بهروز مرادی عاشوری، احمد ارزانی، عبدالمهدی رضایی و سید علی محمد میرمحمدی مبیدی

چکیده
در این بررسی نحوه کنترل زنیکی عامل‌کرد دانه و صفات مربوط به آن در پنج تلاقی گندم پانزه (Triticum aestivum L.) به روش تجزیه میانگین نسل‌ها به پراکنده و تحلیل تصادفی در دو نکات ارزیابی شده‌اند. تأثیر تجزیه واراین میانگین نسل‌ها نشان داد که تفاوت‌های معنی‌دار بین نسل‌ها برای صفات مورد مطالعه از جمله عامل‌کرد دانه در بونه، تعداد سپیلچه در بونه، تعداد بیضی‌های دانه در سبیل و وجود دارند. برای پیش‌بینی صفات و تلاقی‌ها مقدار $F_{\sqrt{D}}$ کوککینرتریکس یک بوده که نیازگر متفاوتی بودن علائم و بزرگی اثر زنیکی کنترل کندنگان صفات می‌باشد. برای عملکرد دانه ورالت‌های عمومی با دامنه 8/6 تا 18/6 درصد و ورالت‌های خاص با دامنه 24 تا 28/6 درصد برای پنج تلاقی برآورد گردید. که کوکککینرتریکس را در مقایسه با سایر صفات دارا بود. برآورد اجزای زنیکی میانگین نسل‌ها با پراکنده مدل‌های مختلف و انتخاب بهترین مدل نشان داد که بهتره به نوع صفت و زنیکی نقض اجزای زنیکی افراشی، غالب و استانداردی در کنترل صفات مورد مطالعه متفاوت است.

واژه‌های کلیدی: گندم نان، تجزیه میانگین نسل‌ها، ورالت‌های عمومی، عملکرد دانه، اجزای تبعیض و عملکرد

مقدمه
عملکرد دانه صفتی بسیار پیچیده است و انتخاب برای افزایش عملکرد در می‌بلهایی در حال تکنیک به لحاظ وجود ارث متقابل زنیکی x محیط با مشکل مواجه می‌باشد. بسیاری از تریب استفاده از برخی از اجزاء عملکرد به عملکرد دانه هم‌یوگنستی دانسته‌ای انتخاب بیوتها و قابل‌ها در می‌بلهای اولیه قابل توجه می‌باشند (11). در این ارتباط آگاهی از بازیافت

1. محض مرکز ملی تحقیقات کلی و بیماری مللات
2. به ترتیب استادان و دانشیار اصلاح نباتات، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

1384
گالپیتی، ایستاده و درجه غلیبیت در هر تلاقی برآورد کرد (۳)
این روش در مقایسه با دیگر طرح‌های زنیتیکی به آزمایش‌های کوچکتری از لحاظ جهتی و سطح زیر کشت نیز بزرگ و به ساده‌گرایی یک بانک انتخاب ایستاده شده ترین فرمکره (تریجنی)
دو طرفه (diogenic) و سه طرفه (سنتی) در دو تراقه (۱ و ۲) ضریح جهتی با توجه به
میانگین در مقایسه با روش‌های مبنی بر تجزیه واریانس (سایر
روش‌ها) از طریق کوچکتری برخوردار می‌باشد (۳)
در مقایسه با افراد ایستاده استفاده نمی‌رود. به گونه‌ای که افراد مبتلا به
تلاقی‌های نیز هنگام تخمین زنی‌تر از گونه‌ای که در تلاقی‌های و نحوه تخمین
دستورالعمل‌های زنیتیکی توسط دانشجوی خانواده ساخته‌شده‌است. نهایت هر در
تلاقی از طریق به سبب اثرهای و به صورت تصادفی در مبتلا به اگزوز گرفته‌شده
BC، و BC، بوده طرز تصدیفی در هر
درخت مشخص شده‌اند. این‌گونه گروهی شده‌اند. تجزیه میانگین نسل‌ها
برای هر پنج تلاقی و هر صفت به طور جداییه روش مانند و
چنین (۴) انجام کرده، برآورد ارزیابی از استفاده از مدل
شکو پارامتری شامل میانگین نسل‌ها (m) افراد ایستاده [I]، اثر افزایشی [II]، اثر تناوبی بین آتار [III]، اثر افزایشی و غلیبیت [IV]، اثر تناوبی بین آتار [V]، اثر تناوبی بین آتار [VI]
با توجه به این که تعداد مشاهده برای برآورد اجزای واریانسا
در هر تلاقی مقادیر بوده، برآورد پارامترها با استفاده از روش
انجام شده (weighted least squares) (۶)
به متغیر اثرات مشابه‌ترین مدل برای توجه
میانگین‌ها مشاهده شده، تمام نسیله با مدل دو، سه، چهار،
بنج و شکو پارامتری آزمون شدهای. این مدلها برای میانگین‌های مشاهده شده به وسیله آزمون چهار کا با چهار، سه، دو و یک
درجه آزادی برای تکوهپی برآورش (goodness of fit) امتحان گردیدند. این روش چون از اطلاعات نمای سنجش استفاده می کند به آزمون وزنی تئور (joint scaling test) معروف است. عکس و ضرب کردن ماتریس ها به وسیله برنامه آماری مینی تب انجم شد و بر اساس ماتریس و جیکنر (Minitab) اجزای واریانس محاسبه گردیدند. این اجزای برآسای امید ریاضی فرمول های زیر محاسبه شدند:

