بررسی شواهد میکرورمفولوژیکی تغییر اقلیم کوارترن در خاک‌های قدیمی منطقه اصفهان

شمسالله ایوبی، مصطفی کربیمان اقبال و احمد جلالیان

چکیده
خاک‌های قدیمی خاک‌های هستند که تحت شرایط اقلیمی و اکولوژیکی متغیر از حال حاضر تشکیل شده‌اند. علی رغم این که این خاک‌ها در ناحیه‌ای ایران مرکزی گزارش گردیده‌اند، پژوهش‌های کافی روی آنها صورت نگرفته است. یکی از تکنیک‌های مهم برای شناسایی و تفسیر این خاک‌ها در راستای مطالعات اقلیم‌شناسی گذشته بوده‌است. بررسی میکرورمفولوژی خاک‌های قدیمی منطقه اصفهان نشان می‌دهد که شرایط مرطوب‌تر گذشته منطقه مطابق با تغییر اقلیمی و اکولوژیکی است. این انتقال که در دوره نسبی قطعه مخذولیات محیطی ناشی از تغییرات اقلیمی و اکولوژیکی در افق طولانی تأسیس شده است. بنابراین، شواهد میکرورمفولوژیکی، مشاهده‌های میدانی و نتایج مطالعات اقلیم‌شناسی می‌توانند مکمل‌نما در تفسیر تغییرات اقلیمی و اکولوژیکی اصفهان بوده و در دوره‌های پیش‌بینی‌شده شرایط خاک‌تر حاکم بوده است.

ویژه‌های کلیدی: خاک‌های قدیمی، میکرورمفولوژی، تغییر اقلیم، کوارترن

مقدمه
خاک‌های قدیمی (Paleosols) خاک‌های هستند که در شرایط مختلفی از شرایط فعلی روی زمین نمی‌باشند. این تغییرات اقلیمی ناشی از تغییرات اغلب در دوره‌های سه‌شانه‌ای یا در طول فصل‌های مختلف از دوران تاریخی و طبیعتی می‌باشند. این تغییرات اغلب در طول پیش‌بینی‌شده‌شده‌اند (Landscape) و در نتیجه شرایط فعلی ممکن است که در دوره‌های قطعه مخذولیات محیطی نشان‌دهنده‌ی منطقه‌ای بوده و در دوره‌های قدیمی با شرایط خاک‌تر حاکم بوده است. به این ترتیب شرایط فعلی منطقه‌ای اصفهان بسیار شبیه به دوران قدیم است.

زمین‌توضیحات: تأثیر شرایط فعلی روی زمین‌شناسی

1. استادیار خاک‌شناسی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2. به ترتیب دانشیار و استاد خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

137
خاک‌های قادیمی اغلب دارای پیوسته‌های میکروفلوروزیک هستند که به نظر می‌رسد منشا پدید‌آورنده‌ی داستانی باشد. از مهم‌ترین آنها می‌توان به ذرات در جای هوا دیده در کالانه‌های ناشی از یک‌هاپا جدا کننده‌ی جانوری و ریشه‌ها، ریشه‌های آگهی نشده و فاصله‌گیر از نوع پلاسمیک (Plasmic) پوشش‌های ریسی اشاره کرد (16). با توجه به این که اکثر خاک‌های قادیمی بعد از تشکیل دچار تغییر و تحول شده و تغییر خصوصیات میکروفلوروزیک و فیزیکو‌شیمیایی آنها تحت شرایط فرابینده‌ی تفریکت و وحش‌زا زا بایستی بررسی شود. لذا کمک به بررسی نتایج مکاتبه‌ی ایفا می‌کند.

(16) 41$

یکی از شواهد میکروفلوروزیک موجود در خاک‌های قادیمی بسیار خشن و همچنین طبیعی بنده خاک‌های قادیمی ایفا می‌کند.

