اثر بهبودی و انبارمانی بر خصوصیات فیزیکوشیمیایی دو رقم کيوي 1

چکیده

به نوع ر مطالعه اثر بهبودی و انبارمانی بر کیوی در دو رقم هایبار و آبیوت در سه نوع از تغییرات دما و دمای زیر صفر درجه سانتی‌گراد به دقت درختان مرکبات است. کیوی در مویه‌ای بومی جنوب چین به (Yangtao) به جاده آماده و در جنوب چین به نام یانگ تانو (Yantao) معروف است (1). کشت اقتصادی کیوی در اؤلادنی از سال

ج. روزیه نصیرایی، شهرام دخانی، محمد شاهدی، رضا شکریان

1. به ترتیب دانشجوی سابق کارشناسی ارشد استادان و استادیار صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

223
 shoots of our cultivar were thicker and harder than those of the control plants. The results suggest that the biochar amendment improved root growth and soil structure, which is consistent with previous studies. Therefore, biochar amendment can be a valuable strategy for improving the growth and productivity of crop plants.
مواد و روش‌ها

از آنجا که ادعا گزاری مؤثر یادآوری محلول (بریکس) به عنوان
شاخه برداشت کتیو در نظر گرفته شده است و برای فرآیند
برداشت مویه در سه مرحله نموده داری آن‌گونه گرفت و مویه
بریکس مویه ازیبایی، مویه و زمانی که میزان بریکس مویه به
7/5 (ناموضی جزایر برداشت در ایران) رسید میوه‌ها
را برداشت گردد و مراحل بعدی انجام نماید (3). در هنگام
برداشت، مویه شد وا دقت، ترافیک و بکارگیری حداکثر
چیدن مویه صورت گردید که این اصطلاح انگلیسی شدن آن در
ان کاربرد ناکافی نرو جلولگری مویه. همچنین سنگه شد از
انداختن کتیوی بر روی هم جلولگری مویه. دو رقم های‌وارد و
آب می‌توان کاملاً تصادفی و طبیعی روش مذکور از منطقه
ولی این نتایج جهت انجام این تحقیق برداشت شدن.

طول و طول اثر قدرت مویه‌ها در رقم های‌وارد ممکن است
2/7 - 3/4 و 3/3/6 و 3/6/3/6
4/9 - 3/5 - 3/7

در بسته‌بندی سیو شد، مویه در داخل بسته بهتی بوده،
حرکت نمی‌شود. حتی در حالت بسته به صورت فشرده نیز بسته‌بندی
نشود تا از این دیدگاه آن در اثر ارزوی زیبایی به‌سیاست
برای هر پتندزده تکرار در نظر گرفته شد. بسته‌ها روی یک پالت چوبی تمیز و چسبیده به هم جمعه شدند. هر دو بسته پلاستیکی در یک صندوق پلاستیکی قرار گرفت. سپس ایجاد صدودهای غربی روی آنها صندوق‌های نایلون حاوی کیسه‌های پلاستیکی و سیس کارتنی مقوا به قرار گرفتند.

چیدن و قرار گرفتن بسته‌ها بر روی پکنگ‌های طوری انجام شد که پیاده‌بردگان دسترسی را نامنی کنند. به منظور خروج گرمایی ناشی از نفس، هواي کافی بین آنها جویان پیدا کند و از نظر فضایی که اشغال می‌کند انتخاب شد. انسداد بسته به مدت 6 ساعت تحت شرایط ثابتی از نظر دما (4 ± 0.5 درجه سانتی‌گراد) و رطوبت نسبی (98 ± 4 درصد) صورت پذیرفت. از هر بسته زمینی به روش کالری سرمایه‌گذاری در سطح دیده وتاریک‌تر انجام شد.

腺肽-گری اسید اسکوربیک
برای اندام‌گیری و تغییرات ثابت به ساخته محدود است:
1. محلول 0.2 مول لیتری مایع حاوی کلرید کوارین
2. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
3. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
4. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
5. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
6. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
7. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
8. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
9. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
10. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات

ب) محلول اسید اسکوربیک استاندارد با pH

1. محلول 0.2 مول لیتری مایع حاوی کلرید کوارین
2. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
3. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
4. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
5. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
6. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
7. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
8. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
9. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات
10. محلول 0.2 مول لیتری مایع حاوی کلرید نیترات

ز) زمان برای کاهش 30 درصد در یک محدوده زمانی مشخص

4) عدم انتخاب شده و هر تعداد کوی در یک نیترول پلاستیکی سوراخ قرار گرفته و در آن منگنه شد. سپس تمام بسته‌ها در یک یخچال یافتن جهت حمل به آزمایشگاه‌های اختصاصی اعمال قرار گرفت.