\[E_W = \frac{1}{3} \left(V_P + V_P + V_V \right) \]
\[D = 4V_V - 2(V_{BC}, + V_{BC},) \]
\[H = 2(V_{BC}, + V_{BC}, - V_V - E_W) \]
\[F = V_{BC}, - V_{BC}, \]

در فرمول های فوق جزء غیرقابل توزیع (محیطی) بخش H جزء افزایش واریانس، بخش F روي تمام مکانهای زنی می باشد. فاصله مقادیر پارامتر زنجیکی صفر (بی نزدیک به صفر) باشد.

نقطه اخیری به مدت چهار هفته، به وسیله این است نشان داده است که همان غیر اکثری از بالیند که مقدار بیشتری را از لحاظ صفت اندوزه گیری شده (نسبت به والد دیگر) دارا می باشد. به همین ترتیب مقادیر منفی پارامتر زنجیکی گینگر این است که همان غیر اکثری در والدی قرار دارند که مقادیر کمتری از لحاظ صفت مورد مطالعه (نسبت به والد دیگر) دارا می باشد. همچنین نسبت غلیطی معنی و به عنوان معیاری از انحرافات غلیطی در مکانهای زنی متفاوت با پارامتر شدند. فاصله مقادیر با پارامتر صفر (بی نزدیک به صفر) بکر باشد، نشان دهنده این است که بزرگ را در غلیطی برای تمام زنی مستند صفت مورد مطالعه پیکر است. در این حالت \[\frac{F}{\sqrt{D/H}} \] می نویسد با پارامتر خویی از غلیطی باشد و اگر نسبت \[\frac{F}{\sqrt{D/H}} \] با پارامتر صفر (و یا نزدیک به صفر) باشد، بینانگر این است که زنی متفاوت از لحاظ علامت و بزرگی متفاوت می باشد. در این حالت \[\frac{F}{\sqrt{D/H}} \] به عنوان معیاری از انحرافات غلیطی در مکانهای زنی متفاوت با پارامتر شدند. فاصله مقادیر با پارامتر صفر (بی نزدیک به صفر) بکر باشد، نشان دهنده این است که بزرگ را در غلیطی برای تمام زنی مستند صفت مورد مطالعه پیکر است. در این حالت \[\frac{F}{\sqrt{D/H}} \] می نویسد با پارامتر خویی از غلیطی باشد و اگر نسبت \[\frac{F}{\sqrt{D/H}} \] با پارامتر صفر (و یا نزدیک به صفر) باشد، بینانگر این است که زنی متفاوت از لحاظ علامت و بزرگی متفاوت می باشد. در این حالت \[\frac{F}{\sqrt{D/H}} \]
جدول 1. اجزای واریانس برای صفات تعداد سیلچه در بوته، تعداد سیلچه در سیلچه، وزن دانه در سیلچه، وزن دانه در بوته و عملکرد دانه در بوته نسل های مختلف گندم

