ارزیابی مدل‌های رایانه‌ای LEACH- C و SWAP در آبشوری مزرعهای املاح خاک در منطقه
چاچه‌افل استان یزد

وحید خاکسازی، سیدعلی اکبر موسوی، سیدعلی محمد چراگی، علی‌اکبر کامگار حفیظی و
شاهرخ زند پارسا

چکیده
انجام آزمایش‌های مزرعه‌ای به منظور تعیین مقدار بهینه آب مصرفی برای اصلاح شوری خاک، وقت‌گیر و پرهزینه بوده، بنابراین استفاده از
مدل‌های کامپیوتری رایانه‌ای آب‌رسانی را انتخاب برتر انتخاب شده است. ویژه پوشش و زمان مزرعه‌ای LEACH- C و SWAP در محیط‌های مختلف، مدل LEACH- C می‌تواند به دلیل بهره‌گیری از سه
نواحی انتقال املاح پژوهش‌های بیشتری، اثرات و پیشگیری و بهبود تغذیه بهره‌مندی شیمیایی در محیط خاک، مانند جذب، رسوب،
احلال و غیره در مقیاس بالا و نسب به نتایج پیشین در منطقه نشان داد. برای استفاده از مدل SWAP نتایج بهتری را داشته‌اند، نتایج بهتری را داشته‌اند و
با بهره‌گیری از آن، شرایط شیمیایی خاک را به نحو قابل قبولی پیش‌بینی می‌نماید.

LEACH- C، SWAP

واژه‌های کلیدی: آب‌رسانی، چاچه‌افل، SWAP

تأمین می‌کند که تا سال 2020 میلادی این رقم ۵۰ میلیارد این رقم ۵۰ میلیارد
درصد بررسی افزایش می‌شود و یک افزایش سطح زیر
کشت و با بالا بردن عامل‌های در واحد سطح می‌گردد است. سطح
اراضی خاک از زمین/۱۳ میلیارد هکتار می‌باشد که ۷ میلیارد
هکتار آرایش قابل کشت و ۱/۵ میلیارد هکتار تحت

مقدمه
با توجه به رشد و روزافروز جمعیت، نیاز به تولید محصولات
غذایی بیشتر، بخش از پیش احساس می‌شود. کشاورزی به عنوان
یکی از منابع تغذیه‌برنده در تأمین می‌تواند غذاهای بشر
مطابق است و در حال حاضر قبلاً یک سوم غذای جهان را

1. به ترتیب دانشجوی سابق کارشناس ارشد، استادیار، دانشیار و استادیار مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز

2. استادیار پژوهش مرکز تحقیقاتی شهری یزد

۵۷
آزمون‌های مزرعه‌ای مرتب با شوری به دلیل محدودیت‌های اجرایی، زمان برد و نیاز به نیروی انسانی و هزینه زیادی، به تدریج جای خود را به مدل‌های رایانه‌ای داده‌اند. با استفاده از مدل‌های رایانه‌ای مدل‌های زمانی در کوتاه‌ترین زمان، روش‌های مختلف مدیریتی را اعمال و روند آشمازی را دقت مناسب بررسی کرد. در مدل‌های آخر مدل‌های بی‌سیاری برای مطالعه روند آشمازی اصلاح کرده‌اند.

عمیق‌خونه‌های (8) چند شاخه‌ای شده رایج هر یک با درون‌بسته تحلیلی مفتون‌زیت‌ها را برای ارزیابی در مقابل مقادیر غلظت اصلاح اندازه‌گیری شده در چهار استیت آزمایشی واقع در چهار پروره مرگ اصلاح در مکان‌های مختلف جالگه مروپتیمانی (Mesopotamian) عراق انتخاب کردن.

این مدل‌ها عبارت بودند از مدل‌های مخازن SRM (Series of Reservoirs Model) فرعی (RBM) (Reservoir with Bypass Model) انتشار (Theoretical Plate-Thickness Model) سون پوسه‌های خاک (Convection-Dispersion Model) بودند. (TPTM) مدل انتقال انتشار (Transfer Function) و مدل تابع انتقال (CDM) مدل (TFM) بودند.

