چکیده
طرحی مناسب کاتالاها و بهینه سازی متقاطع رودخانه‌ها به طور قابل توجهی کاملاً بهره‌برداری از منابع آبی و امکان توجهی اجرای پروژه‌ها را فراهم خواهد ساخت. در این راستا توسعه و زمینه تجزیه طرحی کاتالاهای پایداری را که در آنها فرسایش و انتقال رسوب در حال تعادل است، فراهم می‌سازد. هدف این تحقیق بررسی و مقایسه تأثیر نوع جریان یک‌نوخته و غیر یک‌نوخته در پیشینه مشخصات یک کاتالای پایداری می‌باشد. در بررسی اثر جریان یک‌نوخته از روابطی که بر اساس معادله‌های تحریکی و نیمه تحریکی (فرضیه حذی) توسعه یافته‌اند، استفاده به عمل آمده است. برای بررسی تأثیر جریان یک‌نوخته معادلات تحریکی و نیمه تحریکی (فرضیه حذی) لیست شیمی، کندانس و گاز و یادگیری انتخاب شده. مقایسه و برآوردهای پیش‌بینی هر یک از مدل‌های استفاده از روش‌های ترکیبی (گرافیکی) و آماری و 44 کاتالاه طبیعی واقع در آمریکا که در شرایط رژیم قرار داشتند صورت پذیرفت. به منظور بررسی ساختار جریان غیر یک‌نوخته روز مشخصات کاتالاه پایداری از 11 تیم‌ریز سرعت افزایش یافته شده در رودخانه‌های قددی استفاده گردید. با کاربرد توئی در کاتالاها، سرعت برشی برای هر یک از این نیروهای سرعت محاسبه شد. برای جریان غیر یک‌نوخته، پارامتر شیب‌زد که در آن تنش برشی به کمک روش لای مزئی محاسبه می‌گردد، به عنوان مؤشرین پارامتر پیش‌بینی مشخصات کاتالای رژیم شناخته شد. در نظر گرفتن همسانه اثر جریان غیر یک‌نوخته و نتیجه‌گیری‌های لای مزئی نه تنها خطه هیپستگی لاینگری را از بین می‌برد، بلکه دقت پیش‌بینی مشخصات مقطع کاتالاه پایدار را نیز افزایش می‌دهد.

واژه‌های کلیدی: تدوری رژیم، مقطع کاتالای پایداری، لای مزئی، جریان غیر یک‌نوخته

مقدمه
دستیابی به رودخانه و کاتالای طبیعی که در آن میزان انتقال رسوب و فرسایش در حالت تعادل دینامیکی مناسب باشد، یکی از مهم‌ترین دستوردهای شناخت مهندسی رودخانه‌ها و یکصد سال گذشته می‌باشد. به دلیل پیچیدگی بیش از حد

۱. به ترتیب استادیاران و دانشجوی سابق کارشناس ارشد آبیاری، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
صرف نمی‌گردد و تنش وارده بر جدار کالان در تمام سطح مقطع در حد آستانه است. حال اگر این تعریف را به رودخانه‌ها تطبیق دهیم، معنی آن به این صورت خواهد بود که رودخانه‌ها در عین انتقال رسوب‌های توانایی پایدار باشند. از طرف دیگر مشاهدات و مطالعات نشان می‌دهد که پایداری و انتقال رسو به صورت توان در رودخانه‌ها وجود دارند. به این مساله پارادوکس کالان پایدار گفته می‌شود. برای حل این پارادوکس لازم است که نش نشاند بر روی پسر کالان بیشتر از مقدار بحرانی در روي دیوار کالان کمتر از مقدار بحرانی و در نظر انتقال بستر و دیوار از مقدار بحرانی باشد. یک چنین مقطعی اجازه می‌دهد که در ناحیه انتقال بستر یا در دیوار کالان پایدار حفظ شود. بنابراین کالان‌های طبیعی می‌بایست بستر دیواری بسته شده باشد. اگر چه کمی کردن این پارامتر در معادله‌های طراحی نیاز به تحقیق زیادی دارد(۲ و ۵).