<table>
<thead>
<tr>
<th>F/√DH</th>
<th>√DH</th>
<th>E_W</th>
<th>F</th>
<th>H</th>
<th>D</th>
<th>تعداد سیلچه در بوته</th>
<th>تعداد سیلچه در سیلچه</th>
<th>وزن دانه در سیلچه</th>
<th>وزن دانه در بوته</th>
<th>عملکرد دانه در بوته</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/0.2</td>
<td>0.2/20</td>
</tr>
<tr>
<td>30/0.3</td>
<td>0.3/30</td>
</tr>
<tr>
<td>40/0.4</td>
<td>0.4/40</td>
</tr>
<tr>
<td>50/0.5</td>
<td>0.5/50</td>
</tr>
<tr>
<td>60/0.6</td>
<td>0.6/60</td>
</tr>
<tr>
<td>70/0.7</td>
<td>0.7/70</td>
</tr>
<tr>
<td>80/0.8</td>
<td>0.8/80</td>
</tr>
<tr>
<td>90/0.9</td>
<td>0.9/90</td>
</tr>
<tr>
<td>100/1.0</td>
<td>1.0/100</td>
</tr>
</tbody>
</table>
روشن x مهدوی و روشن x آنیا ناشانگر غالب بودن زندگی کننده این صفت در انجایی تلاقی‌ها به ترتیب در وادی مهدوی و آنیا بوده. همچنین مثبت بودن مقدار در تلاقی‌های روشن x آنیا، مهدوی x آنیا، مهدوی x گاسکوین (جدول 3) نیز بانگر سهم بشر اثر غلیظ بود.
براساس آزمون t احتمال رباتیک میانگین برای این صفت (جدول 2) در تلاقی‌های روشن x مهدوی و روشن x آنیا معنی‌دار بود. برای تعیین دقت مدل و معنی‌داری بنا گیری معنی‌داری نمی‌توان از مدل شش پارامتری استفاده نمود و برای این مفهوم دو نسل های بشریت می‌باشد. بنا بر این در این تلاقی‌ها پیشنهاد می‌شود از نسل های پیشمرگه و در نتیجه از مدل سه‌گانه و وجود داشته باشد. آمار کرد، با این حال جزء و [d] در این تلاقی‌ها و نیز در تلاقی‌های [آنیا معنی‌دار بود.
برآوردهای [آنیا، روشن x مهدوی و روشن x آنیا و مهدوی x آنیا غلیظی نسبت نشان می‌دهد.
و با توجه به برآوردهای انجایی زنگیکی میانگین بجای این صفت (جدول 3)، با این حال می‌توان از وادی پذیرفته‌های عمومی از 20/50 درصد در تلاقی‌های مهدوی x گاسکوین تا 65/20 درصد در تلاقی‌های روشن x آنیا متغیر بود.
بیشترین وادی پذیرفته‌های غلیظی در تلاقی‌های مهدوی x آنیا مشاهده شد. بیشترین پیش‌رفت زنگیکی نیز در این تلاقی مشاهده شد. بنا بر این امکان مستقیم برای این صفت درایی تلاقی نسبت به سایر تلاقی‌ها مؤثر خواهد بود. ضرایب همبستگی زنگیکی و فنوتیپی (جدول 4) نشان داد که تعداد سبیله با عمکار به دانه بوده‌های همبستگی مثبت و معنی‌دار (ب) ترتیب دارد.

۲. تعادل سبیله در سبیله
منفی بودن مقدار پارامتر زنگیکی F برای این صفت در تلاقی‌های
جدول ۲. بررسی‌های اجزای زنتیکی میانگین برای صفات تعداد سنبله در بوته و تعداد سنبله در سپرنه در پنج تلای گندم