(17) 52

آتاری از پوشش‌های گیاهی و جانوری در مواقف نازک به خوبی نشان دهنده شرایط محیطی گذشته‌ی خاک می‌باشد (18). هر چند طور معمول در مواقف خشن و همچنین خشن این آتار حفظ نمی‌شود ولی بعضی از جهت دفن، صرف و قرار گرفتن در شرایط ایا این ویژگی ویژگی‌های مشخص تجهیزات خاک می‌باشد (18).

(18) 54

آتار چیزی از کم‌روش مردر منطقه‌ی شرقی و منطقه‌ی غربی قرار گرفته که از هر منطقه‌ی یک نیک بین بار شد. در مردر بررسی قرار می‌گیرد. خاک‌های قادیمی مورد مطالعه در منطقه‌ی سیاه‌پوشی شش اصفهان واقع در دامنه جنوبی شرق که عناصر اصفهان روز سربان‌ساز مخرب یکنی قادیمی واقع شده‌اند و خاک‌های قادیمی منطقه‌ی سگری واقع در 30 کیلومتری شرق شهرستان اصفهان روی اراضی موانع و روستا

(19) $\text{A} \quad \text{B} \quad \text{C} \quad \text{D}$

در منطقه سیاه‌پوشی شش اصفهان به نیروپر در منطقه‌ی سگری

(20) $\text{E} \quad \text{F} \quad \text{G} \quad \text{H}$

چهار نیروی مورد مطالعه قرار گرفته که از هر منطقه‌ی پک

(21) $\text{I} \quad \text{J} \quad \text{K} \quad \text{L}$

نیک بین بار شد. در مردر بررسی قرار می‌گیرد. خاک‌های قادیمی مورد مطالعه در منطقه‌ی سیاه‌پوشی شش اصفهان واقع در دامنه جنوبی شرق که عناصر اصفهان روز سربان‌ساز مخرب یکنی قادیمی واقع شده‌اند و خاک‌های قادیمی منطقه‌ی سگری واقع در 30 کیلومتری شرق شهرستان اصفهان روی اراضی

(22) $\text{M} \quad \text{N} \quad \text{O} \quad \text{P}$

مقداری قابل ملاحظه‌ای قطعات زغال، صدف و آثاری از فعالیت
در مطالعات صحرایی بعد از تشريح نیم‌رخ‌ها نمونه‌هایی دست نخورده به صورت کل‌خو و افق‌های مختلف برداشته و به آزمایشگاه منتقل گردید. برای نهی مقاطع نازک از کل‌خو های برداشت شده نمونه‌ها در مرحله اول به وسیله رژین سه جزئی و تحت خلاء تقطیع و در شرایط هوای آزاد ساخته و خشک شدند. این نمونه‌ها به صورت سه‌بعدی با استفاده از روش‌های سه‌بعدی سازماندهی و حضور در سایت آزمایشگاه مورد بررسی قرار گرفته‌اند. مطالعات این سایت به کل‌خو برخوردار برای افزایش اثرات محیطی و اقتصادی انجام می‌شود.