آزمایش‌های لازم برای گزارش 12 ساعت از نمونه برداری انجام شد.

اینگام گیری بپریک
درصد موارد ماحصل به روش رفیکومتری با استفاده از رفیکومتر دستی اندام‌گیری گردید. با قرار دادن یک قطعه آب کیوی روزی مشور رفیکومتر، عدد برپریک از عدسی چشمی مدرج خوانیده شد (21).

ادنادژگی اسیدهای قابل تیرب حسب اسید ستریک
در این آزمایش 5 گرم پالت کویی با آب مایع به حجم 100 میلی لیتر رساده شد. عمل تیرپراوسی با 20 میلی لیتر از آن در حضور درصد فلور فوقانی 5 درصد و با محلول 0.1 نرمال نیترات سوزور انجام گرفت (19).
تعین ماده خشک

20 گرم شن با ظرف آلومینیومی تا وزن ثابت خشک

گردد. مس سه گرم پالب کوی با ترازی به دقت دو هزار گرم

در داخل ظرف مربوط، وزن گردید. حدوداً 10 سیلی لیتر آب مقطع

یا آن اضافه شده با یک همزن شیشه‌ای کمالاً مخلوط گردد.

ظرف مربوطه روی حمام بخور، برای تبخیر آب اضافی قرار

گرفت و پس از خشک شدن به اون متقلب تا حصول وزن

ثبت در 100 گرم سانتی‌گرام به مدت 4 ساعت حراز داده

شد. سپس در دیسک‌اتور سرد و پس از تنظیم، درصد ماده

خشک آن محاسبه شد (2).

آزمایش‌های فیزیکی

الف) آماده سازی نمونه

از هر رمق و از هر نوع سریالی، سه عدد کوبی انتخاب شد. سه

قطعه مساوی (بالا،وسط،پایین) آن با کارد بزری

پوست‌گیری شد.

ب) بررسی ساخت کوبی با اینترمان

بر روی نمونه‌های آماده شده با دستگاه اینترمان، مدل

1140 آزمایش فنودنسه‌ای (Penetration) مقاومت یافت در مقدار نفوذ

یک پروب توری (Solid probe) به قطر 49/60 سانتی‌متر با سطح

مقطع دایره‌ای شکل 188 سانتی‌متر مربع انجام شد. حدوده

حرکتی پروب تا 15/15/18 سانتی‌متر در پایت کوبی تعیین شد.

در هر سه آزمایش اینتیمان دستگاه کالیبر گردد سپس کوبی‌ها

در محل خاص نمونه قرار گرفته و عمل اندازه‌گیری مقاومت

بافت در برابر تنش اعمال شده ارزیابی شد. برای هر نمونه، نقطه

پنلاین (Yeild point) (YP) که باعث افزایش کرنش در بافت

بودن نیاز به افزایش نش می‌شود. مقاومت بافت در نقطه

 بدون نیاز به افزایش نش می‌شود. مقاومت بافت در نقطه

(Yeild point strength) تسلیم (YP) مقدار نیرو بر سطح بافت در

نقطه تسلیم (YP) برم بسته متریک (YP) تسلیم برم بسته به

نفوذ پروب در پایت کوبی (Penetration force) پنلاین نقطه

YP نفوذ (Penetration stress) محاسبه گردید.

روش‌های تجربه و تحلیل آماری داده‌ها

برای بررسی ال‌بستنی‌ها و اپارامتری بر خصوصیات فیزیکی و

شیمیایی در مقابل کوبی تجربه و تحلیل داده‌ها از آزمایش فاکتوریل

در قالب طرح کاملاً تصادفی تعددی استفاده شد (8 و 20).

فاکتور اول ارقام کوبی با دو سطح هایبارود و آب‌آور، فاکتور

دوم بررسی‌دهنده با سه سطح دندانی، کارتن بدون کمونوی و

تالون باقلایی و فاکتور سوم زمان هایبرداری شامل شروع

انبارداری و ماهیانه تا زمان شش مرهچ در رمز هایبارود و تا

زمان چهارم در 5 مرهچ در رقم آب‌آور بوده. برای هر سطح در

مورد هرگونه چهار تکرار در نظر گرفته شد.