<table>
<thead>
<tr>
<th>صفات</th>
<th>تلایی</th>
<th>m</th>
<th>$[d]$</th>
<th>$[h]$</th>
<th>$[i]$</th>
<th>$[j]$</th>
<th>$[k]$</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد</td>
<td>روش‌نِه‌ی مهدود</td>
<td>۲۷/۶۷ ± ۵/۴۱ **</td>
<td>۱/۹۵ ± ۰/۹۵ **</td>
<td>۴۴/۱۶ ± ۱۲/۷۰ **</td>
<td>۹/۱۲ ± ۳/۹۵ *</td>
<td>۳۱/۹۰ ± ۷/۱۲ **</td>
<td>۰/۵۰ ± ۲/۸۵ *</td>
<td>۲/۵۰ **</td>
</tr>
<tr>
<td>و نیز اینجا</td>
<td>روش‌نِه‌ی یِنِکا</td>
<td>۲۰/۷۳ ± ۵/۶۷ **</td>
<td>۱/۹۲ ± ۰/۹۷ **</td>
<td>-۸/۳۶ ± ۴/۸۷ (۱)</td>
<td>-۹/۰۱ ± ۲/۸۷ *</td>
<td>-۹/۰۱ ± ۲/۸۷ *</td>
<td>-۹/۰۱ ± ۲/۸۷ *</td>
<td>۲/۵۰ **</td>
</tr>
<tr>
<td>سنبله در بوته</td>
<td>روش‌نِه‌ی یِنِکا</td>
<td>۲۷/۲۲ ± ۶/۰۵ **</td>
<td>۱/۷۵ ± ۱/۲۹ *</td>
<td>۳۵/۰۰ ± ۱۷/۰۵ *</td>
<td>۱۱/۰۴ ± ۲/۸۵ *</td>
<td>۲۳/۰۱ ± ۱۱/۵۶ *</td>
<td>۵۶ *</td>
<td>۲/۵۰ **</td>
</tr>
<tr>
<td>و نیز اینجا</td>
<td>روش‌نِه‌ی یِنِکا</td>
<td>-ns</td>
<td>-ns</td>
<td>-ns</td>
<td>-ns</td>
<td>-ns</td>
<td>-ns</td>
<td>-ns</td>
</tr>
<tr>
<td>سنبله در سپرنه</td>
<td>مهدود</td>
<td>۱۳/۳۴ ± ۰/۸۹ **</td>
<td>۱/۶۰ ± ۱/۳۹ *</td>
<td>-۹/۰۱ ± ۱/۳۹ *</td>
<td>-۹/۰۱ ± ۱/۳۹ *</td>
<td>-۹/۰۱ ± ۱/۳۹ *</td>
<td>-۹/۰۱ ± ۱/۳۹ *</td>
<td>۸/۳۴ (۱)</td>
</tr>
<tr>
<td>تعداد</td>
<td>روش‌نِه‌ی مهدود</td>
<td>۱۵/۰۳ ± ۰/۲۷ **</td>
<td>۱/۹۹ ± ۰/۲۴ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>۰/۵۰ ns</td>
</tr>
<tr>
<td>و نیز اینجا</td>
<td>روش‌نِه‌ی یِنِکا</td>
<td>۱۹/۴۵ ± ۰/۷۸ **</td>
<td>۱/۸۱ ± ۰/۲۴ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>۰/۵۰ ns</td>
</tr>
<tr>
<td>سنبله در سپرنه</td>
<td>روش‌نِه‌ی یِنِکا</td>
<td>۱۱/۰۱ ± ۰/۷۱ **</td>
<td>۱/۸۱ ± ۰/۲۴ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>۰/۵۰ ns</td>
</tr>
<tr>
<td>و نیز اینجا</td>
<td>روش‌نِه‌ی یِنِکا</td>
<td>۱۲/۰۸ ± ۰/۲۲ **</td>
<td>۱/۸۱ ± ۰/۲۴ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>-۲/۳۱ ± ۱/۳۹ **</td>
<td>۰/۵۰ ns</td>
</tr>
<tr>
<td>صفات</td>
<td>تلخی</td>
<td>m</td>
<td>[d]</td>
<td>[h]</td>
<td>[i]</td>
<td>[j]</td>
<td>[l]</td>
<td>χ²</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>وزن دانه در سبزه</td>
<td>روشان × مهدوی</td>
<td>0/76±0/14**</td>
<td></td>
<td>0/13±0/15*</td>
<td>0/57±0/15**</td>
<td>0/85±0/15**</td>
<td></td>
<td>1/82**</td>
</tr>
<tr>
<td></td>
<td>روشان × اینتا</td>
<td>0/97±0/15**</td>
<td></td>
<td>0/5±0/03(*)</td>
<td>0/47±0/15**</td>
<td>0/37±0/15**</td>
<td></td>
<td>0/85**</td>
</tr>
<tr>
<td></td>
<td>0/33±0/15**</td>
<td>0/41±0/10**</td>
<td></td>
<td>0/21±0/10**</td>
<td>-</td>
<td>-</td>
<td>4/28**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/85±0/31**</td>
<td>0/11±0/03**</td>
<td></td>
<td>0/7±0/81**</td>
<td>0/23±0/26**</td>
<td>0/63±0/26**</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0/28±0/03**</td>
<td>0/3±0/81**</td>
<td></td>
<td>0/57±0/08**</td>
<td>-</td>
<td>-</td>
<td>2/04**</td>
<td></td>
</tr>
<tr>
<td>عمکارکرد دانه در بوته</td>
<td>روشان × مهدوی</td>
<td>28/35±1/6**</td>
<td>0/09±1/6ns</td>
<td>22/22±7/29**</td>
<td>-</td>
<td>16/44±6/35**</td>
<td>3/49(*)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>روشان × اینتا</td>
<td>-ns</td>
<td>-ns</td>
<td>-ns</td>
<td>-ns</td>
<td>-ns</td>
<td>-ns</td>
<td>-ns</td>
</tr>
<tr>
<td></td>
<td>0/45±1/03**</td>
<td>0/5±1/24(*)</td>
<td>0/5±1/24**</td>
<td>0/51±0/18**</td>
<td>0/50±0/18**</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/47±0/81**</td>
<td>0/45±0/15**</td>
<td>0/7±0/18**</td>
<td>0/42±0/18**</td>
<td>-</td>
<td>-</td>
<td>1/18**</td>
<td></td>
</tr>
</tbody>
</table>

