
در تغذیه مختلف زن‌ها. در این آزمایش، مقدار تی‌آئید بلاستمیدها از
نحو زن‌های همسانه شده بود. هنین، غلظت‌های آنزیم
برای ایجاد نوار مرد انتظار. که همان‌طور که کم‌غلظت
همسانه شده است، تعیین گردید.

در این آزمایش، غلظت‌های آنزیم 20 میکروگرم
حقیقی سالمیاً و انتخاب. با استفاده از 15 واقع آنزیمی در
100 میکروگرم حقیقی و مجوز زیادی از آن خواهد کم‌غلظت زن‌ها به دست آمد. در مورد هضم آنزیمی زن‌های OF2 و با نویز و جوید یک ناحیه EcoRI به غلظت کاملاً آنزیم
برای اضافه در وسط هر یک از زن‌ها. قطعه کامل زن‌های

نتیجه

Naftelin خطر

برای به‌کار گیری خطر از بلاستمید 94 فقط کم‌غلظت
برای برای آنزیم EcoRI وجود داشت. نیازهای این با عمل
برش نیازی به جدا سازی یک نوار خاص از سطح زل نیز و
عمل دفرشی کردن مستقیماً در باقی‌مانده مخلوط و اکتش
آن‌زیمی انجام گرفت. دفرشی کردن ناقل بلاستمیدی برای
جلاکری از اتصال دو انتهال آن در هنگام اتصال با
زن‌های وارد همسانه است.

PCR حساسیت آنزیم و انجام

برای تایید حضور زن‌های OF2 و یا VAP در مجاورت
GUS در GUS gene 35S-GUS gene
برنده‌های مویین یا طبق روش جنرال (12) استفاده شد. برای
- GUS gene که در مجاورت
GUS PCR با آغازگر مربوط به زن Hsp105
به کار رفت.

نتیجه

TLF/BLG مویین (13) در مجاورت ریشه‌ها

TLF/BLG مویین تراکم‌های از سری تراکم‌یافته، نخست
تکرار، و سپس قطعات ریشه مویین با 8-2 نکات در ظروف
پری کشت شدند. حدود 300 نمونه سنجش یک هفت سن
بر طبق روش پاول و همکاران (6) در مجاورت ریشه‌ها
با به اعتبار مثبت pBin121 با OF2 pBinOF2 تغییر یافته شده است. با این‌طور که یک آنزیم با گروه VAP و ژن OF2 با توجه به نوع برخورداری آنها از این مسئله به نمادهای مورد استفاده در این مطالعه بررسی پلاسمید گردید.

پیش از مرحله انتقال و تراژئنیتی محصولات آن در باکتری B. subtillis و برای تایید حضور زن EcoRI از آنتی‌ژن pAM194 در پلاسمید E. coli تغییر یافته در هظم آنزیمی با XbaI در پلاسمید pBin121 تغییر یافته در هظم آنزیمی با استفاده گردید. با توجه به حضور یک ثابت یک تایید در EcoRI میان زهایی VAP و OF2 (علاقه برو و بسته از Zn۲⁺) از زنی pAM194 تغییر یافته، قطعه حاصل از زنی OF2 و با تولید شد.

نگاه آمیزی ریشه‌های مویین حاصل از تراژئنیتی با با مخلوط ریشه‌های مویین ساخته شده، ژن pAMVAP و pAMOF2 داد که به ترتيب ۳۳ و ۳۸ درصد از ریشه‌های مویین تراژئنیتی هستند. و حامل مربوط به آنتی‌ژن مویین دوگانه مذکور T-DNA می‌باشد (جدول 1) و رنگ آبی را در محله مختلف رشته‌های نشان می‌دهد (شکل 4). تراژئنیتی بوند ریشه‌های مویین حاصل از تراژئنیتی با pBinOF2 در مجاسور برخوردار GUS از اقلای HslaI قرار داشت و قابلیت در شرایط بی‌غیر بوده و با در نظر گرفتن PCR تایید گردید. همان‌طور که در شکل ۵ بیان شده، ۲۵ درصد ریشه‌های مویین حاصل از تراژئنیتی حاصل از هزم GUS هستند (جدول ۱ و شکل ۵).

نتایج پلاسمید‌های نوکلیتر
روش PCR با جفت آغازگرهای متمایز، که در ناحیه Hsi-ORF (Open reading frame) ORF ساخته شده و با ژن OF2 و با ژن Hsi-ORF قرار داشتند، برای پلاسمید‌های تایید شده با روش هضم آنزیمی صورت گرفت. رفت از الکروفورام و رنگ آمیزی نمونه‌های نوره مورد انتظار در ذل، نشانه‌های ناهمواری، با ناحیه نوکلیتر ژنOF2 و عدم ظهور نوار مورد انتظار نشانه‌های ناهمواری، با ناحیه نوکلیتر ژنOF2 با همان ترتیب، سه پلاسمیدی سازه جدید نام‌گذاری شدند (pAM-۴۲۰۰۲۰۱۷) pAM-۴۲۰۰۲۰۱۷ (تراژئنیتی با ژن OF2 پلاسمیدی فلوکس) pAM-۴۲۰۰۲۰۱۷ (آنتی‌ژنیت با ژن VAP)
تغییر زنده‌های VAP و OF2