وزیری (3) چهار مدل شوری‌زایی خاک، شامل مدل‌های کد (TPTM) مخازن (SRM) مدل توری سون پوسه‌های خاک، مدل (RBM) انتشار (Theoretical Plate-Thickness Model) و مدل‌های کد (CDM) انتشار (Theoretical Plate-Thickness Model) را انتشار هیدروپاتنیکی (NM) در منطقه روده سکه‌های زمانی در کمک کردن با اجرای انجام آزمون‌های مزرعه‌ای شرایط این‌ها غرفه دانه و منشا و با کاربرد مقدار 50، 100 و 125 سانتی‌متر آب، مورد ارزیابی و مطالعه قرار داد.

نقل و انتقال ماده حلال شده در خاک را هر سه، تعداد و سلسله دمایی و متابولیکی (14) شیبی شده است. مدل CHEM (18) شیبی سازی شده است.
مواد و روش‌ها

این پژوهش در استگاه مرکزی تحقیقات شوری نیم‌خاکی انجام گرفت. این استگاه پژوهش در فالسه ۷۰ کیلومتری شمال غربی یزد، در مجاورت رودخانه چاه افاضل واقع است. چاه افاضل بخشی از زیر حوزه کوری سبایکوه می‌باشد. به طور کلی مابین آب منطقه چاه افاضل از حوزه‌ای به وسعت بیش از ۱۸۵۰ کیلومتر مربع تهیه می‌گردد. در این بخش منطقه جهانی زیست‌شناسی آب‌های زیرین شیرکوه یزد - اردکان، ناحیه‌ای گردیده است. به تمرکز اصلی اصل چاه شور که از دو پژوهش مورد استفاده قرار گرفته به این صورت انجام گرفت که با تغییر محل انجام آزمایش و با استفاده از روش‌های مختلف تحقیقات شوری در چهار افاضل، تعدادی دیدگاه برای تعیین ابعاد و فواصل بین کرت‌ها انجام شد. به منظور تغییر شاخص‌های SWAP و LEACHC در آشیانی مرهوی املاح ...
Downloaded from iutjournals.iut.ac.ir at 2:29 IRDT on Wednesday July 7th 2021
جدول 1. برخی خصوصیات شیمیایی آب‌های مختلف خاک قبل از آبشیوی خاک (ایستگاه تحقیقات چاه افضل)

<table>
<thead>
<tr>
<th>عمق خاک (سانتی‌متر)</th>
<th>SAR</th>
<th>SO₄²⁻</th>
<th>HCO₃⁻</th>
<th>Cl⁻</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Na⁺</th>
<th>pH</th>
<th>dS/m</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>222.3</td>
<td>375/4</td>
<td>244/0</td>
<td>59/8</td>
<td>32/3</td>
<td>34/3</td>
<td>8/20</td>
<td>131/80</td>
<td>15-40</td>
<td></td>
</tr>
<tr>
<td>20-40</td>
<td>102/3</td>
<td>167/1</td>
<td>48/8</td>
<td>59/3</td>
<td>32/3</td>
<td>34/3</td>
<td>8/20</td>
<td>131/80</td>
<td>15-40</td>
<td></td>
</tr>
<tr>
<td>30-50</td>
<td>38/05</td>
<td>85/0</td>
<td>48/3</td>
<td>20/8</td>
<td>21/6</td>
<td>29/29</td>
<td>8/20</td>
<td>131/80</td>
<td>15-40</td>
<td></td>
</tr>
<tr>
<td>40-60</td>
<td>24/5</td>
<td>85/3</td>
<td>18/5</td>
<td>18/5</td>
<td>11/8</td>
<td>24/6</td>
<td>8/20</td>
<td>131/80</td>
<td>15-40</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. برخی خصوصیات فیزیکی آب‌های مختلف خاک قبل از آبشیوی (ایستگاه تحقیقات چاه افضل)

