بررسی وضعیت پتاسیم و اثر خواص فیزیکی و شیمیایی خاک بر آن
در شالیزارهای استان گیلان

ناصر دواترگ، مسعود کاووسی، محمدحسن علی‌نیا و مرتضی پیکان‌ا

چکیده
وضعیت پتاسیم و اثر خواص فیزیکی و شیمیایی خاک بر آن در شالیزارهای استان گیلان با استفاده از یک صد و نه نمونه‌های خاک صحیح از چهار تا ناحیه در استان گیلان مورد بررسی قرار گرفته و پتاسیم قابل استخراج به وسیله اسیدتیتریک یک مولار جوشان (K-HNO۳) و پتاسیم محلول در آب اندوز گیری شده و تاکنون بررسی نشان داد که توزیع فراوانی جمعیت رس و ظرفیت تبدیل کاتیونی نرمال بود و توزیع فراوانی جمعیت مشی‌های مثبت کربناتی و pH غیر نرمال (با pH K-NH۴OAc و pH K-NH۴OAc محلول تحت تأثیر 200 کلر شود.
چکیده و ترکیبیات معتادان و یک اثر شفاف شده در ناحیه اولم فهرست کالی سایه گاهی آب و نیاز مناسب رویه در تأثیر فراوانی خاک بر آن توزیع جغرافیایی خاکهای گیلان از نظر پتاسیم قابل جدب در وضعیت متعدد تا گسترش کر قرار دارد.

واژه‌های کلیدی: پتاسیم محلول، پتاسیم قابل استخراج به وسیله اسیدتیتریک جوشان،
پارامترهای توزیع فراوانی کمیته های مربوط به پتاسیم، توزیع جغرافیایی کمیته های مربوط به پتاسیم، استان گیلان

مقدمه
وضعیت یک عنصر در یک خاک معین نمی‌تواند به یک مقدار
به یک ترتیب مبنا، استادیاز و کارشناسان بخش خاک و
وضعیت یک عنصر در اشکال و وضعیت های
متفاوتی پایه می‌شود و علائم بر آن تبدیل از یک شکل به
شکل دیگر و اضافه نمودن و خارج شدن آنها از شکل، تمام
سبب ایجاد نظام پیو در خاک می‌شود.

1. به ترتیب مبنا، استادیاز و کارشناسان بخش خاک و تغذیه گیاه، مؤسسه‌تحقيقات برجع کشور، رشت
مقاله در مورد اثرات کلیه‌های خاک‌آب‌پزشی در حالی است که در مورد اثرات آزمایشگاهی، مقاله‌هایی که در مورد این موضوع نوشته‌اند، به شکل‌های مختلفی وجود دارند. با استفاده از روش‌های مختلفی، محققین مطالعاتی به‌منظور پیش‌بینی اثربخشی چنین تحقیقاتی انجام می‌دهند. اما در این مقاله، به‌منظور بررسی اثرات مختلفی از مدل‌های مختلفی استفاده شده است.

تمایل به استفاده از کلیه‌های خاک‌آب‌پزشی در زمینه‌های مختلفی از مطالعه‌هایی است که در این زمینه به‌منظور پیش‌بینی اثرات مختلفی به‌منظور استفاده به‌منظور استفاده انجام می‌شود. با استفاده از روش‌های مختلفی، محققین مطالعاتی به‌منظور پیش‌بینی اثربخشی چنین تحقیقاتی انجام می‌دهند. اما در این مقاله، به‌منظور بررسی اثرات مختلفی از مدل‌های مختلفی استفاده شده است.
دریای خزر

شکل 1. نمایی از موقعیتهای نمونه‌برداری شده و مرز تفکیکی نواحی مختلف در شالیزارهای استان گیلان

