تأثیر سطوح مختلف مکمل لیزین و پروتئین خام جیره بر عملکرد، خصوصیات لاشه و دفع ازت جوجه‌های گوشتخی

منصور رضائی، حسن نصیری مقدم، جواد پور رضا و حسن کرمانشاهی

چکیده

به منظور تعیین اثر سطوح مختلف اسید آمینه لیزین و پروتئین خام جیره بر عملکرد، خصوصیات لاشه و دفع ازت جوجه‌های گوشتخی، آزمایشی با 200 قطعه جوجه گوشتخی سویه تجاری راس از سه یک تا 42 وزنگی اجرا گردید. تیمارهای آزمایشی شامل سطح مکمل اسید آمینه لیزین در دورة آغازین و رشد (سفر. 15%) و دو سطح پروتئین خام (17.84% و 30 درصد) در دوره آغازین و 16/12 و 18/16 درصد در دوره رشد) با انرژی قابل سوخت ساز 9400 کیلوگرم بود. نتایج نشان داد که کاهش پروتئین خام جیره، میزان افزایش وزن و دفع ازت جوجه‌های گوشتخی در دوره آغازین، دورة رشد و کل دوره را به طور معنی‌دار با ترتیب 6/4% و 5/5% درصد کاهش داد (P>0.05). همچنین مصرف خوراک در دوره آغازین به طور معنی‌داری بالاتر (P<0.05) و کاهش پروتئین خام جیره، اثر معنی‌داری بر نسبت افزایش وزن به مصرف خوراک داشت. ولی مقدار گوشت سیستی را به طور معنی‌داری کاهش و درصد چربی رطوبی را افزایش داد (P<0.05). افزایش اسید آمینه لیزین در جیره مصرف خوراک در دوره آغازین، افزایش وزن و نسبت افزایش وزن به مصرف خوراک در دوره رشد و کل دوره را به طور معنی‌داری بهبود داد (P<0.05). افزایش اسید آمینه لیزین در جیره بهبود افزایش معنی‌دار درصد گوشت سیستی و ران گردید. افزودن مکمل لیزین به جیره در دوره آغازین دفع ازت را به طور معنی‌داری کاهش داد (P<0.05). به همچنین با کاهش پروتئین خام جیره در دوره آغازین دفع ازت را به طور معنی‌داری کاهش یافت (P<0.05). تیمارهای آزمایشی اثر معنی‌داری بر دفع لثه‌های نیازی نداشتند. نتایج آزمایش نشان داد که در صورت تأمین سایر اسیدهای آمینه محدود کننده رژیم، با افزودن مکمل لیزین می‌توان سطح پروتئین خام جیره را تا 3 درصد در دوره آغازین و تا 2 درصد در دوره رشد کاهش داد و این عمل تأثیر منفی بر پایداری غذایی داشت.

واژه‌های کلیدی: لیزین، پروتئین، جوجه گوشتخی، لاشه، گوشت سیست

مقدمه

در سال‌های اخیر به دلیل مسایل زیست محیطی توجه زیادی

کاهش درصد پروتئین خام جیره طبیعی، دفع ازت به طور مؤثری

در استادیار علوم دامی، دانشگاه کشاورزی، دانشگاه مازندران

1. استادیار علوم دامی، دانشگاه کشاورزی، دانشگاه مازندران
2. به ترتیب استاد و استادیار علوم دامی، دانشگاه کشاورزی، دانشگاه فردوسی مشهد
3. استاد علوم دامی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

171
مواد و روش‌ها

آزمایش‌رسد

تعداد ۲۴۰ قطعه جوجه گوشتی تراکم‌سازی را در این آزمایش انجام داد. جوجه‌ها در ۲۴ جایگاه جنگلی (１) جوجه در هر جایگاه) توزین و به طور ابزار آب و خوراک دسترسی داشتند. تیمارهای آزمایشی شامل سطح اسید آبیان در دوره ۴۱/۳۲ رشد در دوره ۱۰/۲۸ رشد در دوره ۱۸/۲۱ رشد در دوره رشد خراش قابل سوخت و سال ۴۰۰ کیلوگرم. در کیلومتر به دست آمده، این آزمایش به صورت فاکتوریل شامل ۵ تیمار (سد سطح لیزرین و دو سطح پروتئین) ۴ تکرار و ۱۵ جوجه در هر تکرار در طرح کاملاً تصادفی اجرا گردید. تیمارهای آزمایشی با افزودن لیزرین کارایی حاصل (۴۸ درصد لیزرین خالص) به‌طور پایه به‌دست آمد. سطح بی‌سایر اسب‌های آمده محدود کننده در تمام جوجه‌ها تقریباً یکسان بود. مواد مشکلی و میزان لیزرین، میوه‌های سیسته مین، پروتئین و پروتئین خام محاسبه شدند و تجزیه‌شده شدند. چربی‌ها در جداول ۱ و ۲ از شاهد سطح افزودن وزن مصرف چربی‌ها در دو بازه و زاده‌پذیری (۱۰۰ تا ۳ هفتگ) و دوره پایانی (۶ تا ۳ هفتگ) برندی به‌دست آمد. بر اساس جداول انگیج علی‌رغم علائم (۱۹۹۴)