<table>
<thead>
<tr>
<th>درصد حجمی رطوبت</th>
<th>پهنای ظاهری</th>
<th>در ظرفیت زراعی</th>
<th>سبکت</th>
<th>رس</th>
<th>عمق خاک (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32/6</td>
<td>1/31</td>
<td>7/6</td>
<td>20/4</td>
<td>52</td>
<td>لوم شنی</td>
</tr>
<tr>
<td>26/8</td>
<td>1/46</td>
<td>19/5</td>
<td>34/3</td>
<td>28</td>
<td>لوم</td>
</tr>
<tr>
<td>27/9</td>
<td>1/47</td>
<td>13/6</td>
<td>24/4</td>
<td>22</td>
<td>لوم</td>
</tr>
<tr>
<td>28/9</td>
<td>1/17</td>
<td>58/4</td>
<td>13/6</td>
<td>28</td>
<td>لوم شنی</td>
</tr>
</tbody>
</table>

کارایی مدل (EF (Modeling efficiency))، ضریب جرم (CRM (Coefficient of Residual Mass)) و ضریب (R² (Coefficient of Determination)) باقی مانده‌ها و نتایج حاصل از انجام مدل‌های استفاده شده انجام شده است (9).

نتایج و بحث

برخی خصوصیات فیزیکی و شیمیایی آب‌های مختلف خاک قبل از آب‌شیوی‌های آب‌شیوی در منطقه چاه افضل در جدول‌های 1 و 2 نشان داده شده است.

میانگین شوری در نیورخ خاک برای با ۷۲/۳ دسی‌زمینس در این پژوهش ملاک‌های آماری شاخص جذر میانگین (RMSE (Root Mean Square Error)) مجدور خطا (واریانس) است.
جدول 3 پارامترهای محاسبه شده برای مدل وان گنوثن - مدل برای کمبیل و هدایات هیدرولوژیکی اشاع اندازه گیری شده برای لایه‌های مختلف خاک مزرعه

<table>
<thead>
<tr>
<th>Kx (cm/day)</th>
<th>B</th>
<th>h0 (cm)</th>
<th>m</th>
<th>n</th>
<th>α</th>
<th>0s (cm)</th>
<th>0r (cm)</th>
<th>شماره لایه</th>
<th>رطوبت باقی مانده</th>
<th>رطوبت اشاع</th>
<th>پارامترهای مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>189/2</td>
<td>0/15</td>
<td>0/18</td>
<td>0/09</td>
<td>0/25</td>
<td>0/01</td>
<td>0/15 - 100</td>
<td>0/15 - 100</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>Van Genuchten</td>
</tr>
<tr>
<td>80/25</td>
<td>0/24</td>
<td>0/16</td>
<td>0/5</td>
<td>0/24</td>
<td>0/01</td>
<td>0/15 - 100</td>
<td>0/15 - 100</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>سدیمی (12)</td>
</tr>
<tr>
<td>19/45</td>
<td>0/36</td>
<td>0/56</td>
<td>0/01</td>
<td>0/21</td>
<td>0/01</td>
<td>0/15 - 100</td>
<td>0/15 - 100</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>طبقه‌بندی شود.</td>
</tr>
<tr>
<td>68/4</td>
<td>0/21</td>
<td>0/32</td>
<td>0/24</td>
<td>0/153</td>
<td>0/25</td>
<td>0/15 - 100</td>
<td>0/15 - 100</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>سدیمی (EC> 4 ds/m)</td>
</tr>
</tbody>
</table>

برای تیمار DL1 محبوب می‌شود میانگین SAR در نیم‌خرج در 1968 با 49% افزایش و 2 در نیم‌خرج در عمق خاک به سدیمی (EC> 4 ds/m) و میان‌گین می‌شود که مدل مراحی اشاع اندازه‌گیری شده برای لایه‌های مختلف خاک مزرعه تأثیر زیادی دارد.
شکل ۱. مقایسه مقادیر اندازه‌گیری شده رطوبت حجمی در برای مدل SWAP با مدل LEACHC در تیمار ۱