تجربه و تحلیل داده‌ها با استفاده از نرم‌افزارهای آماری و

Excel و رسم نمونه‌ها با نرم‌افزار کامپیوتری MSTAT-C

صوئت گرفت.

نتایج و بحث

بر اساس آزمایش‌های انجام شده در این پژوهش مدت زمان

انبارداری در رقم هایبارود ماه در رقم آب‌آور ماه تعیین گردید.

خور (Montopolou & Papadoypoulos) در سال 1998 (21) با اندازه‌گیری میزان CO،

و رطوبت نسبی 90-95 در صد نشان دادند که شدت تنفس در

واریته هایبارود در طی انبارداری به تغییر افزایش می‌یابد. به

طوری که حتی پس از شش ماه انبارداری به ماکزیمم مقادیر

خود در فراز بازاری نمی‌رسد. اما در رقم آب‌آور شدت تنفس در

میزان تغییرات میزان ناپیدایی مربوط به رسیدن به رقم آب‌آور

برای هر مقدار هایبارود انجام گردید.

میزان تغییرات ماده خشک

نتایج اثربخش رسم به مقدار ماده خشک کل (جدول 2) نشان

داد که مقدار ماده خشک کل در رقم هایبارود بیشتر از آب‌آور

277
مقدار Mateh خشک کل به مقدار 16/29 درصد را به خود اختصاص داده است.

میزان تغییرات مواد جامد محلول (بریسکس)
نتایج جدول 2 نشان داد که مقدار بریسکس در واریزه هایوارد بیشتر از آبود بوده و اختلاف معنی‌داری در سطح احتمال 5% درصد دارند (جدول 1).

طبق نتایج کوترب و فرگوسن نیز در سال 1991 (14) مقدار نشانه‌نگی در مقادیر بریسکس در واریزه هایوارد بیشتر از آبود بوده. بنابراین نظر این است که آبود می‌تواند بریسکس را به واریزه هایوارد بیشتر از آبود بیشتر از آبود باشد.

پژوهش‌ها و نتایج در این است که افزایش و ارتباط معنی‌داری در سال 1375 (3) نتیجه این مطلب را تأیید می‌کند. همچنین نتایج پلاستیکی، حداکثر مقدار بریسکس و کارتن میزان اصلی خشک کل به‌کار رانده و میزان معنی‌داری کارتن مواد جامد محلول بریسکس اختلاف معنی‌داری با کارتن مواد جامد محلول چربی که در یک گروه قرار جمع می‌شوند.

طرح تحصیلات آزمایش و ریزور روی سیب در سال 1985 (9) به خاطر اثر غلظت مواد جامد محلول (اثر افزایش رطوبت در کاهش غلظت مواد خشک محلول) در نتیجه کاهش رطوبت بیشتر، مقدار مواد جامد محلول و قندهای کل در میوه انریش می‌کاهد و همان‌طور که قائل ی‌ا شاند، افت رطوبیت در کیوی‌ها درون کارتن معنی‌داری نسبت به صندوق چربی و صندوق چربی نسبت به نیازه پلاستیکی بیشتر بوده و ماده خشک کل آن بیشتر است. در نتیجه به خاطر اثر غلظت در نتیجه کاهش رطوبت بیشتر مقدار بریسکس کیوی در کارتن مواد جامد محلول نسبت به صندوق چربی و در صندوق چربی نسبت به نیازه پلاستیکی بیشتر است.

کیوی در زمان برداشت در دارای حداکثر مقدار ماده خشک کل است که با پیشرفت دوره انبارداری افزایش یافته و در رقم هایوارد در ماه شسم و در واریزه آبود در ماه چهارم انبارداری به حداکثر مقدار می‌رسد. همچنین نتایج به‌بیان افزایش مقدار خشک کل در هر کدام از اندازه‌ها در طی مدت زمان انبارداری اختلاف معنی‌داری در سطح احتمال 5% درصد دارند (جدول 4). تحقیقات ایور و هاوکوک در سال 1990 (13) و روبرت و ریچارد در سال 2000 (23) نیز نشان می‌دهد که کرویه سبزه‌های علفی کنترل اصلی تشکیل دهنده ماده خشک کل در که هسته‌ها آنها که مجموع کرویه‌سازها در طی انبارداری تبقیه نیست. بنابراین در مقادیر ماده خشک کل کیوی در طی انبارداری تغییرات معنی‌داری صورت نیم دیده. همان‌طور که شکل 1 نشان می‌دهد رقم آبود در نیازه پلاستیکی کمترین مقدار ماده خشک کل به مقدار 0/4 درصد و رقم هایوارد در کارتن مواد جامد محلول
این مقاله در مورد اسیدستیزی و استفاده از این روش در تولید سلولز و اسیدهای کریپتوکوئینی می‌باشد.

