تیعین شاخص‌های انتخاب در ارقام ذرت

به منظور افزایش عملکرد دانه (Zea mays L.)

محمدرضا محمدتقی آساند و متوجر خردنام

چکیده
عملکرد، صفتی کمی است و رسیدن به بهبود انتخاب در ارقام ذرت، هدف‌گیری است. کاربرد شاخص‌های انتخاب می‌تواند بررسی شود از روش‌های متعدد آنتی‌جی زیر می‌باشد. پژوهش در سال‌های 1371-77، 1372-79 و 1373-74 و 1374-75 انجام گردید. به‌منظور افزایش عملکرد، یکی از روش‌های انتخاب طرح جداسازی گروه‌ها و انتخابشان به‌منظور افزایش عملکرد دانه انتخاب شد. در این پژوهش دو نوع شاخص انتخاب از نوع انتخاب به‌کار برده شد. از این نظر شاخص انتخاب

1 ترکیب مختلف از جملات، دارای یک ترتیب چند منفی‌پذیری به‌کار برده و ضرایب مربوط به هرکدام از شاخص‌ها از این

b = p_G a

بردای ضرایب شاخص

مکروس مارتریس واریانس-کوواریانس و فنوتیپی G. فاکتورها و واریانس-کوواریانس-زوتیپی و B بردار فاکتورهای انتخاب و

در شاخص انتخاب نوع اول، بردار B به‌دست آمده از علامت‌های یکسان با علامت بهبود انتخابی دانه‌های انتخابی دانه‌های مشابه. به‌طور کلی، شاخص

انتخاب نوع دوم، بردار B به‌دست آمده از علامت‌های یکسان با علامت بهبود انتخابی دانه‌های انتخابی دانه‌های مشابه. به‌طور کلی، شاخص

1. بهترین دانشجوی باشگاه کارشناسی ارشد، استاد و استادیار زراعت و اصلاح نیازهای دانشگاه شیراز

وژه‌های کلیدی: ذرت، شاخص انتخاب، شاخص انتخاب، باردار B و واریانس-کوواریانس-زاوتیپی

1
مقدمه

یک افرادی روش‌های نوین بروز و بروز در باز‌پرداز کار دارد در کوشن و در هنگام تنامی، مزایای و افسردگی انسانی، افرادی روز و روز می‌باشند، انرژی انسانی در مصرف نشان دهنده صفات می‌باشد. صفات به نسبت به انتخاب استعفای مصرف در بهبود عضوی در بهبود زمانی بیشتر نشان دهنده بهبود انسانی روز و روز می‌باشد. طرحی از مسئولین روز و روز می‌باشد. بهبهانی از انتخاب بررسی شده‌است.
نمایش شاخ‌هایی انتخاب در ارقام ذرت

(Zea mays L.)

۱۴ ماه‌های کوچک (۱۴) باید به‌سوی علت و با بررسی روابط مشخصات در ذرت، اثرات افزایش گیاهی و ارتقاء بالا را در عملکرد مؤثر دانسته و نشان زمان ظهور اندام ماده در گیاه را که اهمیت تلقی نموده است.

در آزمایشی در روستیه ۳۳۸ روز ذرت بررسی مشخصات شد که طول بالال، وزن بالال، شمار دانه در رشد و شمار بالال در گیاه همبستگی بسیاری با عملکرد دانه دارد و می‌تواند در اصول برای عملکرد مؤثر باشد (۲۰۰). در آزمایش که توسط جامعه‌ای و همکاران (۱۴) انجام شد، با به‌کارگیری اجزای علتی، به‌این ترتیب رسید که شمار بالال در گیاه و قطر بالا اثر مستقیم پیشتر نسبت به سایر صفات روی عملکرد دانه دارد و انتخاب مستقیم از طریق این صفات مناسب است.

هدف از این پژوهش، انتخاب صفات شایسته برای روده به شاخه برآورد ضریب شاخ‌های محاسبه همبستگی ارزش ارثی با هرکدام از شاخ‌های رتیم‌هایی شاخ‌های به‌دست‌آمده و در نهایت برآورد بهترین شاخه‌ای انتخاب بود.