روش رزم در طراحی کالان‌های پایدار به صورت تجربی و نیمه تجربی برای جریان کیفی‌کننده که در زیر به طور مختصر به این صورت اشاره می‌گردد.

الف) روش تجربی

این روش برای اولین بار توسط کندی در سال ۱۸۹۵ بر اساس یک رابطه ساده آماری بین سرعت بحرانی برای فرسایش و جدایی عمق آب در یک کالان توسعه یافت. از آنجایی که اکس مشخص کردن پایداری کالان صرفاً با یک معادله وجود ندارد در ادامه سایر محققین نظر لندن‌ی (۱۱) علاوه بر سرعت بحرانی، عرض کالان و یا نیز به عنوان یکی دیگر از عوامل مؤثر پایداری (عوامل پایداری خارج از از شبی، عرض و عمق کالان) معرفی نمودند. ارزیابی پایداری عرض کالان اگرچه سیستمی می‌باشد که در نظر بودن در تجربیات اجرایی نشان داد که هرگز به پارامتر دیگری نیاز نداری. این راستا لسی (۹) برای تخمین بار سه معادله طراحی کالان‌های پایدار را به صورت معادله‌هایی عمل، عمی و شبک کالان ارائه

فرضیه حقیقی (که هنوز برای شرایط صحیح به طور کامل مورد تصدیق قرار نگرفته است) مورد توجه قرار گرفته است.

نتیجه‌گیری از پژوهش در این مورد نشان می‌دهد که قابلیت حل رسو در رودخانه‌ها توسط غلبه‌ریزی و رفتار آب‌هایی است که به هدف عملکردی توانایی رضایت می‌دهد که به تعامل نیش‌های مختلف در محفظه عمل خود بررسی. هرچند به دلیل فشار تجویز تیوری زیر که براساس داده‌های صحیحی مقاله این جمع‌آوری شده در مقاله مختصر فکری مختلفی به طور مناسب تا به امرز دچار تبدیل و تغییر شدهاند.

مطالعه بنیادی که یک مهندس هیدرولوژیک با آن رودخانه‌های توانایی پایدار برای انسداد ویای برنامه‌ای است که در طراحی کالان‌های پایدار بستر کالان می‌باشد. برنامه این برنامه یا نتایج این مطالعه را به باست در دینامیسم تحلیل مقدار بستر رای حفظ تعادل میان انتقال رسو و فرسایش یافت. از نظر توری، مقطع غرضی کالان که ذرات آن در آستانه حرکت می‌باشند به‌ین‌گونه شکل برای عبور یک بی‌سمش را درازم یک توری این مقطع دیوار کمترین محفظه خیس شده است که یک کالان می‌تواند ادامه باشد، بدون حدث آن که در ذرات واقع بر جدار آن رفسایش راب دهه‌های هم‌چنین تناوب بررسی‌های آزمایشگاهی نشان می‌دهد که کالان‌های پایدار نیز قابلیت حل رسو را دارند. سپس بر اساس مقدار می‌باشد که برنامه‌ای در رودخانه‌ها تیز آماده سازی رای دیواری بودن رفسایش کالان‌های این در تمام ذرات رسو را بستر بدن حرکت می‌باشد. می‌تواند به‌ین‌گونه که کالان‌های این انتقال رسو سازگار نیست. زیرا هیچ گونه انتقال رسوی از هیچ یک بخش آن
کر. کاربرد معادلات لیسی در کشورهای هند و پاکستان (پس از 1988) نشان داد که سه معادله فوق به خوبی می‌تواند برای مشخص کردن کالان پایدار مناسب باشد. از عمدی عوامل موافقیت روابط لیسی عبارتند از: ۱ - پیشینی مقطع پایدار، هنگامی که اطلاعات در مورد کمیت رسوپ ندارد. ۲ - این روابط فقط نتایج دنبال چهارم و قطر دره رسوپ (قطر فوق رسوپ در پارامتر F ۱ به کار گرفته شده است) می‌باشد. در این حالت از این تطابق ضعف روابط لیسی می‌توان به منطقه‌ای بودن آنها که تابع شرایط جغرافیایی و محیط‌زیستی خاص هستند و عدم در نظر گرفتن دیگر رسوپ و پوشش گیاهی و مشخصات موضعی جریان را کاهش می‌دهد.