فهرست چهار لیزر علافه همچنین لیزر مورد نیاز جوجه‌های گوشتی در دوره افزایش وزن به‌صورت گروهی به طور همه‌گانه انسان به گردید. همانچنین میزان قطعه در طول آزمایش اندام‌گیری شد. در سن ۲۴ روزگر، از حس تیمار ۴ جوجه با میانگین وزن تکرارهایی به میانگین گروه مربوطه انتخاب و کشت دریافت. بازدهی لثه از تقسیم وزن لثه‌های بدون گردن، قلب، لثه و سگدان به وزن زندان قبل از کشت به دست آمد. ناهار در طرح آزمایش با استفاده از نرم‌افزار آماری SAS و روش GLM تجزیه و تحلیل قرار گرفت (۳۱). به‌منظور مقایسه میانگین‌ها از آزمون چند دامنه‌ای داتک استفاده شد (۳۲).
جدول 1. اجزای تشکیل دهنده و ترکیب شیمیایی جیره‌های پایه در مرحله آغازین و رشد

<table>
<thead>
<tr>
<th>دوره رشد</th>
<th>اجزاء جیره (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوره آغازین</td>
<td>دوره برخورداری</td>
</tr>
<tr>
<td>با پروتئین کم</td>
<td>با پروتئین کم</td>
</tr>
<tr>
<td>71/37</td>
<td>66/32</td>
</tr>
<tr>
<td>22/28</td>
<td>28/68</td>
</tr>
<tr>
<td>0</td>
<td>1/60</td>
</tr>
<tr>
<td>1/11</td>
<td>1/66</td>
</tr>
<tr>
<td>1/45</td>
<td>1/88</td>
</tr>
<tr>
<td>1/09</td>
<td>1/21</td>
</tr>
<tr>
<td>0/06</td>
<td>0</td>
</tr>
<tr>
<td>0/50</td>
<td>0/50</td>
</tr>
<tr>
<td>0/50</td>
<td>0/50</td>
</tr>
<tr>
<td>1/84</td>
<td>1/72</td>
</tr>
<tr>
<td>1/00</td>
<td>1/00</td>
</tr>
<tr>
<td>1/00</td>
<td>1/00</td>
</tr>
</tbody>
</table>

- مکمل معدنی و ویتامین
- ترکیب شیمیایی
- پروتئین خام (% میکروالزه شده)
- پروتئین خام (% تجزیه شده)
- انرژی قابل سوخت و سار (کیلوکالری در کیلوگرم)
- کلسیم (% میکروالزه شده)
- کلسیم (% تجزیه شده)
- لیزین (% میکروالزه شده)
- لیزین (% تجزیه شده)
- میوتنین + سیستین (% میکروالزه شده)
- میوتنین + سیستین (% تجزیه شده)
- میوتنین (% میکروالزه شده)
- ترکیب شیمیایی (% میکروالزه شده)
- ترکیب شیمیایی (% تجزیه شده)

* هر کیلوگرم مکمل ویتامینه حاوی مواد زیر بود: B12 0.012 میکروگرم، B9 14.4 میکروگرم، ویتامین E 72000 IU، ویتامین D3 12 میکروگرم، ویتامین B6 0.5 میکروگرم، ویتامین B2 0.1 میکروگرم، ویتامین B3 0.08 میکروگرم، ویتامین B1 0.002 میکروگرم، ویتامین B12 0.004 میکروگرم، ویتامین B5 12 میکروگرم، ویتامین B13 0.02 میکروگرم، ویتامین B14 0.05 میکروگرم، ویتامین B15 0.06 میکروگرم، ویتامین B16 0.08 میکروگرم، ویتامین B17 0.11 میکروگرم، ویتامین B18 0.12 میکروگرم، ویتامین B19 0.23 میکروگرم، ویتامین B20 0.35 میکروگرم، ویتامین B21 0.41 میکروگرم، ویتامین B22 0.42 میکروگرم، ویتامین B23 0.44 میکروگرم، ویتامین B24 0.45 میکروگرم، ویتامین B25 0.46 میکروگرم، ویتامین B26 0.51 میکروگرم، ویتامین B27 0.56 میکروگرم، ویتامین B28 0.72 میکروگرم، ویتامین B29 0.79 میکروگرم، ویتامین B30 0.86 میکروگرم.
جدول ۲. سطح پروتئین و لیزین* چربه‌های آزمایش در دوره آگاهی و رشد (بر حسب درصد چربه غذایی)