تعدادی از سری خاک‌های شرق گیلان نشان داد که این خاک‌ها از نظر پتانسیم محلول، قابل تبادل و غیر قابل تبادل در سطح پایین قرار دارند. کاورسی و کوپالسی (15) نتیجه گرفته‌اند که در 75 درصد از خاک‌های بررسی‌شده در استان گیلان پتانسیم قابل استفاده (عصاره‌گیری شده به روش استات آمونیوم) پایین‌تر از حد بحرانی 115 میلی‌گرم بر کیلوگرم خاک دارند. کاورسی (14) بررسی مطالعات در 25 مزرعه شالیزاری نشان داده‌اند که حد بحرانی پتانسیم قابل استفاده (عصاره‌گیری شده به روش استات آمونیوم) برای نان درصد خورش که رقم برم حصول غالب برای کشت در استان گیلان است. بر اساس 95 درصد عملکرد نسبی 150 میلی‌گرم در کیلوگرم خاک می‌باشد.

اهداف این تحقیق عبارت از: ۱) شناخت وضعیت پتانسیم از طریق پراکندگی روابط بین اشکال مختلف آن و به عنوان ناپایداری از خواص فیزیکی و شیمیایی خاک و ۲) ارزیابی کمک‌یابی تغییر و ارتقای این اشکال با شرایط فیزیو‌گرافی و هیدرولوژی مطلوب با...

۷۱
نیت رساله قابل استخراج با استفاده از الگوریتم‌های توزیع فراوانی جمعیت با نسبت 10:1 انجام شد. این الگوریتم‌ها به دنبال درصد کاهش رفتار و تغییر در دستگاه شیکر ترقه و برکشی تکان داده شد و سپس به ترتیب درصد در 15 صفحه ساختمان گرایه گرفت تا به عادل برسد. عمل هم زدن سیستم‌های مجددی به مدت 15 دقیقه در دستگاه شیکر ترقه و ترقه با استفاده از گذار صفحه وانتن صفحه گرایه (24). نتایج قابل استخراج با اب توسط این الگوریتم می‌شود که دارای توان بیش از 80 درصد صفحه ساختمان گرایه و صفحه تونس و سیستم‌سازی (25) همراه با استفاده از الگوریتم به مرحله گذاری می‌شود که این الگوریتم می‌تواند در مراحل بعدی استخراج را بهبود بخشد.

مقدمه

استفاده از الگوریتم‌های MSTATC و SPSS به عنوان دو کیفیت از سایر الگوریتم‌های استخراج مورد مطالعه برای کاهش محدودیت امکانات استفاده از الگوریتم‌های SPSS و توان انجام تجزیه گذاری اثرات مختلفی را خواهد داشت که کالاً خانوادگی در بسیاری از مدل‌های همبستگی و همبستگی خانواده را بهبود می‌یابد.

نتایج

پارامترهای آمار توصیفی متغیرهای مورد مطالعه در جدول 2 نشان داده شده است. میانگین سیل استن به شن و سیستم ریس بیشتر است. تعداد باورگوندی روند با استفاده از الگوریتمی که مبتنی بر توان داری این الگوریتم، می‌تواند این روند را بهبود بخشید.

ملاحظات

پارامترهای آمار و توزیع فراوانی جمعیت با استفاده از الگوریتم‌های MSTATC و SPSS به عنوان کیفیت از سایر الگوریتم‌های استخراج مورد مطالعه برای کاهش محدودیت امکانات استفاده از الگوریتم‌های SPSS و توان انجام تجزیه گذاری اثرات مختلفی را خواهد داشت که کالاً خانوادگی در بسیاری از مدل‌های همبستگی و همبستگی خانواده را بهبود می‌یابد.
جدول ۱. کالی غالب و مهم‌ترین کانی‌های معدن در خاک‌های استان گیلان