رابطه شیبانی (7) که در این مطالعه از آن استفاده می‌شود به همان شکل رضایتی روابط لیسی می‌باشد که در ضارب و توان آلیا به هم تفاوت دارد. لیسی در تجربه خود از فاکتور که در واقع منبع حرکت جریان در سه‌گانه می‌باشد و F ۱ با توجه به وی در تخمین عمق جریان مؤثر است، استفاده می‌کند. این فاکتور به صورت زیر تعیین می‌شود:

$$F_1 = \frac{1}{\sqrt{d_s}}$$

که در آن

$$d_s$$: فاکتور رسوپ

$$Q:$$ ضریب میانه درات رسوپ بر حسب میلی‌متر

$$k$$: ضریب بر اساس از آنالیز ابعادی و در نظر گرفتن عوامل مانند چگالی رسوپ و آب و قطر فوق رسوپ در روابط عرض و عمق کالان. شرایط گردن پایین مقطع پایدار را به‌عنوان نشانه‌ای کاربرد برای حداکثر درجه حرارت و حداکثر رسوپ تحت شرایط موجود می‌باشد. مبنا یوریک روی‌های محیطی فوق، امروزه تحت عنوان فرضیه‌های جدید شناخته می‌شود. (External hypotheses)

این فرضیه در واقع حلقه‌گیری به سیستم دارای مبره و هم‌جهلوی می‌باشد. معادله انتقال رسوپ برای شیب
کاتال، معادله مقاومت جریان برای عمق جریان و فروضیه
حدی برای بستن و قابل حل کردن سیستم برای عرض کاتال

است.

از نقاط اول روش به کارگیری مفاهیم توربیک برای
تجربه و تحلیل داده‌های تجربی و ارائه جزئیات بهتری می‌باشد. از نقاط ضعف
این روش عدم تطابق نتایج به میان توربیک به ویژه در
روندکشی‌ها و محدودیت کاربرد آن در شیپهای نجد و مواد
دانه ریز و قابل پیش‌بینی است.

ب) معادلات انتخابی و تحلیل داده‌ها
همانطور که قبل آورده شد در این مطالعه برای شرایط جریان
یکنواخت از معادلات لیوی، شیبیال، کندای، و گارد و چانگ
به منظور تجزیه و تحلیل و مقایسه قدرت پیش بینی کاتال های
رژیم استفاده می‌شود. معادلات محققین فوق که در جدول
3 ارائه گردیده، به طور کلی ثابت دبی جریان و قطر در روابط
بوده و همچنین بر اساس معادلات شیبیال و گارد و چانگ
شیبیال در آنها ملاحظه نمی‌شود. در این مقاله این معادلات به
صبرت گرافیکی و آماری مورد مقایسه قرار می‌گیرند. برای
این منظور مقادیر انداره کاتال توسط سایمونز (13) زیر

مقایل مقادیر حساسیت هزینه توسط هر یک از

از معادلات فوق برای داده به معادلات
با خط ایجاد بخشی شده و حدود اطمینان 25/0٪ مقایسه

می‌شود.

مواد و روش‌ها
الف) معرفی داده‌ها
در این مطالعه برای متفاوتی رویه تجربی و نیمه تجربی در