شکل 1: موقعیت جغرافیایی خاک‌های مورد بررسی

شکنده، این زرنگ مرکز از جزیره رزین (100 گرم) جزیره اسیداستاریک (عامل انعقاد) (4 قطره)، جزیره کالکت (کاتالیزور) [3 قطره] است. (عامل رخت) (15 میلی لیتر باید شاهد شکتیی (سکینی) می‌باشد. نسبت های فوسر با چندین نارازمین و خطا روی نمونه‌های خاک و با حصول اشباع کامل و زمان مناسب برای خشک شدن به دست آمده. سخت نشدن نمونه‌ها با نسبت های فوسر 3-2 هفته طول کشید. بعد از پری نمونه‌ها و صفحات دادن آنها به پودر خشک در راه دور در حیاط متفاوت شده، به وسیله چسب کالکت بالا می‌آید روی لام چسبانده شدند. در نمونه‌های حاوی گچ برای پری‌های تغییر ماهیت گچ نمی‌توان از پودر کالکت بالا می‌آید استفاده کرد. بنابراین رزین سه جزئی با نسبت بین‌شر اسید (10 قطره) استفاده شد. نمونه‌ها سپس تا رسیدن به ضخامت 30 میکرون بر روی پودر کالکت از درشت تا ریز ساقیده شدند. بعد از پوشش دادن نمونه‌ها به وسیله کالکت بالا می‌آید و لام های مخصوص، مشاهده نمی شود. توزیع میکروسکوپ پلاژیوران، مدل لاوه (Leitz (Ortholux II pol-Bk)) به وسیله دوربین اتوتیپیک سالد لایزر (Leitz (Orhomat E)) به وسیله رژین سه‌بعدی سازماندهی و حضور در سایت آزمایشگاه مورد بررسی قرار گرفته‌اند.
دانلود از iutjournals.iut.ac.ir در 17:30, ایسریت، چهارشنبه 5 آبان 1394
جدول 1: برخی خصوصیات مرفولوژیک، نیزیکی و شیمیایی خاک دقیمی مورد مطالعه در منطقه سپاهان شهر

<table>
<thead>
<tr>
<th>SAR</th>
<th>ECe (dS/m)</th>
<th>pH</th>
<th>CEC (Cmol(+)/kg)</th>
<th>آهک گچ موادآلی (gr/kg)</th>
<th>درصد</th>
<th>درصد</th>
<th>ضعیت آهک</th>
<th>پوشش رس</th>
<th>سیل و رس</th>
<th>ظرفیت سختی</th>
<th>رنگ</th>
<th>عمق (مرطوب) (cm)</th>
<th>ناکاخ</th>
<th>افق</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/5</td>
<td>7/7</td>
<td>7/5</td>
<td>10/4</td>
<td>9/5</td>
<td>10/5</td>
<td>9/5</td>
<td>9/5</td>
<td>esd</td>
<td>grf</td>
<td>10YR 5/4</td>
<td>100-150</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/4</td>
<td>5/6</td>
<td>7/8</td>
<td>13/9</td>
<td>9/9</td>
<td>8/5</td>
<td>8/5</td>
<td>8/5</td>
<td>1npf</td>
<td>c2rsm-c</td>
<td>7.5YR 4/4</td>
<td>150-200</td>
<td>2Btk1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/0</td>
<td>7/4</td>
<td>8/3</td>
<td>15/0</td>
<td>9/9</td>
<td>33</td>
<td>33</td>
<td>33/1</td>
<td>1npf</td>
<td>m2rsm</td>
<td>7.5YR 5/4</td>
<td>160-200</td>
<td>2Btk2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/5</td>
<td>3/7</td>
<td>7/8</td>
<td>15/7</td>
<td>8/9</td>
<td>50</td>
<td>50</td>
<td>50/7</td>
<td>3/7</td>
<td>2mkpf</td>
<td>10YR 5/4</td>
<td>190-250</td>
<td>2Btk3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/0</td>
<td>3/1</td>
<td>7/2</td>
<td>18/3</td>
<td>4/9</td>
<td>25</td>
<td>25</td>
<td>25/1</td>
<td>6/5</td>
<td>2mkpf</td>
<td>7.5YR 6/4</td>
<td>110-150</td>
<td>2Btk4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/5</td>
<td>6/0</td>
<td>8/3</td>
<td>15/7</td>
<td>5/9</td>
<td>47</td>
<td>47</td>
<td>47/3</td>
<td>3/7</td>
<td>2mkpf</td>
<td>7.5YR 5/4</td>
<td>160-200</td>
<td>2Btk5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/3</td>
<td>5/9</td>
<td>8/1</td>
<td>17/8</td>
<td>4/9</td>
<td>180</td>
<td>180</td>
<td>180/5</td>
<td>5/4</td>
<td>3mkpf</td>
<td>7.5YR 4/4</td>
<td>170-210</td>
<td>2Btk6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/1</td>
<td>3/7</td>
<td>8/2</td>
<td>22/7</td>
<td>7/9</td>
<td>210</td>
<td>210</td>
<td>210/5</td>
<td>3npf</td>
<td>c2rsm</td>
<td>10YR 5/4</td>
<td>210-250</td>
<td>3Btk1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/9</td>
<td>5/2</td>
<td>8/1</td>
<td>20/0</td>
<td>7/7</td>
<td>150</td>
<td>150</td>
<td>150/10</td>
<td>1npf</td>
<td>c2rsm</td>
<td>10YR 4/6</td>
<td>250-300</td>
<td>3Btk2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/2</td>
<td>5/2</td>
<td>8/1</td>
<td>19/0</td>
<td>7/7</td>
<td>30</td>
<td>30</td>
<td>30/5</td>
<td>1npf</td>
<td>c2rsm</td>
<td>10YR 5/4</td>
<td>280-350</td>
<td>3Btk3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/1</td>
<td>5/2</td>
<td>8/1</td>
<td>16/0</td>
<td>7/4</td>
<td>60</td>
<td>60</td>
<td>60/5</td>
<td>3/7</td>
<td>evd</td>
<td>10YR 4/5</td>
<td>300-340</td>
<td>3Bty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/8</td>
<td>3/7</td>
<td>7/2</td>
<td>15/7</td>
<td>7/3</td>
<td>190</td>
<td>190</td>
<td>190/5</td>
<td>17/7</td>
<td>3mkpf</td>
<td>7.5YR 3/4</td>
<td>310-336</td>
<td>4Btk2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/9</td>
<td>3/7</td>
<td>8/1</td>
<td>13/9</td>
<td>7/1</td>
<td>30</td>
<td>30</td>
<td>30/5</td>
<td>33/1</td>
<td>3mkpf</td>
<td>7.5YR 3/4</td>
<td>330-380</td>
<td>4Btk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول 2. تشریح میکروفئلوژی برخی افته‌ها منابع نیم‌خ سیاهان شهر بر اساس راهنمای توصیف بولیک و همکاران (9)