** و (*) بیانگر از تکرار معنی‌دار در سطح احتمال 0.05 و 0.10 درصد

ns: عدم اختلاف معنی‌دار
جدول ۳. درجه غالیبت برآورده‌ای ورالت پذیری به وسیله روشنگاری یونه و تعداد سیم‌های انتقال ورالت پذیری عمومی ۱ و درجه تالاگینی

<table>
<thead>
<tr>
<th>پیشرفت زنیتیکی (GA)</th>
<th>لازم خصوصی (hNS)</th>
<th>مایکنین</th>
<th>ورالت پذیری عمومی ۱ (hBS)</th>
<th>درجه غالیبت</th>
<th>تالاگینی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۱/۸۱</td>
<td>۴۱/۹</td>
<td>۵۳/۱</td>
<td>۰/۶۹</td>
<td>۵۳/۶</td>
<td>۰/۶۹</td>
</tr>
<tr>
<td>۲/۸۱</td>
<td>۴۱/۹</td>
<td>۵۳/۱</td>
<td>۰/۶۹</td>
<td>۵۳/۶</td>
<td>۰/۶۹</td>
</tr>
<tr>
<td>۳/۸۱</td>
<td>۴۱/۹</td>
<td>۵۳/۱</td>
<td>۰/۶۹</td>
<td>۵۳/۶</td>
<td>۰/۶۹</td>
</tr>
<tr>
<td>۴/۸۱</td>
<td>۴۱/۹</td>
<td>۵۳/۱</td>
<td>۰/۶۹</td>
<td>۵۳/۶</td>
<td>۰/۶۹</td>
</tr>
<tr>
<td>۵/۸۱</td>
<td>۴۱/۹</td>
<td>۵۳/۱</td>
<td>۰/۶۹</td>
<td>۵۳/۶</td>
<td>۰/۶۹</td>
</tr>
<tr>
<td>۶/۸۱</td>
<td>۴۱/۹</td>
<td>۵۳/۱</td>
<td>۰/۶۹</td>
<td>۵۳/۶</td>
<td>۰/۶۹</td>
</tr>
<tr>
<td>۷/۸۱</td>
<td>۴۱/۹</td>
<td>۵۳/۱</td>
<td>۰/۶۹</td>
<td>۵۳/۶</td>
<td>۰/۶۹</td>
</tr>
<tr>
<td>۸/۸۱</td>
<td>۴۱/۹</td>
<td>۵۳/۱</td>
<td>۰/۶۹</td>
<td>۵۳/۶</td>
<td>۰/۶۹</td>
</tr>
<tr>
<td>۹/۸۱</td>
<td>۴۱/۹</td>
<td>۵۳/۱</td>
<td>۰/۶۹</td>
<td>۵۳/۶</td>
<td>۰/۶۹</td>
</tr>
<tr>
<td>۱۰/۸۱</td>
<td>۴۱/۹</td>
<td>۵۳/۱</td>
<td>۰/۶۹</td>
<td>۵۳/۶</td>
<td>۰/۶۹</td>
</tr>
</tbody>
</table>