شرایط جریان تکنواخت از پارامترهای میکروولوژیکی 24 کاتال

اندازه گیری شده با طور عمدی در سیستم‌های اصلی و شن در

آمریکا که در جدول 1 را به دست آمده استفاده گردید. (13) برای

مطالعه و درک تأثیر جریان غیر یکنواخت در طراحی

کاتال های رژیم در بسته‌های داده از 21 نمونه‌برنده

اندازه گیری شده در بزرگ‌های مختلف موردکشی با

4

18/9 mm

d50 =
جدول ۱. پارامترهای هیدرولیک اندازه‌گیری شده در کانال‌های آبرفت

<table>
<thead>
<tr>
<th>d<sub>50</sub> (mm)</th>
<th>w(ft)</th>
<th>h(ft)</th>
<th>(S \times 10^{-3})</th>
<th>u(ft/s)</th>
<th>Q(ft<sup>3</sup>/s)</th>
<th>شماره کانال</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.580</td>
<td>27/0</td>
<td>3/46</td>
<td>0/330</td>
<td>2/42</td>
<td>177</td>
<td>1</td>
</tr>
<tr>
<td>0.208</td>
<td>62/0</td>
<td>5/85</td>
<td>0/130</td>
<td>2/28</td>
<td>733</td>
<td>2</td>
</tr>
<tr>
<td>0.253</td>
<td>80/0</td>
<td>8/99</td>
<td>0/580</td>
<td>1/71</td>
<td>1031</td>
<td>3</td>
</tr>
<tr>
<td>0.696</td>
<td>52/0</td>
<td>6/01</td>
<td>0/303</td>
<td>1/92</td>
<td>245</td>
<td>4</td>
</tr>
<tr>
<td>0.328</td>
<td>57/0</td>
<td>5/84</td>
<td>0/74</td>
<td>2/10</td>
<td>510</td>
<td>5</td>
</tr>
<tr>
<td>0.580</td>
<td>65/0</td>
<td>7/44</td>
<td>0/580</td>
<td>1/79</td>
<td>950</td>
<td>6</td>
</tr>
<tr>
<td>0.518</td>
<td>52/0</td>
<td>5/81</td>
<td>0/125</td>
<td>1/36</td>
<td>114</td>
<td>7</td>
</tr>
<tr>
<td>0.317</td>
<td>50/0</td>
<td>4/63</td>
<td>0/90</td>
<td>1/58</td>
<td>191</td>
<td>8</td>
</tr>
<tr>
<td>0.490</td>
<td>43/0</td>
<td>5/33</td>
<td>0/190</td>
<td>1/59</td>
<td>170</td>
<td>9</td>
</tr>
<tr>
<td>0.546</td>
<td>33/5</td>
<td>3/37</td>
<td>0/178</td>
<td>1/58</td>
<td>198</td>
<td>10</td>
</tr>
<tr>
<td>0.588</td>
<td>46/0</td>
<td>3/15</td>
<td>0/28</td>
<td>1/58</td>
<td>198</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>6/0</td>
<td>5/73</td>
<td>0/186</td>
<td>2/57</td>
<td>135</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>6/0</td>
<td>5/73</td>
<td>0/186</td>
<td>2/57</td>
<td>135</td>
<td>13</td>
</tr>
<tr>
<td>0.311</td>
<td>31/0</td>
<td>8/50</td>
<td>0/120</td>
<td>2/51</td>
<td>1139</td>
<td>14</td>
</tr>
<tr>
<td>0.575</td>
<td>53/0</td>
<td>3/90</td>
<td>0/349</td>
<td>2/65</td>
<td>600</td>
<td>15</td>
</tr>
<tr>
<td>0.173</td>
<td>12/0</td>
<td>3/61</td>
<td>0/203</td>
<td>1/39</td>
<td>55</td>
<td>16</td>
</tr>
<tr>
<td>0.163</td>
<td>12/0</td>
<td>3/01</td>
<td>0/378</td>
<td>1/54</td>
<td>56</td>
<td>17</td>
</tr>
<tr>
<td>0.245</td>
<td>12/5</td>
<td>2/44</td>
<td>0/294</td>
<td>1/54</td>
<td>43</td>
<td>18</td>
</tr>
<tr>
<td>0.215</td>
<td>27/5</td>
<td>2/31</td>
<td>0/302</td>
<td>2/42</td>
<td>158/6</td>
<td>19</td>
</tr>
<tr>
<td>0.360</td>
<td>30/0</td>
<td>5/25</td>
<td>0/114</td>
<td>1/98</td>
<td>236</td>
<td>20</td>
</tr>
<tr>
<td>0.249</td>
<td>20/0</td>
<td>4/23</td>
<td>0/110</td>
<td>2/10</td>
<td>133</td>
<td>21</td>
</tr>
<tr>
<td>0.246</td>
<td>20/0</td>
<td>3/23</td>
<td>0/218</td>
<td>1/85</td>
<td>226/9</td>
<td>22</td>
</tr>
<tr>
<td>0.240</td>
<td>24/0</td>
<td>2/45</td>
<td>0/388</td>
<td>1/90</td>
<td>343/3</td>
<td>23</td>
</tr>
<tr>
<td>0.245</td>
<td>29/5</td>
<td>3/47</td>
<td>0/215</td>
<td>1/85</td>
<td>180/6</td>
<td>24</td>
</tr>
</tbody>
</table>
جدول ۲. خلاصه معیارهای اندازه‌گیری شده و پیش‌بینی شده مقاطع هیدرولیکی رودخانه گاماسپاب