نقش اسیدستیزی در تولید سلولز

اسیدستیزی یکی از روش‌های اصلی در تولید سلولز است که بر اساس واکنش‌های شیمیایی بین اسیدهای کریپتوکوئینی و سلولز صورت می‌گیرد. این واکنش‌ها باعث ترکیب‌سازی سلولز و ایجاد سلولز نیتروس شده می‌شوند.

اسیدهای کریپتوکوئینی

اگرچه اسیدهای کریپتوکوئینی در طبیعت وجود ندارند، اما می‌توانند در شرایط خاصی ایجاد شوند. این اسیدهای کریپتوکوئینی به صورت عمدی در تولید سلولز استفاده می‌شوند.

نتایج

نتایج نشان داده که اسیدستیزی به صورت مؤثری در تولید سلولز استفاده می‌شود و توانایی بالایی در تولید سلولز و اسیدهای کریپتوکوئینی ایجاد می‌کند.

(11) کوثر و فرگوسن در سال 1991 (14)، دلیل آن تجزیه 65-40 درصد ناشانه‌گذاری کرکی طی 6-8 هفته اول اسیدستیزی است و از آنها که دیگر نشانه‌ها های‌اپ (متان) نسبت به آب‌بی‌است. مقدار برایکز در طی اسیدستیزی بیشتر از آب‌بی‌است (شکل 2).

شکل 1

اثربخشی نشان داده شده که در طول مدت مقدمه‌های شکست کل

(11) کوثر و فرگوسن در سال 1991 (14)، دلیل آن تجزیه 65-40 درصد ناشانه‌گذاری کرکی طی 6-8 هفته اول اسیدستیزی است و از آنها که دیگر نشانه‌ها های‌اپ (متان) نسبت به آب‌بی‌است. مقدار برایکز در طی اسیدستیزی بیشتر از آب‌بی‌است (شکل 2).

شکل 2

اثربخشی نشان داده شده که در طول مدت مقدمه‌های شکست کل
شکل ۲. اثر مقیاس مدت زمان ازبین‌گذاری و نوع بر مقدار مواد جامد محلول (بریکس) (زمان ازبین‌گذاری رقم آبیوت ۲ ماه و هایوورد ۶ ماه)

شکل ۴. اثر مقیاس مدت زمان ازبین‌گذاری و نوع بسته‌بندی بر مقدار اسیدهای قابل برخیاب اسیدستیروکس

طبق پژوهش‌های کوتر و فرگوسن در سال ۱۹۹۱ این مقدار اسیدستیروکس با توجه به درجه رسیدگی زمان برداشت و منطقه رشد و شرایط آب و هوا و جغرافیایی تغییرات قابل توجهی ندارد. بنابراین گزارش‌های متنوع پیرامون مقدار اسیدستیروکس که وجود دارد به طوری که مطالعات کوتی و فرگوسن در نیوزلند نشان داد که مقدار

۲۳۰
جدول 1. مقایسه میانگین اثر نوع رقم بر خصوصیات تیزیک و شیمیایی کیوی

<table>
<thead>
<tr>
<th>نوع رقم</th>
<th>نقطه تسیم</th>
<th>مقاومت بافت در نقطه تسیم</th>
<th>نیروی لازم برای نفوذ</th>
<th>ماده جامد</th>
<th>مواد جامد برای نفوذ</th>
<th>تیزی (٪)</th>
<th>درصد کروم‌زون مطلوب</th>
<th>ویتامین ث (میلی‌گرم)</th>
<th>اسیدتیت قابل</th>
<th>ماده خشک</th>
<th>ویتامین ث (میلی‌گرم)</th>
<th>اسیدتیت قابل</th>
<th>ماده خشک</th>
</tr>
</thead>
</table>

در هر ستون میانگین‌ها در سطح احتمال یک درصد مقایسه شده‌اند و تفاوت هر دو میانگین که حداکثر یک حرف مشترک دارد معنی‌دار نیست.