<table>
<thead>
<tr>
<th>عید ساختن</th>
<th>بی‌ فاربیک</th>
<th>تخلخل</th>
<th>دانه‌ای پوستیده</th>
<th>حرارت نامتقارن</th>
<th>کیتینیک</th>
<th>فاربیک لکه‌ای</th>
<th>تصادفی مارکب</th>
<th>دانه‌ای پوستیده</th>
<th>میزان آتی</th>
<th>جلد (0-15 cm)</th>
</tr>
</thead>
</table>
| پوشش رسی با فراوانی 10 درصد و ضخامت 30-40 میکرون و بی‌فیبر | فاربیک لکه‌ای | 0 درصد جف‌فیک | 0 درصد فاربیک | 0 درصد فاربیک | کریستالین | شرایط میکروپتیک | بی‌فیبریک | 0 درصد فاربیک | دانه‌ای پوستیده | 00 درصد ساختن بولوکی | عمیق‌ترین خازن و پیچیده در میان و بافت گیاهی و خاک‌های
| پوشش رسی با فراوانی 12 درصد و ضخامت 35-40 میکرون و بی‌فیبر کریستالین | پوشش رسی با فراوانی 14 درصد و ضخامت 30-40 میکرون و بی‌فیبر کریستالین | کمتر از 1 درصد | پوشش رسی تخلخل یافته | پوشش رسی صفحه‌ای بزرگ جریمه | مقداری جف‌فیک | پیچیده در میان و بافت گیاهی و خاک‌های
| پوشش رسی با فراوانی 10 درصد و ضخامت 30-40 میکرون و بی‌فیبر صفحه‌ای | پوشش رسی با فراوانی 14 درصد و ضخامت 30-40 میکرون و بی‌فیبر صفحه‌ای | کمتر از 1 درصد | پوشش رسی تخلخل یافته | پوشش رسی صفحه‌ای بزرگ جریمه | مقداری جف‌فیک | پیچیده در میان و بافت گیاهی و خاک‌های