<table>
<thead>
<tr>
<th>مهم‌ترین کانی‌های معدنی</th>
<th>تعداد کانی‌های معدنی به نظر گرفته شده</th>
<th>تعداد کانی‌های معدنی با توجه به مقیاس</th>
<th>رتبه</th>
<th>بخش‌های مصرفی</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایلام</td>
<td>۲</td>
<td>۴</td>
<td>۴</td>
<td>کریمیان اقیانی (۸)</td>
</tr>
<tr>
<td>اسفناکت</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۶ (باردیت)</td>
</tr>
<tr>
<td>کریمیان</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
<td>۶ (باردیت)</td>
</tr>
<tr>
<td>ایلام</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۶ (باردیت)</td>
</tr>
<tr>
<td>اسفناکت</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۶ (باردیت)</td>
</tr>
<tr>
<td>اسکامولت</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
<td>۶ (باردیت)</td>
</tr>
<tr>
<td>کریمیان</td>
<td>۷</td>
<td>۷</td>
<td>۷</td>
<td>حسین‌پور و کلباسی (۱۰)</td>
</tr>
<tr>
<td>ایلام</td>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td>۸ (پرداز و همکاران)</td>
</tr>
<tr>
<td>اسفناکت</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۸ (پرداز و همکاران)</td>
</tr>
<tr>
<td>اسکامولت</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۸ (پرداز و همکاران)</td>
</tr>
<tr>
<td>کریمیان</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۸ (پرداز و همکاران)</td>
</tr>
</tbody>
</table>
جدول 2. خلاصه آمار توصیفی اشکال پتاسیم و خواص فیزیکی و شیمیایی اندازه‌گیری شده در خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>شکل توزیع فراوانی</th>
<th>کندگی</th>
<th>ضریب تغییرات</th>
<th>روابط</th>
<th>میانگین</th>
<th>جدایت</th>
<th>حداکثر</th>
<th>حدااقل</th>
<th>متغیر (واحد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>لگاریتم نرمال</td>
<td>2/3282 **</td>
<td>2/172</td>
<td>2/03</td>
<td>2/23</td>
<td>2/22</td>
<td>2/2</td>
<td>2/2</td>
<td>شن (%)</td>
</tr>
<tr>
<td>نرمال</td>
<td>0/5499 **</td>
<td>0/262</td>
<td>0/75</td>
<td>0/28</td>
<td>0/29</td>
<td>0/28</td>
<td>0/28</td>
<td>سیلت (%)</td>
</tr>
<tr>
<td>لگاریتم نرمال</td>
<td>0/5882 **</td>
<td>0/258</td>
<td>0/27</td>
<td>0/23</td>
<td>0/21</td>
<td>0/13</td>
<td>0/19</td>
<td>رس (٪)</td>
</tr>
<tr>
<td>نرمال</td>
<td>0/5082 **</td>
<td>0/14</td>
<td>0/38</td>
<td>0/56</td>
<td>0/56</td>
<td>0/56</td>
<td>0/56</td>
<td>کربن آلی (٪)</td>
</tr>
<tr>
<td>لگاریتم نرمال</td>
<td>0/5499 **</td>
<td>0/262</td>
<td>0/75</td>
<td>0/28</td>
<td>0/29</td>
<td>0/28</td>
<td>0/28</td>
<td>ظرفیت تبادل کاتیونی ((\text{Cmol} / \text{kg}))</td>
</tr>
<tr>
<td>نرمال</td>
<td>0/5082 **</td>
<td>0/14</td>
<td>0/38</td>
<td>0/56</td>
<td>0/56</td>
<td>0/56</td>
<td>0/56</td>
<td>pH</td>
</tr>
<tr>
<td>لگاریتم نرمال</td>
<td>0/5082 **</td>
<td>0/14</td>
<td>0/38</td>
<td>0/56</td>
<td>0/56</td>
<td>0/56</td>
<td>0/56</td>
<td>((\text{mg} / \text{kg})) Water soluble¹</td>
</tr>
<tr>
<td>نرمال</td>
<td>0/5082 **</td>
<td>0/14</td>
<td>0/38</td>
<td>0/56</td>
<td>0/56</td>
<td>0/56</td>
<td>0/56</td>
<td>((\text{mg} / \text{kg})) K- (\text{NH}_4\text{OAc}²</td>
</tr>
<tr>
<td>لگاریتم نرمال</td>
<td>0/5082 **</td>
<td>0/14</td>
<td>0/38</td>
<td>0/56</td>
<td>0/56</td>
<td>0/56</td>
<td>0/56</td>
<td>((\text{mg} / \text{kg})) K Nitric acid³</td>
</tr>
</tbody>
</table>