<table>
<thead>
<tr>
<th>شماره</th>
<th>مقاطع</th>
<th>S (m)</th>
<th>w (m)</th>
<th>h (m)</th>
<th>τ₀</th>
<th>u (m/s)</th>
<th>dᵣ</th>
<th>Q (m³/s)</th>
<th>S (m)</th>
<th>w (m)</th>
<th>h (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td></td>
<td>۰/۷۰۷۷۳</td>
<td>۷/۵۹</td>
<td>۲/۷۴</td>
<td>۰/۹۸</td>
<td>۰/۹۸</td>
<td>۰/۹۵</td>
<td>۸/۲</td>
<td>۰/۲۷۴</td>
<td>۰/۲۷۴</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td></td>
<td>۰/۸۸۴</td>
<td>۸/۷۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td></td>
<td>۰/۹۹۷</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td></td>
<td>۱/۰۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td></td>
<td>۱/۰۰۱</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td></td>
<td>۱/۰۰۲</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td></td>
</tr>
<tr>
<td>۸</td>
<td></td>
<td>۱/۰۰۳</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td></td>
</tr>
<tr>
<td>۹</td>
<td></td>
<td>۱/۰۰۴</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td></td>
</tr>
<tr>
<td>۱۰</td>
<td></td>
<td>۱/۰۰۵</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td></td>
</tr>
<tr>
<td>۱۱</td>
<td></td>
<td>۱/۰۰۶</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td></td>
</tr>
<tr>
<td>۱۲</td>
<td></td>
<td>۱/۰۰۷</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td></td>
</tr>
<tr>
<td>۱۳</td>
<td></td>
<td>۱/۰۰۸</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td></td>
</tr>
<tr>
<td>۱۴</td>
<td></td>
<td>۱/۰۰۹</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td>۱/۰۰</td>
<td></td>
</tr>
<tr>
<td>۱۵</td>
<td></td>
<td>۱/۰۱۰</td>
<td>۱/۰۱</td>
<td>۱/۰۱</td>
<td>۱/۰۱</td>
<td>۱/۰۱</td>
<td>۱/۰۱</td>
<td>۱/۰۱</td>
<td>۱/۰۱</td>
<td>۱/۰۱</td>
<td></td>
</tr>
</tbody>
</table>
جدول 3. معادلات روش‌های انتخابی برای مقایسه کانال‌های ماسه‌ای

<table>
<thead>
<tr>
<th>عمق حریان</th>
<th>عرض کانال</th>
<th>سال انتشار</th>
<th>محقق</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h = 0.47 \left(\frac{Q}{F_n} \right)^{1/3}$</td>
<td>$w = 2/5Q^{4/5}$</td>
<td>1958</td>
<td>Lacey</td>
</tr>
<tr>
<td>$h = 0.499(Q)^{1/3}$</td>
<td>$w = 4/3Q^{5/3}$</td>
<td>1966</td>
<td>Chitale</td>
</tr>
<tr>
<td>$h = 16d \left(\frac{d}{d_0 (\Delta h/d)} \right)^{1/2}$</td>
<td>$w = 0.121d_0 \left(\frac{Q}{\Delta h^{1/2}d} \right)^{1/5}$</td>
<td>1980</td>
<td>Kondap and Garde</td>
</tr>
<tr>
<td>$h = 0.5 \left(\frac{S}{d^{1/3}} - \frac{S_c}{d^{1/3}} \right)^{1/2} Q^{-1/5}$</td>
<td>$w = 4/11 \left(\frac{S}{d^{1/3}} - \frac{S_c}{d^{1/3}} \right)^{1/5} Q^{5/3}$</td>
<td>1985</td>
<td>Chang</td>
</tr>
</tbody>
</table>