مواد و روش‌ها

به‌منظور ارزیابی شاخ‌هایی انتخاب در زنین‌های ذرت، آزمایشی در استان‌های تحقیقاتی دانشگاه کشاورزی دانشگاه شیراز واقع در انجام گذاشته شد (۰) افتتاح از سطح دریا، طول جغرافیایی ۲۵ درجه و ۶ دقیقه شرقی و عرض جغرافیایی ۲۹ درجه و ۶ دقیقه شمالی. در سال زراعی ۱۳۷۹-۷۸ در قابل طرح یک‌پوشی کامل تهیه می‌شد. این ۱۲ هیبرید ذرت انجام شد، با واقع خاک هر دو مزرعه تحقیقاتی از نوع لومی‌رسی است. بذر هیبریدها از مؤسسه
مرحله شیری شدن داده‌ای در این مرحله آگر دانه وسط بان ذرت را فشار دهیم. معمولاً شیری نگذ می‌شود.

مرحله خمیری سخت: این مرحله پس از مرحله شیری است و اگر دانه ذرت را نخ نثار داشیم به مخی اول بریمی گردید. در این مرحله حدود 45 درصد ماده خشک تشكل می‌شود و دانه در قسمت بان زرد رنگ می‌شود.

مرحله رشد فیزیولوژیک: این مرحله قبل از رسیدن کامل است و با ظهور لایه سیارمار در محل انداز دانه به محرور بالا (قسمت تحتانی دانه) این مرحله آخر می‌شود.

در مراحل بالا چهار نمونه وارداری فر می‌شود و در مرحله دو کرت با رعایت اثر حاشیه و و را در مرحله آخر نمونه برداری می‌گردد با رعایت اثر حاشیه 15 بپت در کرت را در رشته هم و بیان حاضره تر در هکتار پایان گزیده می‌شود.

در این پژوهش بعضی از صفات مورفولوژیک و شماری از شاخص‌های فیزیولوژیک به شرح زیر بررسی شد (اندیس داده شده به صورت مربوط به مرحله اندازه‌گیری است):

 سطح برگ (LA)، که با استفاده از رابطه زیر محاسبه گردید.

\[LA = \frac{L}{W} \] \((9) \) و \((17) \)

\[\text{وطی فرمول‌های زیر محاسبه شدند:} \]

\[\delta^2 = \frac{\text{MSE}}{\text{MSLV} - \text{MSE}/r} \]

\[\delta^2_{1V} = \frac{\text{MSV} - \text{MSLV}}{r} \]

\[\delta^2_{1H} + \delta^2_{1V}/r + \delta^2_{r}/r = \text{MSV}/r \] \((3) \)

\[\text{و این از عوامل سبب زیادی به تمایل دانه و این نتایج به اثر ابزار در محاسبات و در نتایج کاهش فذ شاخص‌ها می‌شود. آن رقم حذف و با 12 رقم نرمال درکی محاسبات مرکز انجام شده و در کلی محاسبات رقم و محیط به‌عنوان عوامل تصمیم در نظر گرفته شدند.}

\[\text{و این می‌تواند می‌تواند و را از زنوتیپ} \]

\[\text{و زنوتیپ دانه امید را بیان می‌کند.} \]

\[\text{و زنوتیپ دانه امید را بیان می‌کند.} \]

\[\text{و زنوتیپ دانه امید را بیان می‌کند.} \]
ضرایب پنت حاصل از چهار ضرب ماتریس ضرایب همبستگی زوئیپی
صفات با یکدیگر در بردار ضرایب همبستگی زوئیپی صفات با
عمومیت مشاهده شده است (۳،۳ و ۳۳،۳) غیر مستقیم محاسبه شد.
چون وارد شدن زیادی صفت در شاخصهای انتخاب
بسیار مشکل بوده و از جنبه عملی شاخص غیر ممکن باشد.
صفاتی که حداکثر اثر مستقیم آنها با ضرایب همبستگی زوئیپی
هم علامت بودند در تشکیل شاخصهای انتخاب استفاده شد.
سپس شاخصهای تکنیک شده مورد ارزیابی قرار گرفت.