1. Microstructure
2. Porosity
3. B-fabric
4. Related distribution pattern
5. Pedofeatures
6. Pellicular grain structure
7. Compound packink voids
8. Vughs
9. Speckled
10. Chitonic
11. Crystallitic
12. Gefurie
13. Open porphyric
14. Micritic
15. Planar
16. Infilling
17. Chamber
18. Mosaic Speckled

2Bk1 (15-60 cm)
2Bky3 (145-175 cm)
3By (305-345 cm)
4Bky (345-365 cm)
بررسی شواهد ميكرورمولوژيكي تغيير اقليم کوارتز در...
خاک قدمی منطقه سگزی

برخی خصوصیات مفلوپرژیک و فیزیکشیمیایی خاک قدمی
منطقه سگزی در جدول 3 خلاصه شده است. این خاک قدمی شامل رسوبات طبیعی دان بدیهی مختلط در عمق بوده و در عمق 45-60 سانتی متری دارای یک‌هزینه‌بندی شده است. همان طور که در مطالعات مالکورلوزی انجام شده در منطقه نیز نشان داده شده، در گذشته به علت فراخی زیاد آب در منطقه امکان رشد و فعالیت گیاهان اندوست‌زا مربوط به آن گزارش شده است.

(5) که باید جوانان بی涂 در طول عمر خود به یاد آن ها بپاریم، علایم خارجی شود را کاملاً سخت می‌کنند به کمک مراکز تربیتی و تحریم اهوازی دخیل دیوار آهکی آنها باعث می‌ماند (1).

بط‌چینده مرحله‌‌روب‌گذاری و شستشوی آب‌شوی تشکیل
شداند و سپس فرایند‌های آهکی شدن و گچی شدن آنها را
تحت تأثیر قرار داده است.

از نکات جالب توجه در مطالعات مقاطع مفلوپرژیک
این خاک وجود یابنده‌ی مختلف یده‌های خاک سازی
مقاوت روی‌های می‌باشد، که می‌توان در شناخت روند
تکامل و بروز یده‌های پودزیکی باری می‌نماید. به عنوان
نمونه در افق‌های
عمدتاً و جهت‌های رسی جهت‌دار بین
دو لاایه آپسیکوزی که بعداً به علت آن یک‌وابع گر
شده است می‌تواند دال برو درن باشد
(شکل ۲۲). این روند
می‌تواند نشان دهنده ای‌بیل مطلب که این ایجاد انقلاب
فرابکی انقلابی در افق‌های (Lessevage) رس
بعد از انقلاب آهک رخ داده و سپس فرایند
Calcification) به عنوان یکی
آهکی شدن
خاک را نوآوره کرد و آن را به صورت
پلی‌زئیک در آورد. نمونه‌ای از پرشکستی حفرات کانالی
در افق‌های ۳By توسط پهلوی‌های بزرگ صفحه‌ای که در
شکل
و یک نمایی دارد خاک است.祭رده در
پایه‌ریزی‌های رسی - آهکی روی پوشش‌های رسی را ناشی از
تغییر اقلیم از وضعیت مرطوب به خشکی خلاصه (۶).

خاک قدمی منطقه سگزی

برخی خصوصیات مفلوپرژیک و فیزیکشیمیایی خاک قدمی
منطقه سگزی در جدول 3 خلاصه شده است. این خاک قدمی
 شامل رسوبات طبیعی دان بدیهی مختلط در عمق بوده و
در عمق 45-60 سانتی متری دارای یک‌هزینه‌بندی شده است. همان طور که در
مطالعات مالکورلوزی انجام شده در منطقه نیز نشان داده شده، در گذشته به علت فراخی زیاد آب در منطقه امکان رشد و
فعالیت گیاهان اندوست‌زا مربوط به آن گزارش شده است.
(5) که باید جوانان بی涂 در طول عمر خود به یاد آن ها بپاریم، علایم خارجی شود را کاملاً سخت می‌کنند به کمک مراکز تربیتی و تحریم اهوازی دخیل دیوار آهکی آنها باعث می‌ماند (1).