* : معنی‌دار در سطح ۰.۰۵ درصد
** : معنی‌دار در سطح ۰.۰۱ درصد
*** : غیرمعنی‌دار

1: پتاسیم محلول در آب
2: پتاسیم قابل استخراج به وسیله اسیدات آمینوم نرمال در pH = 7
3: پتاسیم قابل استخراج به وسیله اسیدتتراکسی جوشان
4: معیار برای منشأ عدم تقریب در تابع توزیع فراوانی
5: معیار از میزان میانی منحنی توزیع فراوانی در نقطه حداقل آن
جدول 3 ضراپب همبستگی پتاسیم عصاره گرگرم شده به روش های مختلف با یکدیگر و نسبت به خواص فیزیکی و شیمیایی خاک در 109 نمونه از شالیزارهای استان گیلان

<table>
<thead>
<tr>
<th>K- HNO₃ (%/kg)</th>
<th>K- NH₄OAc (%/kg)</th>
<th>Water Soluble K (%/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2**</td>
<td>0.35</td>
<td>0.55</td>
</tr>
<tr>
<td>0.18**</td>
<td>0.38</td>
<td>0.47</td>
</tr>
<tr>
<td>0.14**</td>
<td>0.37</td>
<td>0.45</td>
</tr>
<tr>
<td>0.22**</td>
<td>0.35</td>
<td>0.49</td>
</tr>
<tr>
<td>0.24**</td>
<td>0.35</td>
<td>0.49</td>
</tr>
<tr>
<td>0.24**</td>
<td>0.35</td>
<td>0.49</td>
</tr>
<tr>
<td>0.22**</td>
<td>0.35</td>
<td>0.49</td>
</tr>
<tr>
<td>0.24**</td>
<td>0.35</td>
<td>0.49</td>
</tr>
<tr>
<td>0.24**</td>
<td>0.35</td>
<td>0.49</td>
</tr>
</tbody>
</table>

1: پتاسیم قابل استخراج به وسیله اسیدنیتریک جوشان

pH = 7

2: پتاسیم قابل استخراج به وسیله اسیدنیتریک جوشان

pH = 7

3: پتاسیم محلول در آب

Cмол/кг

\[
\text{صرفیت نبادل کاتیونی (Cмол/кг)} = \frac{\text{K- HNO}_3 (\%/кг)}}{\text{K- NH}_4\text{OAc (\%/кг)}}
\]

** به‌صورت مطلق در بر 24 ساعت

\[R^2 \]

\[\text{برازش و بررسی قرار گرفت (جدول 5): ضریب } \beta \text{ بین اگر همیت نسب تأثیر هریک از متغیرهای مستقل بر متغیر وابسته است و هر متغیر مستقل که قطر مقدار ضریب } \beta \text{ در آن بیشتر داره تناغم بیشتر از بر متغیر وابسته بیشتر است (67).}

\[\text{نتایج نشان می‌دهد که پتاسیم محلول در آب تحت تأثیر شنگرین کرین آئی، پتاسیم قابل جلب و pH قرار دارد، به طوری که با توجه به ضریب تبینی تعیین شده } (R^2) \text{ هفتاد و سه درصد از خواص فیزیکوشیمیایی خاک در کل نمونه‌ها در جدول 3 مشخص شده است. از خواص فیزیکی و شیمیایی اتمسفرهای گرمایی شده در قسمت نسب به یکبودی که در جدول 3 طبق نشان‌های گلیان شریکی، همبستگی بین اشکال مختلف پتاسیم قوی و معنی‌دار است و در این ناحیه نیز همبستگی غیر از اشکال با خواص فیزیکی و شیمیایی خاک ضعیف است (جدول 4).}

\[\text{اثر توان متغیرهای فیزیکوشیمیایی خاک و پتاسیم قابل} \]
جدول ۴. ضرایب همبستگی پناسیم عصاره‌گیری شده به روش‌های مختلف با یکدیگر و نسبت به خواص فیزیکی و شیمیایی خاک در نمونه‌های شالزارهای شرق گیلان