شکل ۲. مقایسه مقادیر اندازه‌گیری شده رطوبت حجمی در برای مدل LEACHC با مدل SWAP در تیمار ۱

نیم‌برخ‌های مقادیر رطوبت اندازه‌گیری شده و پیش‌بینی شده ممکن است ناشی از محدودیت‌های ذاتی مدل‌ها باشد. برای مثال، تأثیرات بی‌پایان رطوبت (Hysteresis) و جریان (Flow) ممکن است از میان ماکروپورها در مدل‌ها منشأ نشده است. هنگامی که میزان مقدار سرعت جریان آب به زیر عمق ۳۰ سانتی‌متر برسد، به‌طور فیزیکی، دلیل ممکن دیگر برای
جدول 4. شاخص‌های آماری برای مقایسه مقدار اندازه‌گیری شده رطوبت و پیشینی شده توسط دو مدل LEACHC و SWAP در چهار تیمار آزمایشی

<table>
<thead>
<tr>
<th>تیمار</th>
<th>LEACHC</th>
<th>SWAP</th>
<th>LEACHC</th>
<th>SWAP</th>
<th>LEACHC</th>
<th>SWAP</th>
<th>LEACHC</th>
<th>SWAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1L1</td>
<td>0.78</td>
<td>0.72</td>
<td>0.43</td>
<td>0.27</td>
<td>0.74</td>
<td>0.49</td>
<td>0.73</td>
<td>0.52</td>
</tr>
<tr>
<td>D2L1</td>
<td>0.71</td>
<td>0.59</td>
<td>0.34</td>
<td>0.26</td>
<td>0.73</td>
<td>0.47</td>
<td>0.72</td>
<td>0.51</td>
</tr>
<tr>
<td>D1L2</td>
<td>0.43</td>
<td>0.27</td>
<td>0.23</td>
<td>0.17</td>
<td>0.67</td>
<td>0.49</td>
<td>0.67</td>
<td>0.49</td>
</tr>
<tr>
<td>D2L2</td>
<td>0.51</td>
<td>0.34</td>
<td>0.26</td>
<td>0.19</td>
<td>0.68</td>
<td>0.50</td>
<td>0.68</td>
<td>0.50</td>
</tr>
</tbody>
</table>

توجه: مقدار RMSE نشان می‌دهد که تعداد حداکثر اختلاف بین مقدار SWAP و LEACHC مقدار رطوبت در تیمارهای دور آبیوری و روز بیشتر از تیمارهای دور آبیوری و روز پیشینی کرده است. این موضوع می‌تواند به خاطر کاهش رطوبت تبخیر خاک از رطوبت اشباع در تیمارهای زیاد در مکان‌های رطوبت نزدیک به صفر، مقدار رطوبت اساس بایستی کمبود برابر مقدار رطوبت اشباع است که در تیمارهای دور آبیوری و روز که نیم‌خاک رطوبت‌های نزدیک اشباع دارد، می‌تواند عامل برای تغییر باشد.

* جدول از اطلاعات مربوط به این تیمار تا رایان کاربره کرد مدل SWAP استفاده شده در محاسبه شاخص‌های آماری مورد نظر بوده است.
ارزیابی مدل‌های رایانه‌ای LEACHC و SWAP در آیوشی مزرعه‌ای اصلاح...