<table>
<thead>
<tr>
<th>جبره</th>
<th>سطح پروتئین</th>
<th>سطح لیزین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1/10</td>
<td>1/20</td>
</tr>
<tr>
<td></td>
<td>1/20</td>
<td>1/100</td>
</tr>
<tr>
<td></td>
<td>2/10</td>
<td>2/20</td>
</tr>
<tr>
<td></td>
<td>2/20</td>
<td>2/100</td>
</tr>
<tr>
<td></td>
<td>3/20</td>
<td>3/20</td>
</tr>
<tr>
<td></td>
<td>3/20</td>
<td>3/200</td>
</tr>
<tr>
<td></td>
<td>5/20</td>
<td>5/20</td>
</tr>
<tr>
<td></td>
<td>5/20</td>
<td>5/200</td>
</tr>
<tr>
<td></td>
<td>6/20</td>
<td>6/20</td>
</tr>
<tr>
<td></td>
<td>6/20</td>
<td>6/200</td>
</tr>
</tbody>
</table>

*بر اساس ۲۹۰۰ کیلوگرمی انرژی قابل سوخت و ساز در هر کیلوگرم جبره

آزمایش تعادل

تعداد ۴۲ جوجه نر در این آزمایش استفاده شد. جوجه‌ها تا سن ۱۰ روزگری، با یک چربه آگاهی تجویزه شده و در روز پایانی، پس از یک شب شک دیگری به صورت انفرادی توزین شدند. تعداد سه جوجه به هر فرد اختصاص یافتند، به گونه‌ای که میانگین وزنی جوجه‌ها در تمام فاز‌های مطالعه بود. تیمارهای مورد استفاده متشکل از چهار چربه آزمایش رشد بود و چرخه‌ها به مدت یک هفته به یک چربه آزمایشی تجویزه شدند.

در سه روز آخر آزمایش، رکوردگیری از میزان خوراک مصرفی و فضوله با عمل آمد. نمونه‌های جمع آوری شده تا هنگام تجویز شیمیایی در آزمایش‌گاه در فریزر در خارجات ۳-۳ درجه سانتی‌گراد نگهداری شدند.
نتیجه و بحث

نتیجه مربوط به میزان خروک مصرفی، نسبت افزایش وزن به مصرف خروک، خصوصیات لاته و دفع از حدود 3 و 4 اثرات شده است. کاهش سطح پروتئین جیره میزان افزایش وزن در دوره آغازین، رشد و کل دوره پرورش به طور معنی‌داری تری به میزان 0/4 و 0/3 درصد کاهش یافت. همچنین با کاهش پروتئین خام جیره مقدار مصرف خروک در دوره آغازین با میزان 0/2 درصد کاهش یافت (0/05).²

ولی تأثیری بر نسبت افزایش وزن به مصرف خروک در دوره‌های مختلف افزایش نداشت. با کاهش پروتئین خام در درصد بین دوی و پرورش پروتئین کاهش معنی‌دار در درصد بین جیره و سیستم گوش به طور معنی‌داری در افزایش یافته (0.05).² به نظر می‌رسد که اثرات مغزی باعث کاهش سطح پروتئین خام در جیره مقدار مصرف خروک مصرفی در دوره‌های مختلف پرورش کاهش یافته که این اثر فقط در دوره آغازین معنی‌دار بوده است (0/05).² با کاهش پروتئین خام نسبت انرژی به پروتئین نیتریا و مقدار بیستری انرژی در دسترس بوده، نابینای پروتئین بیشتر و کاهش نرخ استفاده از جیره‌های با پروتئین بالا افزایش هزینه انرژی جهت تبدیل از آمیت مازاد به استفاده از اوریک می‌باشد. دفع اثر مازاد به صورت اسید اوریک به 4 مول از هر گرم مو و دفع از نتایج با پنی‌هایهای ATP می‌باشد. از این نتایج با پنی‌هایهای دیگر آزمایش‌ها در مطالعه می‌باشد (24 و 22).²