<table>
<thead>
<tr>
<th>Water soluble K (mg/kg)</th>
<th>K-NH₄OAc (mg/kg)</th>
<th>K-HNO₃ (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37 *</td>
<td>0.33</td>
<td>0.37</td>
</tr>
<tr>
<td>0.72 *</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>0.73</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
</tr>
</tbody>
</table>

جدول ۵. ضرایب رگرسیون خطی جدول ۴ و سیلتن (%)

<table>
<thead>
<tr>
<th>منظوره</th>
<th>ضریب بETA</th>
<th>معنی‌داری</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>0.291</td>
<td>0.0165</td>
</tr>
<tr>
<td>O.C</td>
<td>0.207</td>
<td>0.0362</td>
</tr>
<tr>
<td>pH</td>
<td>0.212</td>
<td>0.0264</td>
</tr>
<tr>
<td>K-NH₄OAc</td>
<td>0.657</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

K-NH₄OAc (mg/kg) = -2.0/59 + 1/78 CEC (Cmole. Kg⁻¹) + 0/44 K-Nitric acid (mg/kg) + 1/47 Water soluble K (mg/kg)

<table>
<thead>
<tr>
<th>منظوره</th>
<th>ضریب BETA</th>
<th>معنی‌داری</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC</td>
<td>0.232</td>
<td>0.0004</td>
</tr>
<tr>
<td>K- Nitric acid</td>
<td>0/182</td>
<td>0.0001</td>
</tr>
<tr>
<td>Water soluble K</td>
<td>0/677</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

K-Nitric acid (mg/kg) = 340/13 + 7/51 K-NH₂OAc (mg/kg) - 7/47 Silt (%)
جدول ۶ وضعیت پتاسیم قابل جذب در خاک‌های شالیزاری استان گیلان

<table>
<thead>
<tr>
<th>وضعیت</th>
<th>کم</th>
<th>متوسط</th>
<th>بالا (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>دارنده</td>
<td>0</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>درصد نمونه خاک‌های مورد مطالعه</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>در دانه‌های متفاوت</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(شکل‌های ۲ و ۵). علاوه بر این ناحیه اکثر خاک‌های نمونه‌های مورد مطالعه دارای ظرفیت تبدیل کاتیونی بیش از ۲۰ سانتی‌مول بر گیلگرم هستند (شکل ۳).

پتاسیم قابل استخراج به وسیله استاندارد K-NH۴OAc تحت تأثیر پتاسیم محلول، پتاسیم غریفیلر تبدیل و ظرفیت تبدیل کاتیونی قرار دارد. این متغیرها با توجه به ضریب تبیین تعداد شده (R²) همانند دو رفتار این پتاسیم را توجه می‌نماید. با توجه به ضریب β پتاسیم محلول به طور نسبی تأثیر بیشتری با K-NH۴OAc قرار دارد (جدول ۵).