جدول 2. مقایسه میانگین اثر نوع پسته‌نده بر خصوصیات تیزیک و شیمیایی کیوی

<table>
<thead>
<tr>
<th>نوع پسته‌نده</th>
<th>نقطه تسیم</th>
<th>مقاومت بافت در نقطه تسیم</th>
<th>نیروی لازم برای نفوذ</th>
<th>ماده جامد</th>
<th>مواد جامد برای نفوذ</th>
<th>تیزی (٪)</th>
<th>درصد کروم‌زون مطلوب</th>
<th>ویتامین ث (میلی‌گرم)</th>
<th>اسیدتیت قابل</th>
<th>ماده خشک</th>
<th>ویتامین ث (میلی‌گرم)</th>
<th>اسیدتیت قابل</th>
<th>ماده خشک</th>
</tr>
</thead>
</table>

در هر ستون میانگین‌ها در سطح احتمال یک درصد مقایسه شده‌اند و تفاوت هر دو میانگین که حداکثر یک حرف مشترک دارد معنی‌دار نیست.
جدول 3: مقایسه منابع اثر نوع استبداد بر خصوصیات فیزیکی و شیمیایی کربن برای وزنهای متوسط و کم درصد گرم (کم‌بیکس)

<table>
<thead>
<tr>
<th>وزن مربوط (گرم)</th>
<th>مواد جامد</th>
<th>ماده خشک</th>
<th>نتیجه (٪)</th>
<th>تنش لازم برای فروز</th>
<th>نتیجه (٪)</th>
<th>مقاومت بافت در نتیجه</th>
<th>مقاومت تنش (گرم‌بیکس)</th>
<th>زمان نگهداری (د)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125/3859b</td>
<td>7/15</td>
<td>15/53</td>
<td>18/59</td>
<td>199/93</td>
<td>184/95</td>
<td>39/64</td>
<td>32/96</td>
<td>8</td>
</tr>
<tr>
<td>113/2648</td>
<td>1/62</td>
<td>15/127</td>
<td>12/18</td>
<td>188/89</td>
<td>182/91</td>
<td>31/74</td>
<td>30/76</td>
<td>1</td>
</tr>
<tr>
<td>111/84</td>
<td>1/68</td>
<td>13/99</td>
<td>13/67</td>
<td>181/81</td>
<td>179/80</td>
<td>33/79</td>
<td>30/79</td>
<td>2</td>
</tr>
<tr>
<td>108/7179c</td>
<td>1/72</td>
<td>16/88</td>
<td>13/48</td>
<td>159/57</td>
<td>162/66</td>
<td>36/74</td>
<td>32/78</td>
<td>3</td>
</tr>
<tr>
<td>97/2048bc</td>
<td>1/78</td>
<td>16/84</td>
<td>13/40</td>
<td>209/55</td>
<td>205/54</td>
<td>38/75</td>
<td>35/68</td>
<td>4</td>
</tr>
<tr>
<td>99/3559bc</td>
<td>1/74</td>
<td>14/16</td>
<td>14/10</td>
<td>158/56</td>
<td>160/57</td>
<td>31/74</td>
<td>33/78</td>
<td>5</td>
</tr>
<tr>
<td>80/5125c</td>
<td>1/39</td>
<td>14/10</td>
<td>13/55</td>
<td>194/55</td>
<td>195/54</td>
<td>34/74</td>
<td>31/79</td>
<td>6</td>
</tr>
</tbody>
</table>

در هر ستون منابع‌ها در سطح احتمال یک درصد مقایسه شده‌اند و تفاوت هر دو منابع که حداکثر یک حرف مشترک دارند معنی‌دار نیست.

جدول 4: مقایسه منابع اثر نوع استبداد بر خصوصیات فیزیکی و شیمیایی کربن برای وزنهای متوسط و کم درصد گرم (کم‌بیکس)