جدول 1. نتایج رنگ‌آمیزی PCR و آزمون GUS برای ریشه‌های مویین حاوی اکستراپلیتی با دوژن جنگل‌گیری

شمار جدایی	تام پلاسیدی	درصد ریشه‌های مویین	درصد ریشه‌های مویین	درصد ریشه‌های مویین	درصد ریشه‌های مویین	NA
280	pAMOF2	33	65	NA	pAMOF2	M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 M
280	pBinOF2	50	50	38	35	DNA size (base pair)
280	pAMVAP	25	25	25	25	1018
506						506

نیاز به آزمون تیوه، است.

מרה دو نمونه پلاسیدی توالی‌پک 2 در مجاورت پروموتر CaMV35S

(1Kb ladder) DNA (مخصوص)

1. محصول برای نمونه یک پلاسیدی با آغازگرگاه 35S, SR13
2. محصول برای نمونه یک پلاسیدی pAMOF2
3. محصول برای نمونه یک پلاسیدی pAMVAP

شکل 1. نتایج و به اختصار PCR با افزایش همسPCR دو نمونه پلاسیدی توالی‌پک 2

CaMV35S

در مورد آلزهای VAP و OF2

در مقایسه با شاهد متق، AMVAP ریشه‌های مویین تراریخته های در مورد آلزهای VAP و OF2

در مقایسه با سبیل‌های تشکیل شده به اکستراپلیتی

تلقیح نشده مشخص شده که آلزهای OF2 در مجاورت پروموتر القایی زن (OF2 × Hsi14) نسبت به آلزهای OF2 در مجاورت پروموتر

CaMV35S ذاتی فاقدی که در رنگ‌آمیزی اکستراپلیتی

است. به طوری که در برخی از ریشه‌های مویین تراریخته هیچ سبیلی تشکیل نشده و در آخر

BinOF2 طبیعی آلزهای به سبیل کاملاً جنگل‌گیری کرده.

در مورد آلزهای VAP بر آلزهای نمایه به نظر می‌رسد که

212
شکل ۲. نتایج PCR به ترتیب در ستون‌های ۱-۵ با آغازگرهای مختلف برای تایید همسو XpHs

در مجاورت پروموتر

(1KB ladder) DNA

۱. محصول PCR برای نمونه یک بلاسمید pBinOF2

۲. محصول PCR برای نمونه یک بلاسمید pBinOF2

۳. محصول PCR برای نمونه یک بلاسمید FLOx2, FLOxR برای آغازگر خارجی

۴. محصول PCR برای نمونه یک بلاسمید FLOxF2, 5R13 بای‌آغازگر خارجی

۵. ۸ محصولات PCR برای نمونه در بلاسمید pBinOF2

۶. ۱۳ محصولات PCR برای نمونه همه‌پلاسمی pBinOF2

۷. ۱۷ محصولات PCR برای نمونه چهار بلاسمید CaMV35S

شکل ۳. نتایج PCR در مجاورت پروموتر VAP

(1KB ladder) DNA

۱. محصول PCR برای نمونه یک بلاسمید pAMVAP

۲. محصول PCR برای نمونه یک بلاسمید F2BVAP, FLVAP

۳. محصول PCR برای نمونه یک بلاسمید pAMVAP

۴. محصول PCR برای نمونه یک بلاسمید pAMVAP

۵. ۸ محصولات PCR برای نمونه در بلاسمید pAMVAP
شکل 4. ریشه‌های مویین تراریخته حامل زن GUS با پروموتر CaMV35S پس از رنگ‌آمیزی. لک‌های آبی در ریشه‌های مویین بیان GUS زن را نشان می‌دهند.

Table 1. Effect of AMOF2 on the expression of GUS reporter gene. The number of GUS reporter gene expression was evaluated from 10 plants grown in the presence of AMOF2.

<table>
<thead>
<tr>
<th>Untreated</th>
<th>1/7</th>
<th>2/0</th>
<th>2/10</th>
<th>1/10</th>
<th>0/77</th>
<th>0/43</th>
<th>0/77</th>
<th>0/6</th>
<th>1/77</th>
<th>1/90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>7/7</td>
<td>13</td>
<td>62</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>77</td>
<td>37</td>
<td>43</td>
<td>53</td>
<td>55</td>
</tr>
</tbody>
</table>

جدول 2. تأثیر شیمی‌سازی‌های نمادی روی ریشه‌های مویین چند‌قدرمند تراریخته AMOF2 پس از 10 روز از آغاز تلتیخ با اکسول نماد.