(۱) روشنگاری یونه ۱/۸۲. (۲) روشنگاری یونه ۲/۸۱. (۳) روشنگاری یونه ۳/۸۱. (۴) روشنگاری یونه ۴/۸۱. (۵) روشنگاری یونه ۵/۸۱.
<table>
<thead>
<tr>
<th>صفات</th>
<th>تلاقي</th>
<th>(h/d)</th>
<th>خصوصی</th>
<th>(h<sub>BS</sub>)</th>
<th>هورانت-پذیری عمومی (h<sub>BS</sub>)</th>
<th>هورانت-پذیری زننده (GA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) روشن × مهدوی</td>
<td>5</td>
<td>5</td>
<td>46/6</td>
<td>39/2</td>
<td>50/5</td>
<td>27/7</td>
</tr>
<tr>
<td>(2) روشن × ابتیا</td>
<td>6/7</td>
<td>6/7</td>
<td>60/8</td>
<td>57/5</td>
<td>58/9</td>
<td>60/7</td>
</tr>
<tr>
<td>(3) روشن × آیلا 5</td>
<td>5/55</td>
<td>5/55</td>
<td>57/5</td>
<td>54/6</td>
<td>55/5</td>
<td>56/5</td>
</tr>
<tr>
<td>(4) روشن × کاسکوین</td>
<td>5/9</td>
<td>5/9</td>
<td>56/8</td>
<td>53/6</td>
<td>54/9</td>
<td>55/9</td>
</tr>
<tr>
<td>(5) مهدوی × ابتیا</td>
<td>6/58</td>
<td>6/58</td>
<td>55/6</td>
<td>52/8</td>
<td>53/8</td>
<td>54/8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>صفات</th>
<th>تلاقي</th>
<th>(h/d)</th>
<th>خصوصی</th>
<th>(h<sub>BS</sub>)</th>
<th>هورانت-پذیری عمومی (h<sub>BS</sub>)</th>
<th>هورانت-پذیری زننده (GA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) روشن × مهدوی</td>
<td>6/2</td>
<td>6/2</td>
<td>28/6</td>
<td>31</td>
<td>29/6</td>
<td>33/4</td>
</tr>
<tr>
<td>(2) روشن × ابتیا</td>
<td>7/3</td>
<td>7/3</td>
<td>35/8</td>
<td>33</td>
<td>35/8</td>
<td>35/8</td>
</tr>
<tr>
<td>(3) روشن × آیلا 5</td>
<td>5/4</td>
<td>5/4</td>
<td>33/6</td>
<td>31</td>
<td>33/6</td>
<td>33/6</td>
</tr>
<tr>
<td>(4) روشن × کاسکوین</td>
<td>5/7</td>
<td>5/7</td>
<td>31/5</td>
<td>33</td>
<td>31/5</td>
<td>33/5</td>
</tr>
<tr>
<td>(5) مهدوی × ابتیا</td>
<td>6/41</td>
<td>6/41</td>
<td>32/6</td>
<td>33</td>
<td>32/6</td>
<td>33/6</td>
</tr>
</tbody>
</table>

\[V_{p1} + V_{p2} + V_{F1}/r + V_{p1} + V_{p2} + V_{F1}/r = V_{F1}\cdot V_{p1} + V_{p2} \cdot V_{F1} \cdot V_{p1} + V_{p2} + V_{F1}/r \cdot V_{p1} + V_{p2} + V_{F1}/r \]

\[h_{BS} = (h_{BS} - 1) - (E_{W} - (V_{p1} + V_{p2} + V_{F1}/r)) \]

\[K = \frac{1}{1 + 4.5} \cdot GA = K \cdot V_{p2} \cdot h_{BS} \]

\[h_{BS} = [2V_{p2} + (V_{BC1} + V_{BC2})] / V_{p2} - 3 \]
جدول 2: ضرایب همیستگی زنونی (اعداد بالای قطر) و نونی (اعداد پایین قطر) صفات مورد بررسی در 30 ژنوتیپ