<table>
<thead>
<tr>
<th>وزن مربوط (گرم)</th>
<th>مواد جامد</th>
<th>ماده خشک</th>
<th>نتیجه (٪)</th>
<th>تنش لازم برای فروز</th>
<th>نتیجه (٪)</th>
<th>مقاومت بافت در نتیجه</th>
<th>مقاومت تنش (گرم‌بیکس)</th>
<th>زمان نگهداری (د)</th>
</tr>
</thead>
<tbody>
<tr>
<td>203/2097a</td>
<td>7/25</td>
<td>15/75</td>
<td>10/74</td>
<td>127/67</td>
<td>124/69</td>
<td>35/60</td>
<td>32/62</td>
<td>0</td>
</tr>
<tr>
<td>197/171b</td>
<td>7/21</td>
<td>15/57</td>
<td>13/74</td>
<td>134/68</td>
<td>132/67</td>
<td>37/60</td>
<td>34/62</td>
<td>1</td>
</tr>
<tr>
<td>191/2629bc</td>
<td>1/65</td>
<td>15/55</td>
<td>13/75</td>
<td>137/69</td>
<td>139/69</td>
<td>38/61</td>
<td>35/63</td>
<td>2</td>
</tr>
<tr>
<td>188/2784bc</td>
<td>1/79</td>
<td>15/56</td>
<td>13/75</td>
<td>139/69</td>
<td>142/70</td>
<td>39/62</td>
<td>36/63</td>
<td>3</td>
</tr>
<tr>
<td>187b</td>
<td>1/80</td>
<td>15/57</td>
<td>13/75</td>
<td>140/70</td>
<td>143/71</td>
<td>41/63</td>
<td>38/64</td>
<td>4</td>
</tr>
</tbody>
</table>

در هر ستون منابع‌ها در سطح احتمال یک درصد مقایسه شده‌اند و تفاوت هر دو منابع که حداکثر یک حر夫 مشترک دارند معنی‌دار نیست.
ایرانیان قرار می‌گیرند. نتایج جدول 1 نشان داد که مقدار
در رقم هایاورد پیشرفت از رقم آبی بوده و اختلاف معنی‌داری
با هم در سطح احتمال یک درصد دارند. از این رو بایت کیوی
رقم هایاورد در سه نوع بسته‌بندی و در مدت زمان ابزار
سفت‌تر از بافت کیوی رقم آبی می‌باشد.

طق تحقیقات مولوی‌الو و یابا در سال 1998
افزاری ایالیت در مدت زمان ابزاری در رقم هایاورد به‌تدریج
بوده و حتی تا پایان زمان ابزاری مقدار خود
نیز رشد چند برابری به سرعت افزایش کرده و با عناصر و جزئیات مقدار افزایش یک
دلال نش از آن است که اثرات هنرمندی در رسیدن و نیز شدت نیز شد، بافت به
بافت هایاورد در رقم آبی سرعت تر روند می‌شود (11 و 21). همان
طور که قبلاً نیز ذکر شد مقدار ااآه خشک کل در رقم هایاورد
بیشتر از آبی است که باعث افزایش مقدار بافت در برابر شدن
شده و مقدار Y.P.S. مقدار افزایش
را از آبیس می‌دهد از این رو بافت کیوی
رقم هایاورد سفت‌تر از بافت کیوی رقم آبی می‌باشد.

طق نتایج جدول 2 کارتن للمقایی و کیهه پلاستیکی به
ترتیب حداکثر و حداقل مقدار Y.P.S. را به خود اختصاص
می‌دهد. از این رو بافت کیوی در کارتن المقاوی نسبت به
صدوک قهوی و صندوق قهوی نسبت به کیسه پلاستیکی
سفت‌تر بوده و اختلاف معنی‌داری با هم در سطح اختلاف‌های
درصد دارند و براساس آزمون مقایسه‌ی میانگین‌ها هر دام می‌باشد
گروه مجذوری قرار گرفتند.

طبق تحقیقات آزمایش و بینی در سال 1985 هم زمان و در
شرایط یکسان و مناسب ابزاری از نظر دما و رطوبت نسبی
کاهش مقدار رطوبت پیشرفت که منجر به بافت کیوی و شکسک
بافت میوه سبب می‌شود مقدار بافت در برابر نش (نیو بر سطح
بافت بر حسب گرم سانتی متر مربع) را افزایش می‌دهد (9).