شیمی‌سازی نمادی

<table>
<thead>
<tr>
<th>شیمی‌سازی نمادی</th>
<th>شمار ریشه‌های مویین تراریخته مستقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAA</td>
<td>13</td>
</tr>
<tr>
<td>IBA</td>
<td>62</td>
</tr>
<tr>
<td>BA</td>
<td>18</td>
</tr>
<tr>
<td>2,4D</td>
<td>20</td>
</tr>
<tr>
<td>2,4D/IAA</td>
<td>22</td>
</tr>
<tr>
<td>2,4D/IBA</td>
<td>77</td>
</tr>
<tr>
<td>2,4D/BA</td>
<td>37</td>
</tr>
<tr>
<td>2,4D/NAA</td>
<td>43</td>
</tr>
<tr>
<td>2,4D/IAA</td>
<td>53</td>
</tr>
<tr>
<td>2,4D/IBA</td>
<td>55</td>
</tr>
</tbody>
</table>

شیمی‌سازی نمادی:

1. NAA: نیکوتین آمید اکسیک اسید
2. IBA: اکسیک اسید بروبیک
3. BA: بیوتین
4. 2,4D: دیائی فیلیک اسید
5. 2,4D/IAA: 2,4D/IBA: 2,4D/BA: 2,4D/NAA: 2,4D/IAA: 2,4D/IBA: 2,4D/BA: 2,4D/NAA:
جدول ۳. نتایج شمارش سیستهای نامائید روي ریشههای مویین چندفرنده تراویخته \(OF2\) پس از ۱۰ روز از آغاز تلیغ با لاو نامائید

<table>
<thead>
<tr>
<th>درصد سیستهای تشکیل شده به</th>
<th>میانگین شمار سیستهای نامائید روي</th>
<th>شمار ریشههای مویین تراویخته مستقل</th>
<th>فاقد زن ((OF2) (شاید منفی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۵۷</td>
<td>۶/۷</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۰/۶۷</td>
<td>۲</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۱/۵۷</td>
<td>۶/۷</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۱/۵۸</td>
<td>۶/۷</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۰</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۱/۵۲</td>
<td>۶/۷</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۰/۵۷</td>
<td>۶/۷</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۰</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۱/۵۷</td>
<td>۶/۷</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۰/۵۷</td>
<td>۶/۷</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۲/۵</td>
<td>۶</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
</tbody>
</table>

جدول ۴. نتایج شمارش سیستهای نامائید روي ریشههای مویین چندفرنده تراویخته AMVAP پس از ۱۰ روز از آغاز تلیغ با لاو نامائید

<table>
<thead>
<tr>
<th>درصد سیستهای تشکیل شده به</th>
<th>میانگین شمار سیستهای نامائید روي</th>
<th>شمار ریشههای مویین تراویخته مستقل</th>
<th>فاقد زن ((VAP) (شاید منفی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۵۷</td>
<td>۶/۷</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۰/۶۷</td>
<td>۲</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۱/۵۷</td>
<td>۶/۷</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۱/۵۲</td>
<td>۶/۷</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۰</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۱/۵۷</td>
<td>۶/۷</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۰/۵۷</td>
<td>۶/۷</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۰</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۱/۵۷</td>
<td>۶/۷</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۰/۵۷</td>
<td>۶/۷</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
<tr>
<td>۲/۵</td>
<td>۶</td>
<td>۶</td>
<td>۱ (\times)</td>
</tr>
</tbody>
</table>

سیستهای تشکیل شده در حدود ۱۰ روز تا زمان ایجاد شده. نتایج جهانی که این میزان دارای عضوی به حساسیت چندفرنده در حدود ۱۰–۱۵ درصد بود.
هدف از هندسی زنده‌مان‌گرها و مقاومت به نماند، ایجاد مقاومتی به جنگ‌فرنگی و موثر است که دانه‌گذاری از نماند‌های انتکل ولی متغیر کند. در هر مرحله از نهایت، به یک روش گاهی می‌توان سیستم‌های مختلفی طراحی و زنده‌مان‌گر را درون گاه میزان وارد کرد. چنین زنده‌مان‌گر انتقال به کمک مهارکننده‌های آزمایشی زمان انجام ابدی به‌کار آوردن می‌شود. یا ترکیبات انتقالی که به مصرف نمی‌شود. یا ترکیباتی که به مکرول‌های پیام‌رسان منص شود، با آنزیم‌هایی که به روش‌کننده دهنده، یا موادی که به انتقال از ساختارهای تغذیه‌ای ویژه نمادان درون، عمل می‌کنند.

با توجه به نتایج به دست آمده از بررسی حاضر در زمینه اثر زنده‌مان‌گر VAP2 و OF2 در دست کلی نسبی نماند سیستمی، می‌توان یکی از مکانیسم‌های فوک را مسئول نمود. ایجاد مقاومت داخلی بین‌النهر آزمایش‌های کمکی بیشتر برای تعیین اثر قطعی این زنده‌مان‌گر، در هم‌چنین مکانیزم عمل آنها مورد نیاز است.

مطالعه مورد استفاده