(5 تلاقی و 6 نسل) گندم

<table>
<thead>
<tr>
<th>عاملکرد دانه در بونه</th>
<th>وزن دانه در سبله</th>
<th>تعداد سبلجی در بونه</th>
<th>تعداد سبلجی در سبله</th>
<th>صفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/75</td>
<td>0/68</td>
<td>0/02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0/88</td>
<td>0/50</td>
<td>0/03</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0/77</td>
<td>-</td>
<td>0/23</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/46</td>
<td>0/52</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/53</td>
<td>0/46</td>
<td>-</td>
</tr>
</tbody>
</table>
| همیستگی های پرگندتر از 3/355 = 0/001 - کوچکتر از 0/05 - در مطالعه 5 مصد و همیستگی های پرگندتر از 0/255/0 - کوچکتر از 0/05 - در مطالعه 5 مصد و همیستگی های پرگندتر از 0/355

در مطالعه 5 مصد. مقدار پرامتر زنونی F در تمام تلاقی ها صفر و یا برگندرت از صفر بو (جدول 1) نیاز به کنار کردن این صفت ندارد. در نمونه ها روشان N مهندو x روشن x نیاز به تغییر در مقدار هوشیار استفاده گیرد. در نمونه های بیشتر استفاده گیرد زیرا مدل N نسبت به نظری در (D) را کاهش می‌دهد.

3. وزن دانه در سبله

مدل طبقه‌بندی F در تمام تلاقی‌ها صفر و یا برگندرت از صفر بو (جدول 1) نیاز به کنار کردن این صفت ندارد. در نمونه ها روشان N مهندو x روشن x نیاز به تغییر در مقدار هوشیار استفاده گیرد. در نمونه های بیشتر استفاده گیرد زیرا مدل N نسبت به نظری در (D) را کاهش می‌دهد.

با توجه به پاوردهای اجزای زنونی میانگین برای این صفت، ملاحظه می‌شود که در تمامی روشان x آنیلا و مهندو x این مدل ساده آزمایش - غلیبیم کفایت نموده و هیچ گونه تغییر غیر حاکم وجود ندارد. در تمامی روشان x مهندو و روشن x این نرخ تغییر آزمایش F آزمایشی معنی دار بود (شکل 3) از اثر آزمایش F غلیبیم و در تمامی مهندو و x کاسکون پیشنهاد می‌شود که از سایر نسل‌ها در تحقیق مدل N به اعتقاد پیشتر استفاده گردید زیرا مدل N پرامتر کلی به نظر نمی‌رسد.

متوسط طول پذیری عمومی از 46/14 درصد در تلاقی روشن x مهندو x این مقدار F می‌باشد که در این حالت مقدار F مشابه F می‌باشد. اما پرامتر F در تمامی مهندو x این F نسبت به D یک بود که بیانگر پیگشان بودن علامت و برگندرت اثر N ها در تمام مقرها می‌باشد. بنابراین مقدار F این D از این تلاقی
طرح‌هایی از نظر زنگی‌های عامل‌داره و اجزای آن در پنج نظر‌گنج

۲ عامل‌داره در بوته

مدت حضور آتیلا و مهدوی × آتیلا می‌باشد. این مقادیر در تلاقی‌های روش ۱ × مهدوی × آتیلا می‌باشد. این مقادیر در تلاقی‌های روش ۱ × آتیلا و مهدوی × آتیلا می‌باشد.