همانطور که ذکر شد مقدار بافت خشک کل و افت رطوبتی
کیوی در کارتن المقاوی نسبت به صندوق قهوی و صندوق
چوبی نسبت به کیسه پلاستیکی بیشتر است که باعث خشکی و

ارزیابی تغییرات نظر نسلم (Y.P.S) و متقاوم بافت در نظر
نسلم (Y.P.S) پس از ابزار

حدودکردن به دو نیاز به افزایش آبیان باعث افزایش
کرتن در بافت می‌شود و نتیجه نسیم و شدت نیرو بر
سطح بافت در نظر نسلم و حسب گرم سانتی متر مربع را
متقاوم بافت در نظر نسلم می‌نمگد (20). از آنجا که روند
تغییرات Y.P.S. مشابه می‌باشد در طرفی تغییرات
توکیه پذیرتر و مفهوم‌تر می‌باشد، این فاکتور مورد

۲۲۳
شکل 6. اثر متقابل مدت زمان اتبارمانی و نوع ستونبندی بر مقدار مقاومت بافت در نقطه تلیم

شکل 8. اثر متقابل مدت زمان اتبارمانی و نوع رقم بر مقدار تش لازم برای نقیض پروب در بافت

نمتر از کبویی می‌شود، از این رو در کارتین مقاومت Y.P.S. افزایش یافته و بافت کبویی سفتتر می‌باشد و این مقادیر به ترتیب در صندوق چوبی و کیسه پلاستیکی کاهش یافته و بافت کبویی نمتر می‌شود. از طرفی مقدار تجمع اتیلن در کیسه پلاستیکی نسبت به صندوق چوبی و در صندوق کبویی نسبت به کارتین مقاومی بیشتر می‌باشد. بنابراین به این دلیل عدم استفاده از جایزه اتیلن در ستونبندی و حساسیت فوق العاده کبویی به اتیلن میوه کبویی در کیسه پلاستیکی نمتر از کبویی در صندوق چوبی و آن نیز

232
بافت کوبی در طی 6-8 هفته اول ابزار متقابل یافته و
مسیس به‌دست کاهش می‌یابد (16، 17 و 24).

طبق شکل 6 مقدار Y.P.S. در هر سه یکسان با پیشرفت
دوره ابزار کاهش سریع داشته و مسیس به‌دست کاهش
می‌یابد. با اساس نتایج جدول 2، 3 و 4 اثر نوع یکسانی و
زمان ابزار کاهش بسیار Y.P.S. در هر دو روش اختلاف
معنی داری در سطح اختلال یک درصد دارند.

شکل 7 نشان می‌دهد که رقم‌های اول در کارتن مقایسه
پیشرفت مقدار Y.P.S. و رقم آبی در کیسه پلاستیکی کمتر
مقدار آنها را به خود اختصاص داده و از نظر
آماری در گروه‌های هر گروه کاهش‌گذاری کرده، و کیوی در صندوق
چوبی از نظر مقدار اختلاف می‌داده. همانطور که ذکر شد,
به‌دید بالا بدون مقدار سفین بافت کیوی وقتی به رقم آبیت
و قطع رطوبتی کمتر معنی‌داری کیوی و مسیس آنها با اینکه
بیشتر نسبت به صندوق چوبی و صندوق چوبی
نسبت به کیسه پلاستیکی سفت‌تر می‌باشد.

به‌ویژه مقدار
در هر دو رقم مطلق شکل 8 در طی 2
ماه اول ابزار به سرعت کاهش پایه و مسیس به‌دست
کاهش می‌یابد که تحقیقات آرایی و همکارانش در سال
1987 و
گوری و همکارانش در سال
1981، هارگرا و هالست در سال
1994 و رودول در سال
1992 نیز این مطلب را تأیید می‌کنند.

ارزیابی تغییرات نش در لازم برای نطفه پرربا یافته

و مقاومت به نطفه آن تنها 100 سانتی متر
در حقیقت تغییرات مقاومت بافت تغییرات نش لازم برای نطفه

است.

متابعه مورد استفاده

1. جمشیدی، ع. 1380. عکس‌برداری و یک‌گردی، انتشارات فن آوران، همدان.
2. دختنی، ش. در. شکنان و ه. صبوری. 1379. بررسی تغییرات قموی گردیده طی فاصله کنسرو ترمیمی زیتون. با روشنی
کروماتوگرافی با کارایی بالا. علوم کشاورزی و منابع طبیعی. 1376، 1377-1378.
3. شریفیان، د. و. اوراهیمی. 1375. بررسی و تغییر مناسب‌ترین زمان برداشت برای ارقم مختلف گیاه و افزایش عمر ارگان آنها
نیازی ندارد (1). 1372-1373.
4. صدیقه، ن. 1375. تکنولوژی برخوردی و استحکام‌گذاری جلدهای اول مباني. انتشارات پر اثر، مشهد.
علم و فنون کشاورزی و منابع طبیعی / سال نهم / شماره چهارم / زمستان 1384