توجه 1: d_0 که در اینجا d_0 قطر ذره بین بعد می‌باشد.
توجه 2: S_0 شیب بحرانی کانال می‌باشد.
توجه 3: $\Delta h = \gamma_0 \cdot S_0$ و $\gamma_0 = 5/2$.
توجه 4: $v = 1/07 \times 10^{-3} \text{ m}^3/\text{s}$ و $\rho = 1350 \text{ kg/m}^3$.

نتایج و بحث

1. جراحی یکچندواخت
الف) عرض کانال
شکل 1 برای مقدار اندازه‌گیری شده عرض کانال را در مقابل عرض پیشروی شده توسط معادلات جدول 3 نشان می‌دهد. در این شکل خط برای ایده‌آل در وسط و خطوط بالا و پایین این خط حدود اطمنیان 25% را نشان می‌دهد. با ملاحظه شکل 1 مشخص می‌شود که معادلات شيپول به طور قابل توجهی عرض کانال را بزرگتری پیش‌بینی می‌کند، به نحوی که برای هر 25 کانال مورد مطالعه معادله عرض خارج از حد اطمنیان 25/4 می‌باشد.
شکل 1. مقایسه عرض اندازه‌گیری شده با عرض محاسبه شده توسط معادلات جدول 3

دو کانال شنی ($V^{(n)}_d$) کاملاً غیر منطقی و پیام برگزار از مقدار اندازه‌گیری شده، تخمین می‌زنند. به دلیل پیام برگزار بودن برآورد عرض این دو کانال توسط معادله شیتانل، مقدادر آنها از شکل 1 حذف گردیدند

ب) عمق جریان

شکل 2. همانند شکل 1 برای مقایسه مقدار اندازه‌گیری عمق جریان مقابل مقدار پیش‌بینی شده توسط معادلات عمق جریان در جدول 3 را به همراه خط ابتدایی و خطوط حدود اطمینان 95% نشان می‌دهد. بر اساس شکل 2، معادله لاسی در هیچ موردی عمق جریان را پیش‌بینی ارائه اطمینان 75% تخمین نمی‌زند. اگرچه در 10 مورد عمق جریان را کوچک‌تر از حد اطمینان 75% آورده می‌باشد. معادله شیتانل در شکل مورد تخمین برگزار و در 11 مورد عمق جریان را کوچک‌تر از مقدار اندازه‌گیری شده با حدود اطمینان 75% آورده می‌باشد. معادله کنداب و گارد با 6 مورد برآورد خارج حد اطمینان 75% و 10 مورد خارج از حد اطمینان 75% نامناسب ترین معادله پیش‌بینی
نتیجه‌گیری نشان می‌دهد که عمق جریان در این تحقیق می‌باشد. مدل‌های با پارامترهای بررسیته‌اند. مورد تقاضای حاصل بر اساس داده‌های این مطالعه، مدل‌های بررسی‌شده هر دو مورد تخمین برگرفته استیسی از حدود اطمنان جریان به عنوان ورودی استفاده می‌شود. در تحقیق حاصل از مقایسه عمق‌های در این پژوهش نشان می‌دهد قدرت بهترین معادلات بیشتر از آن که به شرایط سیال و سیستم وابسته باشد، به شرایط جغرافیایی و هیدرولوژیکی داده‌های این‌اندازه‌گیری شده بیشتر دارند. این شرایط به صورت ضرایب و توان‌ها در معادلات ظاهر می‌شوند به طوری که با وجود یکسان بودن ورودی معادلات لاسی و شینال (هر دو فقط از دی جریان استفاده می‌کنند)، نتایج بهتری آنها کامل‌تر متفاوت است. مقادیر بررسی RMSE می‌تواند عرض و عمق ارائه‌شده در جدول 3 نشان می‌دهد که دی‌گر جریان‌ها و قطور دره پارامترهای ورودی کافی برای داشتن پیش‌بینی مناسب مقطع پایدار نیستند.