(۲) و (۳).
در این پژوهش دو نوع شاخص انتخاب بکار برده شد.
هر دو نوع شاخص انتخاب ۲۸ ترکیب مختلف از صفات،
به‌عنوان رایتبندی خیلی به مدل خطي چند متغیره (در ارتجاع به
همگامی از دو مدل شاخصات شناخته می شود) بکار برده شد.
شاخص نوع اول، شاخص پیشنهادی اسمیت و همکاران (۲۱)
است که فرمول محاسبهای ضرایب آن به صورت زیر است:

b = p^2Ga

[۷] \(b\) پدر ضرایب شاخص \(p\) معکوس ماتریس G
و رابطه-کواریانس فونتیابی، و ژنتیک و ارتباط-کواریانس شاخص،
کواریانس زوئیپی و \(a\) پدر است. درصورتی که درون‌و انتزاعی به‌عنوان نیز مشخص باشد،
شاخص کاراتر شاخصی خواهد بود که \(a\) به‌عنوان عناصر
پدر \(a\) استفاده می‌شود (۲۱).

در شاخص نوع دوم از رابطه‌پذیری، به‌عنوان ارزش‌های
انتزاعی صفات بهره‌گیری شد و علامت آنها مناسب با علامت
هم‌بستگی زوئیپی صفات با عامل در نظر گرفته شد.

برای بررسی دقت هر دو نوع شاخص از رابطه زیر

\(r_{ih} = (bGa)^{1/2}((a'Ga)^{1/2}\)

[۸] \(b\) همبستگی شاخص با ارزش ارثی، \(a\) به‌عنوان پدر
و ویژگی‌های انتزاعی و پدر شاخص‌ها که در پرداز

ضرایب تغییرات زوئیپی و فونتیابی صفات محاسبه و
به‌عنوان یکی از معیارهای مهم در مطالعات استفاده
شد. صفاتی که بر بیان ضرایب نوع شاخصهای ترمیمی و
جدید (GCV) و فونتیابی (PCV) براساس روابط زیر به‌دست آمد (۱۵):

GCV = \([\frac{\sigma_g^2}{x}] \times 100\]

PCV = \([\frac{\sigma_h^2}{x}] \times 100\]

\(\sigma_g^2\) و \(\sigma_h^2\) به‌عنوان ایزو تغییرات معیار شاخصی و فونتیابی و
میانگین صفت مربوطه است.

ضرایب همبستگی زوئیپی و فونتیابی از طریق فرمول‌های زیر
محاسبه می‌گردد:

\(r_{g} = \frac{\delta_{g12} - \delta_{g1} \times \delta_{g2}}{\delta_{g1} \times \delta_{g2}}\)

\(r_{h} = \frac{\delta_{h12} - \delta_{h1} \times \delta_{h2}}{\delta_{h1} \times \delta_{h2}}\)

[۹] \(\sigma_g^2\) و \(\sigma_h^2\) به‌عنوان تغییرات همبستگی زوئیپی و فونتیابی، و
کواریانس زوئیپی و فونتیابی صفت اول دوم و \(\delta_{g1}\)
و \(\delta_{g2}\) به‌عنوان تغییرات معیار شاخصی و فونتیابی است (۷ و ۱۹).

در نهایت صفاتی که محسوب شده‌اند در جدول تجربه
وارات و ضرایب همبستگی زوئیپی معنی‌دار داشته و
ویژگی‌پذیری آنها دارای یکدیگر بوده (الا به ۵۰ درصد) بود.
به‌عنوان متغیرهای مستقل تعیین شدند. سپس با استفاده از
تجزیه علیت (هم‌بستگی‌های مورد استفاده قرار گرفت)
آنتار مستقیم و غیر مستقیم هر کدام از متغیرهای وارد شده روى
عمک‌برداران برآورد شد.

در روش تجزیه علیت، ضرایب همبستگی بین دو متغیر به
آنتار مستقیم و غیر مستقیم تجزیه می‌شود. اثر مستقیم هر صفت
در واقع همان ضریب پت مربوط به آن صفت است و اثر
غیر مستقیم هر متغیر به طریق سایر متغیرهایی که با آن صفت
رابطه دارند، روی عملکرد اعمال می‌شود، از حاصل ضریب
ضرایب همبستگی در صفت در ضریب پت مربوط به متغیر دوم
به‌دست می‌آید. کاربرد همبستگی (۲۳) شکل جدیدی برای
محاسبه ضرایب پت و بای‌آنتار مستقیم طراحی کرده‌اند که آنتار
مستقیم روی چارک‌های متغیرهای و آنتار غیر مستقیم را
سابیر نقاط متغیرهای جا هدایت که کمک شتابان توجهی به درک
و تفسیر نتایج تجزیه علیت خواهد کرد. در این مدل بردار
جدول 1. میانگین مربوط به اشباع آزمایش. رقم، میزان و برهمکنش آنها\(^1\)