K-NO۳ تحت تأثیر سلنیوم و K-NH۴OAc قرار دارد. این متغیرها پنج درصد از رفتار K-NH۴OAc را توجه می‌نماید و در این میان K-NH۴OAc بیشتری برخوردار است (جدول ۵). مسایل داده‌های مربوط به ذرات رس و ظرفیت تبدیل کاتیونی نشان می‌دهد که توزیع مکانی این مواد غذایی به ویژه در مقادیر کم‌ستیزی بهبود همیشه به‌ механизم N قرار دارد. این شرایط در سایر از ایران به شرایط دیگری نیز هستند. در کیلیان در مرحله اول نشان داد که این خاک‌های غربی نیز نمونه خاک‌های کریم آیپی بیش از درصد غالب بودند (شکل ۴). پتاسیم قابل استخراج با استاندارد K-NH۴OAc برخوردار توزیع مکانی تقریباً مشابه با دارات رس بوده که در آن مقادیر زیاد هو مطرح در حوزه آبخیز سیبیدور و مقادیر کم‌ستیزی در رفتار دارد. در طرح کیلیان خاک‌های بیشتر دردست متوسط در نواحی تازه‌تر و غرب کیلیان قرار دارند. در سه کیلیان غربی نیز نشان داد که این خاک‌های غربی نیز نمونه کاملاً به طور نسبی یک‌سان با است.
شکل 2: توزیع جغرافیایی رس (R/) در شالیزارهای استان گیلان

شکل 3: توزیع جغرافیایی ظرفیت تبادل کاتیونی (Cmole/kg) در خاکهای شالیزاری استان گیلان
شکل 3. توزیع جغرافیایی کربن آلی (%/ در شالیزارهای استان گیلان و اطراف آن در تابع توزیع فراوانی متغیرهای سیبیک، کربن آلی، یتیسیم محلولول در آب و pH غيرترمال و بسیرای شن، K- HNO۳ و K-NH۴OAc لگاریتم نرمال می‌باشد. غیرترمال بودن در توزیع فراوانی یانگ‌گیر در محیط‌های رسوب‌گذاری و یا آنتار نامتقفار فرابندهای پدوزیکی یا هیدروژیک بر متغیرهای فوق است (25). در نواحی گیلان غربی و شرقی، شالیزارها در شرایط فیزیوگرافی متفاوت و غیریک نواخت تری نسبت به گیلان مرکزی فرار دارند که سبب تفاوت در فراوانی رسوب‌گذاری و در نتیجه توزیع مکانی سن و سبلت می‌گردد. از طرف دیگر کمیت‌های پتانسیم محلول، تیادلی و غیرتابانی تحت تأثیر عوامل بسبایی، مانند مقدار و نوع رس، مقدار رطوبت خاک، نوع گیاه و سال‌های کشت، شرایط زمینی، فعالیت بیولوژیکی موجودات زنده، و اضافه نمودن کودهای ناتیس به خاک فرار دارند که با توجه به نوع انتقال در شدت تأثیر عوامل فوق در شاک‌های مورد مطالعه امکان انحراف توزیع فراوانی داده‌ها از نرمال وجود دارد. علاوه بر چنینگ (که

معیاری برای سنجش عدم تقارن در نمود توزیع فراوانی می‌باشد. پارامتر کشیدگی (که معیاری از میزان توزیع متغیری توزیع فراوانی در نظر گرفته اند) نیز در متغیرهای شن، سبلت، کربن آلی و یتیسیم قابل استخراج به وسیله استاندارکتی به طور معنی‌داری برگزاری از صفر است که این حالت لپتوکورتیک (Leptokurtic) نامیده می‌شود. جنین توزیع‌های تركیبی از دو جامعه نرمال با واريانس متفاوت و لی میانگین مشابه است (۲۶). تیانسیم محلول در درکه‌های دیگر پارامترکشیگی متفاوت و معنی‌دار است. جنین توزیعی بیلپیکروتیک (Platy kurtic) نامیده می‌شود. این توزیع ممکن است توزیعی از K-HNO۳ و K-NH۴OAc به تکثیف هر واریانس شن، سبلت، کربن آلی و یتیسیم محاسبه گردید (داده‌ها نشان داده نشدند). واریانس شن و سبلت در نمونه خاک‌های کربن آلی غربی بیش از بقیه نواحی است. ناحیه گیلان غربی در شرایط فیزیوگرافی متفاوت و غیریک نواخت ترد نسبت به بقیه نواحی فرار دارد. به نظر
دریای خزر