باید قابل توجه در پیش‌بینی‌های انجام شده براساس چهار معادله انتخابی برای عرض و همین طرح چهار معادله انتخابی برای عمق عدم تأثیر یابدهای ظاهاری آنها به دلیل کاربرد متغیرهای پیش‌بینی در بهبود نتایج پیش‌بینی به علت دیگر ارائه، معادله کندان و گارد از قطر ذره و مشخصات رسوب و آب.
ارتباط عوارض

برای تعیین عوارض مؤثر در پیش بینی عوارض کالان با استفاده از آنالیز ابعادی از تمام متغیرهای ایجادگری که در جدول 2

استفاده گردید که در تجربیات یک جریان پارامتر شیلدز و

فقط آنها اثر دارند بر پیش بینی عوارض کالان دادند.

نابرابری این استفاده از روش آنالیز رگرسیون برای 21 نیم‌سیر

سرعت ایجادگری که در این مطالعه معادله زیر برای عرض

جریان ارائه می‌گردید:

\[w = \frac{a_0}{\sqrt{\frac{3\pi Q}{4\pi} \cdot \frac{1}{4} \cdot \frac{d_4}{8}}} \quad (R^2 = 0.8) \]

ضریب تغییرات 2/3 نشان می‌دهد که عوارض مستقل، Q و d4

و توان نسبی 2/3 تأثیر بین معادله ایجادگری که در محاسبه

زیر برای این جریان کلارس (15) ایجادگری که در این

فقط از داده‌های 20% نزدیک بستر استفاده می‌کند که خود خطر

همیستگی‌هایی را منتفی می‌کند. همچنین نمایه دیگر در این

معادله نزدیک به عدد 1/5 می‌باشد که هم‌آهنگ‌ی جالی با

معادلات ارائه شده در جدول 3 نشان می‌دهد.

پردازش

با استفاده از روش همیستگی آماری برای 21 نیم‌سیر سرعت و

با در نظر گرفتن فاقدی انتخاب مدل در نرم‌افزار SAS، معادله

زیر برای عمق مستوط جریان پیشنهاد گردید:

\[h = \frac{a_0}{\sqrt{3\pi Q}} \cdot \frac{1}{4} \cdot \frac{d_4}{8} \quad \] \[(R^2 = 0.85) \]

این معادله نشان می‌دهد که عوارض دیگر در معادله فوق به طور

قابل ملاحظه‌ای مناسب است با معادله انتخابی در جدول 3

می‌باشد و همچنین عمق جریان به طور معکوس مناسب با

پارامتر شیلدز می‌باشد. لازم به ذکر است که در صورت عدم

استفاده از روش لایه مزیت برای محاسبه سرعت برشی مربوط به Dاده‌های ناحیه داخلی نیم‌سیر در برآورید پارامتر شیلدز،

شنا برای سرعت \(h \) تعیین می‌گردد که به دیل

کاربرد \(h \) در طرف راست و \(S \) در طرف سمت

ضریب تغییرات به طور ساختگی افزایش می‌یافت.

استفاده از پرودول سرعت توسعه یافته است. فرضیه بنیادی که

از طریق تجربی تأیید شده است که پرودول سرعت را می‌توان

به دو ناحیه داخلی و خارجی تقسیم کرد و برشی مناسبی از

قانون لاغرانژ در ناحیه داخلی که حدود 20% عمق جریان در

نرخ بسته را شامل می‌شود به دست آورده. (10) قانون

لاغرانژ توزیع سرعت در ناحیه داخلی امکان محاسبه سرعت

برای دیگر این امکان محاسبه پارامتر شیلدز که از مهم‌ترین

پارامترهای هیدرولوگی روب‌بوده به صورت زیر تعیین می‌گردد:

\[h_0 = \frac{\tau_0}{(\rho_s - \rho) g d_4} \]

را فرآیند می‌سازد که در آن \(h_0 \) = پارامتر شیلدز، \(\tau_0 \) = شن

بروی بسته، \(\rho_s \) = چگالی روب، \(\rho \) = چگالی آب، g = شتاب

نرخ محاسبه در ناحیه داخلی که حدود 20% داشته باشد

اصفه 84 در این زیرتر می‌باشد.