به‌طور کلی مقادیر وراثت‌پذیری عضوی و خصوصی برای عملکرد دانه از کل تلاقی‌ها نسبت به سایر صفات بالای بوده‌است. با توجه به اینکه باید برای برآورده کردن صفات مطلوب در نهایت به بهبود در سایر صفات می‌تواند موجب شود که در هر اثر داشته باشند. با توجه به اینکه اثر داشته باشند با همین داشته باشند که در هر اثر داشته باشند با همین دаш
است تحت تأثیر محیط (چه در مدل سه پارامتری و چه در مدل شش پارامتری) باشند چه اهمیت این امر فقط با انجام آزمایشات
در چند محیط قابل باشند. اما اگر مدل‌هایی که در این
پژوهش ذکر شدند دارای برازش تکوی بوده که بیانگر عدم
حضور آثار متقابل زننده و محیط بود مشخص گاهان
یا بعضی از ترکیبات اینها می‌باشد. نسل‌های اولیه تلاقی در این
تحقیق به کار گرفته شدند و نیازی به تعادل لینکازی غیرتحمل
می‌باشد. نیازی به جنگ زننده و وجود
لینکاز ممکن است در برآوردهای زن حضور داشته باشد و
انظر است که جدید ترین اثری در برآوردهای [8] و [9] رخ
دهد. اما این جا حادث در دریافت ممکن می‌باشد و
فلکانی با تاثیر آن باشد و جایی که بیانگر حضور ندارد
برآوردهای آثار زن بیشتر لینکاز ارتباطند.
در این پژوهش تجزیه واریانس نسل‌ها نشان انجام گرفت زیرا
اشکالی در تفسیر تجزیه میانگین‌ها وجود دارد و آن
اینست که بیمار‌هایی که آثار زن را مشخص می‌کنند در
هفته‌های سیبیل (Effect balance) حاصل غیر از
حال تفرق‌های می‌باشد. مفاهیم آن این است که بیمار‌های افزایشی و با
پژوهش اثر متقابل مربوط با اثر افزایشی نابینی از درجه بر ارتکان‌گزینه
زن‌های افزایشی داده‌های صفت بین والدین هم باشد. در حالی که
آنان غلیبهای، حاصل ضریب خصائص جهت غلیبهای
در هفته مقرزین می‌باشد. متفاوتی (Direction of dominance)
برآوردهای آثار افزایشی یاً کوچک داشت چون درجه بالایی
از پراکندگی وجود دارد. مشابهغلافی می‌توانند کوچکی داشت مشروط به این که ترکیب مساوی ده جهت وجود داشته باشد.
اما از طرفی نیز در از انتقال زننده به وسیله آثار متعادل تحت
تأثیر قرار گرفته چون آنها مجموع مربعات آثار هر مقدار
بوده و نیازی به صورت مجموع تزریق آثار افزایشی و غلیبهای
پایان می‌شود. لذا تجزیه واریانس نسل‌های همانند تجزیه میانگین
نسل‌ها می‌تواند انجام پذیرد. این اطلاعات تکمیلی را برای
تفسیر خاصیت زننده سطح به پی‌درپی دارد (9).

d دانست، چون تمامی صفات و
تلاقی‌های که در آنها اجرای غلیبهای [8] و آثار متقابل
(Complementary epistasis) در کدام علامت‌های‌های
گیاهان مطلوب از ناحیه صفات ممکن ایجاد نمی‌کند.
معنی دارد بودن متقابل افزایشی غلیبهای [8] در مورد
صفای تعدد سببیت در بوته در تلاقی‌های روشین‌بوده و
روشین‌بوده‌ای، تعداد سببیت در بوته در تلاقی‌های روشین‌بوده و
مهموی‌بوده و مهدوی‌بوده و اینها و زن دانه در
سیبک و سپینک (14) آثار متقابل غیر از آثار غلیبهای [8] و
افزایشی غلیبهای معنی داری را برای عملکرد دانه گزارش
نمودند. در حوالی که مکاکندرو و همکاران (17) نه آثار متقابل
افزایشی [8] افزایشی را برای گئول این صفات معنی داری توصیف
نمودند.

برآوردهای آثار افزایشی یاً کوچک داشت چون درجه بالایی
از پراکندگی وجود دارد. مشابه‌گلافی می‌توانند کوچکی باشد مشروط به این که ترکیب مساوی ده جهت وجود داشته باشد.
اما از طرفی نیز انتقال زننده به وسیله آثار متعادل تحت
تأثیر قرار گرفته چون آنها مجموع مربعات آثار هر مقدار
بوده و نیازی به صورت مجموع تزریق آثار افزایشی و غلیبهای
پایان می‌شود. لذا تجزیه واریانس نسل‌های همانند تجزیه میانگین
نسل‌ها می‌تواند انجام پذیرد. این اطلاعات تکمیلی را برای
تفسیر خاصیت زننده سطح به پی‌درپی دارد (9).