شکل ۵. توزیع چگالی‌پی و توزیع (mg/kg) OAc در خاک‌های شهرستان گیلان

شکل ۶. نقشه توزیع چگالی‌پی پتانسیم قابل استخراج به وسیله اسیدتزریک (mg/kg) KHNO3 در خاک‌های شهرستان گیلان
بررسی وضعیت پتاسیم در شالیزارهای استان گیلان و اثر ...
تجمع و روند افزایش کربن آلی در خاک می‌گردد و در نهایت این کمیت به صورت یکی از عوامل کنترل کننده پاتاسیم محلول در خاک در میدان بررسی شده است. در خاک‌های غنی از کربن آلی به دلیل ضعیف بودن قدرت بودن گروه‌های غیرعامل کلینه‌ها آلی با پاتاسیم، قدرت بافتی کم و همسایه آنها نسبت به آبنوازی نسبت بین آب‌زایی زیاد زردی در نگهداری پاتاسیم در موانع تابلی داده شده است. به عبارت دیگر خاک‌هایی که باز کلیک ممکن سطحی بیشتری نسبت به واحد ون دارند (مانند خاک‌های با رنگ غلبه اسمک کزل کلاس غلبه در اکثر شاخص‌های اصلی) کنترل بیشتری برای پاتاسیم دارند (32). کنترل پاتاسیم در شاخص‌های اصلی می‌تواند از اسمک‌ها و بعد از ایجاد (15). خاک‌های غنی از کانی‌های دیگر غلظت پاتاسیم محلول کمتر خواهند بود ولی به تدریج با افزایش دمای اشعاع و موانع توطیح پاتاسیم در خاک کاهش و مطبق با آن غلظت تعادلی پاتاسیم در محلول افزایش می‌یابد (32).

میانگین پتاسیم قابل استخراج به وسیله اسید نت‌برک (K-HNO₃) در خاک‌های مورد بررسی در سطح جوشان (K-NO₃) نسبتاً کم تا کم قرار دارند که تأثیری بر مطالعه کلیس و کلیسی (15) و اونستاد (5) می‌باشد. گروه خاک‌های غلبه از نظر کانی اسمک‌کننده کم کانی‌های غلبه در خاک‌های شالابز رای اصلی می‌باشد. هر جنگ از نظر K-HNO₃ و در آنها نسبتاً K-NO₃ غنی هستند و غلظت K-NO₃ کم است (32). علاوه بر این به نظر می‌رسد سایر سابقه طولانی کشت بدن افزایش قدر کلیسی منجر به کاهش پتاسیم قابل جذب و در نهایت پتاسیم غیر قابل تبدیل شده است.
بررسی و پیشنهاد پتاسیم در شالیزارهای استان گیلان و اثر …

اتنامی قابل استخراج به وسیله اسدینتریک جوشان (K-HNO₃) تحت تاثیر پتاسیم قابل بادال و جزء سیل خاک قرار داشته. خاک‌های که از مواد ماده‌با میکای تا فلزسپار پتاسیم می‌شوند، هوا دیدگی در آنها کم‌کم باشد، در اثر دیدگی بالاتری از این کانال‌ها در جریان سیل خواهد بود (۳۵). در خاک‌های مورد بررسی پتاسیم قابل بادال نقص مهم‌تری در توجهه مقدار K-HNO₃ دارد. در هر گروه از خاک‌های بکالی محله‌ای پتاسیم قابل بادال هیپسکی قوی با موجود نهایی از این بادال پتاسیم خواهد داشته است. (۱۸) خاک‌های اکستن‌کنندگان نهایی از کانال‌های نهایی از پتاسیم قابل بادال و در درجه دیدگی، نقص مهم‌تری در توجهه مقدار K-HNO₃ دارد. در هر گروه از خاک‌های بکالی محله‌ای پتاسیم قابل بادال به وجود افتاده است.