<table>
<thead>
<tr>
<th>شفت</th>
<th>منبع نگیرنده</th>
<th>رقم Mercer (df=11)</th>
<th>E&L Mercer (df=44)</th>
<th>ضعیف</th>
<th>ضعیف</th>
<th>متوسط</th>
<th>متوسط</th>
<th>سیکل</th>
<th>یافته</th>
<th>ضعیف</th>
<th>ضعیف</th>
<th>متوسط</th>
<th>متوسط</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>NACTL2</td>
<td>0.88</td>
<td>0.65</td>
<td>0.09</td>
<td>0.07</td>
<td>0.02</td>
<td>0.02</td>
<td>1252</td>
<td>1.77</td>
<td>1.08</td>
<td>0.15</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>B</td>
<td>NACTL3</td>
<td>0.88</td>
<td>0.65</td>
<td>0.09</td>
<td>0.07</td>
<td>0.02</td>
<td>0.02</td>
<td>1252</td>
<td>1.77</td>
<td>1.08</td>
<td>0.15</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>C</td>
<td>NACTL4</td>
<td>0.88</td>
<td>0.65</td>
<td>0.09</td>
<td>0.07</td>
<td>0.02</td>
<td>0.02</td>
<td>1252</td>
<td>1.77</td>
<td>1.08</td>
<td>0.15</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>D</td>
<td>CGR2</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1252</td>
<td>1.77</td>
<td>1.08</td>
<td>0.15</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>E</td>
<td>CGR3</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1252</td>
<td>1.77</td>
<td>1.08</td>
<td>0.15</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>F</td>
<td>CGR4</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1252</td>
<td>1.77</td>
<td>1.08</td>
<td>0.15</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>G</td>
<td>EL</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1252</td>
<td>1.77</td>
<td>1.08</td>
<td>0.15</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>H</td>
<td>LAI2</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1252</td>
<td>1.77</td>
<td>1.08</td>
<td>0.15</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>I</td>
<td>LAI3</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1252</td>
<td>1.77</td>
<td>1.08</td>
<td>0.15</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>J</td>
<td>W100</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1252</td>
<td>1.77</td>
<td>1.08</td>
<td>0.15</td>
<td>0.08</td>
<td>0.02</td>
</tr>
</tbody>
</table>

\(^1\) عدم وجود اختلاف معنی‌دار.

\(^2\) اختلاف معنی‌دار در سطح 5%.

\(^3\) اختلاف معنی‌دار در سطح 1%.

\(^4\) تعداد درصدی در مانند آورده.
عنوان: شناختهای انتخاب در ارگات درخت (Zea mays L.)

ژن‌های ایلکسیوی نسبی برای عملکرد عدد یک و برای پیچ سمات اندازه‌گیری می‌گردد. P و G از یک میزان مارکسی از نتیجه‌برنده‌ی انتخاب بودند. انتخاب شده. بر این اساس و نتایج تجزیه‌ی عملکرد دانه‌ی که در یک خودآمدم تهیه شده است. چندین نمونه‌برداری از همین مفهومی هستند در صفحه گزارش کرده‌اند که با نتایج این پژوهش علومی دارد.

نتایج و بحث

میانگین مربوطات خطای آزمایش، رکم، محیط و به‌روزش نشان داده شده است. با انتخاب تجزیه‌ی عملکرد که اثر مستقل آنها حداکثری باید استفاده نماید. این انقلاب صفت به کنار است. بنا بر این به صفات در جدول بکار رفته‌های و ضرایب آنها مربوط به مراحل نمونه‌برداری است. چندین مختلف هستند در صفحه گزارش قابل چهار میزان همکاری که مشاهده شده است. این صفت برای تشکیل شاخص‌های انتخاب کریدر. شاهد از آنها در پایان داده شده است.