پارامتر شیلدز به طور قابل توجه قابلیت پیش بینی

مشخصات هندسی مقطع یافتن مانند عمق جریان و توسعه نشته

بروی و شبک کالان را بهبود می‌بخشد. علت مقدمه این

به‌طور توانایی ساختار پروتئوسکوپیک (وضعی) جریان

در مقطع کالان می‌باشد. از طرف دیگر کاربرد فقط 20%

داده‌های عمق جریان در محاسبه تنش برای خطر هر نوع

همیستگی‌ساختگی (Spurious correlation) زیبا در این حالت به‌جای کاربرد تمام داده‌های نیم‌سیر سرعت

مرتبه به‌کن عمق جریان \(h \) فقط از داده‌های 20% عمق

جریان شیلدز بستر استفاده می‌شود. برای تجربه برای به‌دست

آوردن یک معادله مانند معادله 4 در طرف از عمق جریان،

استفاده نمی‌شود تا وجود این متغیر مشترک باعث افزایش

ساختگی ضریب تعیین معادله گردید.

پارامترهایی که به دست آمده از تعداد 21 نیم‌سیر سرعت

اندازه‌گیری شده تحت جریان دامنه غیر یکنواخت در

رویدخانه شنی گرام‌سیب در جدول 2 ارائه شده‌اند. نتایج حاصل

برای جریان غیر یکنواخت به صورت زیر ارائه می‌گردد:
چ) شیب کف کانال
ب) بدون کاربرد نوری لایه مزایی امکان ارائه یک معادله مناسب برای شیب کف کانال وجود ندارد و در بهترین شرایط برای داده‌های ۲۸۰ رودخانه در نقاط مختلف جهان (۱) می‌باشد (۱). ولی کاربرد این نوری که امکان تخمین مناسبی از تنش برخی بستر و در یک آب‌نما برای شیبلدر از فرآیند می‌کند افزایش قابل توجهی در ضریب تعیین ایجاد می‌کند که اگر چه هنوز مطلوب نیست ولی نسبت به وضع موجود معادلات شیب (1) به طور قابل قبول توجهی دارای پیش‌بینی بهتری می‌باشد. معادله شیب کف براساس داده‌های رودخانه‌های گاماسیاب به:
صبرت زیر ارائه می‌گردد:

\[S = \frac{0.65}{(1.07)^{0.46}} \]

این معادله نشان می‌دهد که در نظر گرفتن پارامتر شیبلدر در تخمین شیب کانال نه به میزان قدرت پیش‌بینی مشخصات مقطع کانال پایداری را افزایش دهد. بلکه قادر است به دیل کاربرد روش لایه مزایی در تخمین آن اثر ساختار تنوع تنش‌بری در امتداد قائم (ب) برای جریان هدر یک گواخت دارد. مشابه در پیش‌بینی و نمای حاصل از معادله هم‌پیشگی تصویری کند.

نتیجه‌گیری

بر اساس این تحقیق می‌توان نتایج زیر را استنتاج نمود:

1. معادلات مطالعه‌شده در این مقاله براساس توری رژیم برای طریق‌کانال‌های پایدار با جریان یکنواخت قادرا به پیش‌بینی مناسب برای تمام پارامترهایی مقطع پایدار شامل عرض و عمق و شیب و ضریب نیستند.

2. هر دو روش تجربی و نیمه تجربی قادر به توضیح فرآیند ایجاد مقطع پایدار نیستند. اگر چه هر دو روش می‌توانند به نتایج نسبتاً مناسب منطقه‌ای بدون توضیح فرآیند توریک