نتیجه گیری

با توجه به بررسی های پتاسیم (غرنرمان و لگّناتریم مرمر) اشکال مختلف پتاسیم در شالیزارهای استان گیلان به نظر می‌رسد که اشکال تحت تأثیر تغییر در حیطه‌های رسوایی و آب و دشت‌های آب‌برداری و ساحلی حوزه‌ی باعث افزایش مقدار آن نسبت به دیگر تاوانی استان شده است. علاوه بر آن که توجه به آنکه این رودخانه‌های خاک‌های غنی از کانال‌های حاوی پتاسیم (بانوان ایلیت) استانهای کردستان، زنجان و سمغان صرخ‌نشه می‌گردد، غلظت بیون پتاسیم محلول در آب این رودخانه‌های نسبت به دیگر رودخانه‌های محله‌ی ساحلی چشمه‌ها که به عنوان منابع برای تأمین آب شالیزارها استفاده می‌شود، بیشتر است.
دانشگاه کرج، دانشگاه تهران.
5. پخشی، بیر. ۱۳۷۲. تحقیقات انتقال انرژی نور در بیولوژی و اکولوژی. چاپ وانتشار در تهران.
6. پخشی، بیر. ۱۳۷۳. لاهیجان. پایان‌نامه کارشناسی ارشد فیزیولوژی وارونگی در خانه‌های استان گیلان. پایان‌نامه کارشناسی ارشد خواص انرژی نور، دانشگاه تهران.
7. پخشی، بیر. ۱۳۷۲. پایان‌نامه کارشناسی ارشد نور در بیولوژی و اکولوژی. چاپ وانتشار در تهران.
8. پخشی، بیر. ۱۳۷۳. نور نور در بیولوژی و اکولوژی. چاپ وانتشار در تهران.

منابع مورد استفاده

1. "آماره‌نامه تیپ تجزیه شیمیایی و فیزیکی خانه‌های استان گیلان. ۱۳۷۰. بخش تحقیقات خاک و تغذیه. مؤسسه تحقیقات جغرافیا و هزینه.
2. "آماره‌نامه تیپ تجزیه شیمیایی و فیزیکی خانه‌های استان گیلان. ۱۳۷۰. بخش تحقیقات خاک و تغذیه. مؤسسه تحقیقات جغرافیا و هزینه.
3. "آماره‌نامه تیپ تجزیه شیمیایی و فیزیکی خانه‌های استان گیلان. ۱۳۷۰. بخش تحقیقات خاک و تغذیه. مؤسسه تحقیقات جغرافیا و هزینه.
4. "آماره‌نامه تیپ تجزیه شیمیایی و فیزیکی خانه‌های استان گیلان. ۱۳۷۰. بخش تحقیقات خاک و تغذیه. مؤسسه تحقیقات جغرافیا و هزینه.
5. "آماره‌نامه تیپ تجزیه شیمیایی و فیزیکی خانه‌های استان گیلان. ۱۳۷۰. بخش تحقیقات خاک و تغذیه. مؤسسه تحقیقات جغرافیا و هزینه.
6. "آماره‌نامه تیپ تجزیه شیمیایی و فیزیکی خانه‌های استان گیلان. ۱۳۷۰. بخش تحقیقات خاک و تغذیه. مؤسسه تحقیقات جغرافیا و هزینه.
7. "آماره‌نامه تیپ تجزیه شیمیایی و فیزیکی خانه‌های استان گیلان. ۱۳۷۰. بخش تحقیقات خاک و تغذیه. مؤسسه تحقیقات جغرافیا و هزینه.
8. "آماره‌نامه تیپ تجزیه شیمیایی و فیزیکی خانه‌های استان گیلان. ۱۳۷۰. بخش تحقیقات خاک و تغذیه. مؤسسه تحقیقات جغرافیا و هزینه.
بررسی وضعیت وضعیت تشکیل‌های هالیت‌دار استان گیلان و اثر ...