کاهش داد که افزایش سطح پروتئین به جیره در درصد بین دوی و پرورش باعث کاهش سطح پروتئین در جیره می‌شود و این کاهش معنی‌دار نبود. افزایش سطح پروتئین در جیره تولید غذایی نیز را تغییر می‌دهد. به همین ترتیب افزایش وزن، بازده غذایی و تولید غذایی نیز در جیره‌های گوشت سیاه تجاری‌تر راست می‌باشد.
جدول 3: تأثیر سطوح مختلف پروتئین و لیزین بر عملکرد جوجه‌های گوشتی در دوره‌های مختلف پرورش

<table>
<thead>
<tr>
<th>راندمان غذایی (کرم)</th>
<th>مصرف خوراک (گرم)</th>
<th>جبره</th>
<th>اندازه وزن (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/498</td>
<td>0/473</td>
<td>5/175</td>
<td>7/92</td>
</tr>
<tr>
<td>1/824</td>
<td>0/000</td>
<td>6/179</td>
<td>7/068</td>
</tr>
<tr>
<td>1/676</td>
<td>0/000</td>
<td>6/179</td>
<td>7/92</td>
</tr>
<tr>
<td>1/000</td>
<td>0/000</td>
<td>6/179</td>
<td>7/92</td>
</tr>
</tbody>
</table>

سطح لیزین افزوده شده به جبره (بر حسب درصد)

<table>
<thead>
<tr>
<th>انحراف معیار میانگین</th>
<th>1/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>انحراف معیار میانگین</td>
<td>1/20</td>
</tr>
</tbody>
</table>

سطح معنی‌دار بودن

<table>
<thead>
<tr>
<th>پروتئین جبره</th>
<th>1/074</th>
</tr>
</thead>
<tbody>
<tr>
<td>لیزین جبره</td>
<td>1/245</td>
</tr>
<tr>
<td>پروتئین ≠ لیزین</td>
<td>1/051</td>
</tr>
</tbody>
</table>

ا و β: در هر ستون میانگین‌هایی که حروف مشترک ندارند با یکدیگر اختلاف معنی‌دار دارند (P < 0.05).
جدول 2. تأثیر سطح مختلف پروتئین و لیزین بر خصوصیات لاغری و دفع از جوجه‌های گوسه

<table>
<thead>
<tr>
<th>تیمار</th>
<th>سینه (گرم در روز)</th>
<th>سینه</th>
<th>درصد عضله</th>
<th>درصد عضله</th>
<th>درصد ران</th>
<th>دفع از لاغری</th>
<th>حفره شکمی (گرم در روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح پروتئین جیره</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>با پروتئین زیاد</td>
<td>0/861 b</td>
<td>2/20</td>
<td>29/85 b</td>
<td>32/0/53 c</td>
<td>64/11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>با پروتئین کم</td>
<td>0/768 b</td>
<td>2/03</td>
<td>32/94 a</td>
<td>41/0/0 a</td>
<td>64/68</td>
<td>0/15</td>
<td></td>
</tr>
<tr>
<td>انحراف معیار میانگین</td>
<td>0/808 b</td>
<td>1/56</td>
<td>30/45 b</td>
<td>32/31 b</td>
<td>64/56</td>
<td>0/30</td>
<td></td>
</tr>
<tr>
<td>سطح معنی‌دار بودن</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پروتئین جیره</td>
<td>0/200</td>
<td>0/25</td>
<td>0/242</td>
<td>0/212</td>
<td>0/200</td>
<td>0/200</td>
<td></td>
</tr>
<tr>
<td>لیزین جیره</td>
<td>0/259</td>
<td>0/15</td>
<td>0/195</td>
<td>0/060</td>
<td>0/200</td>
<td>0/154</td>
<td></td>
</tr>
<tr>
<td>پروتئین X لیزین</td>
<td>0/221</td>
<td>0/10</td>
<td>0/168</td>
<td>0/169</td>
<td>0/200</td>
<td>0/154</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{\(a \) و \(b \): در هر سنین میانگین هایی که حروف مشترک ندارند با یکدیگر اختلاف معنی‌دار دارند (\(P < 0/05 \)).} \]

زاویه‌ی در این مورد وجود دارد: اولویتگلاط لایه‌ای لیزین در معنی‌داری بر درصد تلفات تداومت. این نتایج با یافته‌های دیگران مطابقت دارد (13، 19 و 20). با کاهش سطح پروتئین جیره در دوره آغازین، دفع از لاغری به طور معنی‌داری کاهش یافته است.