خلاصه تشخیص مفلوپرژیک مقاطع نازک مورد برسی
جدول ۳ برخی خصوصیات مرحله‌یک، فیزیکی و شیمیایی خاک قدمی مورد مطالعه در منطقه سگری

<table>
<thead>
<tr>
<th>SAR</th>
<th>ECe (dS/m)</th>
<th>pH</th>
<th>CEC (Cmol(+)/kg)</th>
<th>آهک گچ موادالی (gr/kg)</th>
<th>درصد آهک</th>
<th>درصد درصد سیلت رس</th>
<th>وضعیت آهک</th>
<th>رنگ ساختار</th>
<th>عمق (cm)</th>
<th>افق</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>15/9</td>
<td>7/9</td>
<td>14/78</td>
<td>2/4</td>
<td>6/7</td>
<td>10/1</td>
<td>49/2</td>
<td>گریف</td>
<td>10YR 6.5/4</td>
<td>A</td>
</tr>
<tr>
<td>24</td>
<td>197/0</td>
<td>7/7</td>
<td>13/56</td>
<td>4/5</td>
<td>7/7</td>
<td>22/1</td>
<td>61/9</td>
<td>بدن جوشش</td>
<td>10YR 6/4</td>
<td>Bzy</td>
</tr>
<tr>
<td>51</td>
<td>77/9</td>
<td>7/7</td>
<td>12/00</td>
<td>4/3</td>
<td>14/8</td>
<td>19/9</td>
<td>4/5/4</td>
<td>esd</td>
<td>10YR 5/6</td>
<td>Bz</td>
</tr>
<tr>
<td>51</td>
<td>70/2</td>
<td>7/4</td>
<td>29/13</td>
<td>0/8</td>
<td>30/3</td>
<td>12/1</td>
<td>20/3</td>
<td>esd</td>
<td>5Y 3/1</td>
<td>3Ab</td>
</tr>
<tr>
<td>51</td>
<td>68/5</td>
<td>7/5</td>
<td>37/71</td>
<td>0/2</td>
<td>31/0</td>
<td>13/4</td>
<td>0/5</td>
<td>m3rsn</td>
<td>10YR 3/1</td>
<td>3Bkg</td>
</tr>
<tr>
<td>41</td>
<td>73/1</td>
<td>7/7</td>
<td>15/56</td>
<td>0/5</td>
<td>58/0</td>
<td>17/6</td>
<td>26/3</td>
<td>esd</td>
<td>5Y 3/1</td>
<td>3Bwg,b</td>
</tr>
<tr>
<td>46</td>
<td>50/2</td>
<td>7/7</td>
<td>17/95</td>
<td>7/7</td>
<td>50/5</td>
<td>17/0</td>
<td>10/0</td>
<td>esd</td>
<td>5Y 6/1</td>
<td>3Bwg,b</td>
</tr>
<tr>
<td>22</td>
<td>29/4</td>
<td>7/4</td>
<td>13/56</td>
<td>7/5</td>
<td>60/5</td>
<td>22/8</td>
<td>16/9</td>
<td>esd</td>
<td>5Y 3/1</td>
<td>3Bwg,b</td>
</tr>
<tr>
<td>50</td>
<td>50/7</td>
<td>7/7</td>
<td>17/61</td>
<td>0/4</td>
<td>30/0</td>
<td>10/3</td>
<td>77/0</td>
<td>fisr, m3rsn</td>
<td>5G 5/1</td>
<td>4Bkg,b</td>
</tr>
<tr>
<td>50</td>
<td>50/4</td>
<td>7/4</td>
<td>13/91</td>
<td>7/5</td>
<td>32/0</td>
<td>10/2</td>
<td>33/4</td>
<td>fisr, m3rsn</td>
<td>5G 5/1</td>
<td>4Bkg,b</td>
</tr>
<tr>
<td>55</td>
<td>63/9</td>
<td>7/3</td>
<td>17/95</td>
<td>7/0</td>
<td>35/0</td>
<td>41/3</td>
<td>32/7</td>
<td>fisr, m3rsn</td>
<td>5G 5/1</td>
<td>4Bkg,b</td>
</tr>
<tr>
<td>48</td>
<td>60/9</td>
<td>7/8</td>
<td>10/49</td>
<td>3/9</td>
<td>22/0</td>
<td>18/2</td>
<td>14/4</td>
<td>esd</td>
<td>SGY 5/1</td>
<td>5Bwg,b</td>
</tr>
<tr>
<td>45</td>
<td>60/7</td>
<td>7/5</td>
<td>13/56</td>
<td>4/9</td>
<td>33/0</td>
<td>18/2</td>
<td>16/8</td>
<td>esd</td>
<td>10GY 5/1</td>
<td>6Bwg,b</td>
</tr>
<tr>
<td>45</td>
<td>60/6</td>
<td>7/8</td>
<td>9/13</td>
<td>0/9</td>
<td>29/0</td>
<td>9/7</td>
<td>8/3</td>
<td>esd</td>
<td>SGY 1/3</td>
<td>7Bwg,b</td>
</tr>
</tbody>
</table>
شکل ۳ (الف) توزیعی از بلورهای عدسی شکل گچ در افق سطحی A (ب) پرشگی سست و غیر پوسته از مواد آلی در حفرات کاتانی افق ۷ \(\text{Ab}^3\) (ج) غلافی از گاستروپود که توسط آلیه آسیاب شده است در افق ۳ \(\text{Ab}^3\) سولولهای ریشه ای آلیه شده (زدومرف) در حفرات کاتانی افق ۷ \(\text{Ab}^3\)