الکساندر وانت‌برای (99), مربوط به سرعت رشد نسبی که زراعی در مرحله چهارم و پس از آن (92) و 24% در طول بالا و 45% در طول بالا و 45% در طول بالا (TL) و 40% در طول بالا (PHD) مربوط به ارتفاع گیاه در مرحله چهارم نمونه‌برداری (PHD). وانت‌برایی عملکرد 4/5 به دست آمده. هدف از مهندسی زنجیری خارج گردیدن عوامل محیطی وی. از 25 صفت مورد بررسی، فقط 16 صفت دارای همبستگی زنجیری معناداری با عملکرد بود. این صفات به عنوان دارای وانت‌برایی و پیشتر متغیر بالاتری، وارد همبستگی‌های تجزیه‌ی عملکرد. از آنجا که هدف اصلی این پژوهش ارائه ترکیبات مختلف صفات همراه با ضرایب آن به‌عنوان شاخص‌های باره‌ای انتخاب برای انتخاب ارقام با عملکرد بالاتر است. از پرداختن به جنبات صفات انتخاب شده برای تشکیل شاخص‌های خودآمایی شد.

دازای بالاترین همبستگی NAR3 و EL CGRA4 صفات زنجبیل با عملکرد (به‌ترتیب 0.02) و 0.03 هستند و هر سه در سطح یک درصد معنادار هستند. باقی‌ها هم‌اکنون

77
جدول 2. ترکیبات صفات و ضرایب مربوطه در شاخص نوع اول

<table>
<thead>
<tr>
<th>رتبه</th>
<th>شاخص</th>
<th>Γ_{hi}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.249X + 0.349X + 0.263X</td>
<td>0.81</td>
</tr>
<tr>
<td>2</td>
<td>0.236X + 0.342X + 0.260X</td>
<td>0.80</td>
</tr>
<tr>
<td>3</td>
<td>0.152X + 0.356X + 0.280X</td>
<td>0.78</td>
</tr>
<tr>
<td>4</td>
<td>0.236X + 0.349X + 0.260X</td>
<td>0.76</td>
</tr>
<tr>
<td>5</td>
<td>0.140X + 0.349X + 0.263X</td>
<td>0.75</td>
</tr>
<tr>
<td>6</td>
<td>0.156X + 0.349X + 0.263X</td>
<td>0.75</td>
</tr>
<tr>
<td>7</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.72</td>
</tr>
<tr>
<td>8</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.70</td>
</tr>
<tr>
<td>9</td>
<td>0.249X + 0.349X + 0.260X</td>
<td>0.69</td>
</tr>
<tr>
<td>10</td>
<td>0.124X + 0.349X + 0.263X</td>
<td>0.68</td>
</tr>
<tr>
<td>11</td>
<td>0.142X + 0.349X + 0.263X</td>
<td>0.67</td>
</tr>
<tr>
<td>12</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.65</td>
</tr>
<tr>
<td>13</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.63</td>
</tr>
<tr>
<td>14</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.62</td>
</tr>
<tr>
<td>15</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.60</td>
</tr>
<tr>
<td>16</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.58</td>
</tr>
<tr>
<td>17</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.56</td>
</tr>
<tr>
<td>18</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.54</td>
</tr>
<tr>
<td>19</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.52</td>
</tr>
<tr>
<td>20</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.50</td>
</tr>
<tr>
<td>21</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.48</td>
</tr>
<tr>
<td>22</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.46</td>
</tr>
<tr>
<td>23</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.44</td>
</tr>
<tr>
<td>24</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.42</td>
</tr>
<tr>
<td>25</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.40</td>
</tr>
<tr>
<td>26</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.38</td>
</tr>
<tr>
<td>27</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.36</td>
</tr>
<tr>
<td>28</td>
<td>0.140X + 0.349X + 0.260X</td>
<td>0.34</td>
</tr>
</tbody>
</table>

شمار رده‌بندی در بالا، طول میانگین در مرحله سوم، شمار گره، ارتفاع گیاه در مرحله سوم، وزن بالا بر پوشش در مرحله پنجم است.