شکل ۴ (الف) سولولهای گیاهی که به طور نسبی نیترلی شده‌اند در افق ۳ \(\text{Ab}^3\) (ب) پوشش کریستالهای اسپارتنیک آلی در حفرات افق ۷ \(\text{Ab}^3\) (ج) پوشش آلیه در داخل خلخ و فرج صفحه‌های در افق \(\text{Ab}^3\) (د) پدیده تخلیه و تجمع کسب‌دهای آهن و مگنز به صورت ندول در افق \(\text{Ab}^3\) می‌پردازدینی
Table 4: Description of petrofabric properties

<table>
<thead>
<tr>
<th>Petrofabric Property</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single grains</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Platy</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Contact grain structure</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

1. Single grains
2. Lenticular
3. Contact grain structure
4. Platy
5. Enaulic
6. Channel
7. Undifferentiated b-fabric
8. Amorphous
9. Nodules
از دیگر فرآیندهای مهم که در این اتفاق دیده می‌شود فرآیند
آمکش سلول‌های گیاهی باقی مانده در خاک است. طی این فرآیند سلول‌های گیاهی شده و فضاهای سولولی را بر
کرده است. به‌طور کلی این اتفاق این می‌تواند به زمان
زندگی گیاه‌ها نیز مرتبط باشد که در برخی نقاط
چارچوب سلولی کاملاً حفظ شده است. این مشاهده‌ی سلول‌های
آمکش در این اتفاق در شکل 3 مانند سطح عامی این شکل
تحت حضور مناسب‌ریخته‌های دو‌ومرفه‌های آمکش‌شده‌ایightsDA-Ab
سلول‌های سلول‌های گیاهی دیده می‌شوند که به طور نسبی سیلیسی‌سازی شده‌اند (شکل 4).
(Depletion) می‌باشد. این پدیده تحلیلی را به‌طور عمده تغییر (فاعلی)
روش‌تر را با همراهی باده‌ها تجربه می‌کند. این در نتیجه این به علت شرایط احیای تر در خال و فرح به مدت
طی اتفاقات و اتفاقات مصرف شدید و در انتظار پدیده شده
است و ندول‌هایی با درجه اشباع شدگی کم را ایجاد کرده است
که با علت مشابهتهای زمینه‌نبرد با زمینه‌نبرد اصطلاح
اورتیک به آن اضافه می‌شود. پدیده تحلیلی در این اتفاق به صورت
هیپوکونیک تبدیل به دیواره و ندول‌ها به صورت
کواسی کولتیک نسبت به دیواره حفرات با داخل متن خاک
آرایش یافته است. این آرایش نشان دهنده این است که اشباع آب
به داخل خاک‌هاینده است (21).

در اتفاقات Depletion سلول‌های گیاهی شده، می‌تواند به دیواره خال و فرح
مدفون شونده از تکامل پرتوهایی در
آنها دیده نمی‌شود و عمداً شامل رسوبات آوارهای درشت
دلو داشته است که که فقط باده‌ها در پی آنها رخ داده
است و باعث نمایش نواحی تحلیلی شده اکسیدهای آهن و
منگنز و نواحی تجمع آنها به صورت ندول شده است.

نتیجه‌گیری

نتایج بررسی‌های مکرومولفولوژی می‌تواند این مطلب است که
خار قدمی مربوط به سیلیس شحریه یک خاک قدمی بر جای مانده
و برای زنده بوده که این خاصیت باعث ایجاد پیچیدگی در
تفسیل شرایط اکولوژیکی گذاشته می‌شود. در صورت ارتباط با

اسب‌های پیژندی شیدی را در گذشته تداوم می‌کند که
این شرایط نشان از این دارد که در دوره زمانی مذكره این
منطقه آب بیشتری را دریافت کرده و تحت شرایط مرطوب قرار
داشت است. این تیجیگیری توسط تحقیقات پالئونتولوژی در
همین خاک ای (آیوی و همکاران، 2001) تایید شده است.
مجموع شواهد موجود در خاکهای مورد مطالعه تأیید می‌کند
که در گذشته هم‌زمان با دوره‌های سرد و یخبندان در
عرض خاورمیانی بالاتر، فلای ایران تحت تأثیر دوره‌های
مرطوب تر قرار داشته و در دوره‌هایی بین یخبندان شرایط گرم و
خشکتری بر ایران حاکم بوده است. این نوسانات اقیمی آثار
خود را به صورت شواهد پیدا شودی در خاک‌های مورد مطالعه
به ارث گذشته است.

منابع مورد استفاده

1. آیوی، ش. 1381. مطالعه شواهد پیژندی تغییر اقلیم کواترن در خاک‌های قبادی در منطقه اصفهان و امام قیس چهار محال و
بخشیری. پایان نامه دکتری خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
2. قهرمان، ا. 1353. تشریح گیاهان ایرانی، 1- یافت‌های کشوری انتشارات دانشگاه تهران.
3. کریم زاده، ح. 1381. چگونگی تکوین و تکامل خاک‌ها در لندشی‌های مختلف و مشابه روابطی پات و یافته‌ها باید در منطقه
شرق اصفهان. پایان نامه دوره دکتری خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
4. گروه ج. و. 1387. یافته‌ای از تغییر آب و هوای دریابند در خاک‌های ایران، دویم کنفرانس منطقه‌ای تغییر اقلیم. آیان
678 سازمان هواشناسی کشور تهران، صفحات 24 تا 51.
sections of the European loess belt. Morphological forms and potential for paleoenvironmental reconstruction.
Geoderma 76: 221-252.
Micromorphology and Soil Classification. SSSA Special Pub., Madison, WI.
northwestern India. Geoderma 35: 287-332.
International working meeting on soil micromorphology.