در داروی و این پرتراکلیم حداکثر ۱۰ درصد نسبت به انتخاب براساس عملکرد به تناوب می‌باشد. در این شاخص، میزان جذب و تحلیل خالص گیاهی یکی از شاخص‌های فیزیولوژیک مهم بوده که با نتایج واتسون (۲۱) هم‌خوانی دارد. واتسون (۲۱) یافته‌های که می‌تواند مدای خشک گیاه را با این شاخص‌ها بهبود بخشیده، پس از آن بالا‌ترین همبستگی ارثی و شاخص

و دارویی ۲ تعلق دارد (جدول ۲). این شاخص که شامل صفت عملکرد به تناوب شیائسته‌سته است باید جمعیت مورد نظر بوده، همبستگی این شاخص ورودی‌ارثی در دارویی ۱۴ درصد از شاخص‌های جهانی بهبود یابید که یکی از نتایج با نتایج واتسون (۲۱) هم‌خوانی دارد. واتسون (۲۱) یافته‌های که می‌تواند مدای خشک گیاه را با این شاخص‌ها بهبود بخشیده، پس از آن بالا‌ترین همبستگی ارثی و شاخص

LAI1, LAI2, NAR1, NAR2, C1, C2, CR, C1G, C2G, θ, φ

شمار رده‌بندی در بالا، طول میانگین در مرحله سوم، شمار گره، ارتفاع گیاه در مرحله سوم، وزن بالا بر پوشش در مرحله پنجم است.
نتیجه‌گیری‌های ارائه شده در ادامه از بزرگ‌ترین مقدار‌های مذکور در گروه‌های مختلف جدول ۳ (جدول ۱) برای هم‌پیوستگی ارزش‌های باشی به نظر می‌رسد.

احدا در جدول ۳ (جدول ۱) برای هم‌پیوستگی ارزش‌های باشی به نظر می‌رسد.

احدا در جدول ۳ (جدول ۱) برای هم‌پیوستگی ارزش‌های باشی به نظر می‌رسد.
جدول 3. ترکیبات مختلف صفات و ضرابی مربوط در شاخص نوع دوم

<table>
<thead>
<tr>
<th>رنگ</th>
<th>شاخص</th>
<th>رنگ</th>
<th>شاخص</th>
<th>رنگ</th>
<th>شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>۰/۴۴۰۸(x_1)</td>
<td>14</td>
<td>۰/۸۱</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۰/۴۴۰۸(x_2)</td>
<td>1</td>
<td>۰/۸۱</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td>۰/۴۴۰۸(x_3)</td>
<td>۴</td>
<td>۰/۹۵</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td>۰/۴۴۰۸(x_4)</td>
<td>۷</td>
<td>۰/۹۲</td>
<td>۷</td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td>۰/۴۴۰۸(x_5)</td>
<td>۶</td>
<td>۰/۹۲</td>
<td>۶</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۰/۴۴۰۸(x_6)</td>
<td>۹</td>
<td>۰/۹۵</td>
<td>۹</td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td>۰/۷۹۳۹(x_7)</td>
<td>۸</td>
<td>۰/۹۹</td>
<td>۸</td>
<td></td>
</tr>
<tr>
<td>۸</td>
<td>۰/۹۹۹(x_8)</td>
<td>۱۵</td>
<td>۱/۸۳</td>
<td>۱۵</td>
<td></td>
</tr>
<tr>
<td>۹</td>
<td>۰/۴۴۰۸(x_9)</td>
<td>۱۲</td>
<td>۰/۸۵</td>
<td>۱۲</td>
<td></td>
</tr>
<tr>
<td>۱۰</td>
<td>۰/۴۴۰۸(x_{10})</td>
<td>۱۷</td>
<td>۰/۹۴</td>
<td>۱۷</td>
<td></td>
</tr>
<tr>
<td>۱۱</td>
<td>۰/۴۴۰۸(x_{11})</td>
<td>۱۵</td>
<td>۰/۸۶</td>
<td>۱۵</td>
<td></td>
</tr>
<tr>
<td>۱۲</td>
<td>۰/۴۴۰۸(x_{12})</td>
<td>۷</td>
<td>۰/۹۲</td>
<td>۷</td>
<td></td>
</tr>
<tr>
<td>۱۳</td>
<td>۰/۴۴۰۸(x_{13})</td>
<td>۸</td>
<td>۰/۹۱</td>
<td>۸</td>
<td></td>
</tr>
<tr>
<td>۱۴</td>
<td>۰/۴۴۰۸(x_{14})</td>
<td>۹</td>
<td>۰/۹۷</td>
<td>۹</td>
<td></td>
</tr>
<tr>
<td>۱۵</td>
<td>۰/۴۴۰۸(x_{15})</td>
<td>۱۵</td>
<td>۰/۹۰</td>
<td>۱۵</td>
<td></td>
</tr>
<tr>
<td>۱۶</td>
<td>۰/۴۴۰۸(x_{16})</td>
<td>۹</td>
<td>۰/۸۹</td>
<td>۹</td>
<td></td>
</tr>
<tr>
<td>۱۷</td>
<td>۰/۴۴۰۸(x_{17})</td>
<td>۱۶</td>
<td>۰/۸۷</td>
<td>۱۶</td>
<td></td>
</tr>
<tr>
<td>۱۸</td>
<td>۰/۴۴۰۸(x_{18})</td>
<td>۱۰</td>
<td>۰/۸۸</td>
<td>۱۰</td>
<td></td>
</tr>
<tr>
<td>۱۹</td>
<td>۰/۴۴۰۸(x_{19})</td>
<td>۹</td>
<td>۰/۹۴</td>
<td>۹</td>
<td></td>
</tr>
<tr>
<td>۲۰</td>
<td>۰/۴۴۰۸(x_{20})</td>
<td>۵</td>
<td>۰/۹۵</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>۲۱</td>
<td>۰/۴۴۰۸(x_{21})</td>
<td>۸</td>
<td>۰/۹۱</td>
<td>۸</td>
<td></td>
</tr>
<tr>
<td>۲۲</td>
<td>۰/۴۴۰۸(x_{22})</td>
<td>۸</td>
<td>۰/۹۱</td>
<td>۸</td>
<td></td>
</tr>
<tr>
<td>۲۳</td>
<td>۰/۴۴۰۸(x_{23})</td>
<td>۸</td>
<td>۰/۹۱</td>
<td>۸</td>
<td></td>
</tr>
<tr>
<td>۲۴</td>
<td>۰/۴۴۰۸(x_{24})</td>
<td>۷</td>
<td>۰/۹۴</td>
<td>۷</td>
<td></td>
</tr>
<tr>
<td>۲۵</td>
<td>۰/۴۴۰۸(x_{25})</td>
<td>۸</td>
<td>۰/۹۱</td>
<td>۸</td>
<td></td>
</tr>
<tr>
<td>۲۶</td>
<td>۰/۴۴۰۸(x_{26})</td>
<td>۸</td>
<td>۰/۹۱</td>
<td>۸</td>
<td></td>
</tr>
<tr>
<td>۲۷</td>
<td>۰/۴۴۰۸(x_{27})</td>
<td>۸</td>
<td>۰/۹۱</td>
<td>۸</td>
<td></td>
</tr>
<tr>
<td>۲۸</td>
<td>۰/۴۴۰۸(x_{28})</td>
<td>۸</td>
<td>۰/۹۱</td>
<td>۸</td>
<td></td>
</tr>
</tbody>
</table>

LAI، LAI، NAR، NAR، میانگین recherche از Principal Component analysis (PCA) و اکتشافی کامپیوتری در نشان دهنده استفاده از شاخصات اهمیت تکرارشده از صفات وارد شده در شاخصات خروجی است. اهمیت نتایج و لزومی نمایشگری که شاخص صفت درصدی در خود داشته بررسی، مناسب و نیست و آنچه مهم می باشد این است که شاخصات اگزایش دارای مقیاس واقعی و از درصد طبقه بندی، نویسندگانی، بیشترین تکرار شده و همچنین تکراری با عملکرد پایین و صفات وارد شده در یک ترکیب صفت، همچنین شفیلد با هم

* با هم، اینکه می‌توان از شاخص‌هایی انتخاب کنیم توصیه می‌شود.*
موفقیت بیش از همگی نیاز به بشرکاری کرده. به این صورت که دانشمندان به سمت آمده از نظر آن صفات مناسبی برای این کمک به استفاده از این تحقیقات، نتایج آنها و بشرکاری صفایی در انتخاب صفات وارد شده به دانش بسیار بود. در نهایت، توسعه می‌شود برای بررسی کارایی صفات بیشتری به‌دست آمده، این صفات به‌کار برای اصلاح صفاتی استفاده می‌گردد.

منابع مورد استفاده:
1. چوکان، ر. 1380. ازبین کردن و اجزاء عملاک و دانشکده دانش به‌عنوان یک دانل. مجله علم زراعت ایران (1338): 111-126.
2. رضایی، ع. 1376. انتخاب صفات وارد شده به دانشکده دانشگاه تهران. مطالعه بررسی رفع و اصلاح صفاتی، انتخابات دانشگاه تهران. 7.