با این که مدل SWAP دقیق‌ترین کارایی آنها را در پیش‌بینی رقابت بخشی ندارد ولی با خاطر در بر داشتن مکانیسم‌های دقیق‌تری در شبیه‌سازی، عمل و انفعالات شبیه‌سازی SWAP محلول کاوش‌های نتایج بهتری را در مقایسه‌بها در سه مدل به اینکه از یک مکانیسم آماده استفاده می‌کند. این امر در اختلاف مقدار رقابت و پیش‌بینی شده توسط مدل LEACHC و مقایسه آن با ادبیات گیری شده نشان می‌دهد که مولفه توسعه یافته در تمرکز ویژه‌ای اصلاح جدید ۵ نتایج حاصل از محاسبه تمام شاخه‌های آماری برای هر یک از تیمارها و به صورت مجزا برای هر اردیبهشت و نیز نمودارهای آنها در مدل LEACHC بهتر است. در مدل LEACHC نشان می‌دهد که مقایسه بدست آمده در نتایج 2 برابر در مقایسه با مدل D1L1 با نتایج بدست آمده در D1L1 موفقیت‌مند کاهش کارایی بخشی از تیمارها نشان می‌دهد که در ترکیب این دو مدل می‌تواند با کاهش بهبود بررسی رقابت و پیش‌بینی شده توسط مدل LEACHC در ارتباط با شویری نقطه‌ای در LEACHC و SWAP در برداری توسعه از این همچنین برای این که در نتایج دو مدل به دست آمده SWAP معلوم شود، شویری نقطه‌ای در طول آزمایش با استفاده از این مدل‌ها و به هر گونه از تیمارها به صورت کلی توجه نمایند.

\[
\frac{(EC_{r} - EC_{eq})}{(EC_{r} - EC_{eq})} = \frac{(D_{w} - D_{s})}{(D_{w} - D_{s})} + 0.1151
\]

در این معادله EC_{r}, EC_{eq}, EC_{r}, D_{w}, D_{s}, D_{w} و D_{s} به ترتیب هدایت الکتریکی عصاره انجام اولیه، نهایی و نمودارهای خاک و پیش‌بینی عمق آب آیوی‌های و عمق خاک است. به عنوان مثال، مقدار این داده‌گیری شده شویری خاک در برای تیمار SWAP در این مدل در شکل ۳ نشان داده شده است.
شکل ۳ مقایسه مقادیر اندازه‌گیری شده شوری در برابر مقادیر پیش‌بینی شده با مدل \(\text{SWAP} \) (بالاچپ) و معادله ۱ \(\text{DIL1} \) (پایین) در تیمار ۱

جدول ۵. شاخص‌های آماری برای مقایسه مقادیر اندازه‌گیری شده شوری و پیش‌بینی شده توسط مدل‌های و \(\text{LEACHC} \) و \(\text{SWAP} \) در چهار تیمار آزمایشی

<table>
<thead>
<tr>
<th>تیمار</th>
<th>(R^2)</th>
<th>CRM</th>
<th>EF</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{LEACHC})</td>
<td>(\text{SWAP})</td>
<td>(\text{LEACHC})</td>
<td>(\text{SWAP})</td>
<td>(\text{LEACHC})</td>
</tr>
<tr>
<td>۱</td>
<td>۰/۰۵۳۷</td>
<td>۰/۸۱۰۰</td>
<td>۰/۰۵۶۶</td>
<td>۰/۰۵۶۶</td>
</tr>
<tr>
<td>۲</td>
<td>۰/۸۸۲۲</td>
<td>۰/۰۹۰۰</td>
<td>۰/۷۸۰۰</td>
<td>۰/۷۸۰۰</td>
</tr>
<tr>
<td>۳</td>
<td>۰/۸۸۲۲</td>
<td>۰/۰۹۰۰</td>
<td>۰/۷۸۰۰</td>
<td>۰/۷۸۰۰</td>
</tr>
<tr>
<td>۴</td>
<td>۰/۸۸۲۲</td>
<td>۰/۰۹۰۰</td>
<td>۰/۷۸۰۰</td>
<td>۰/۷۸۰۰</td>
</tr>
</tbody>
</table>

چون از اطلاعات مربوط به این تیمار‌ها قربان برکناری کرده مدل \(\text{SWAP} \) استفاده شده در محاسبه شاخص‌های آماری مانند نشده است.

۶۶
ارزیابی مدل‌های رایانه‌ای مزروعه املاح ... LEACHC و SWAP

1. با در نظر گرفتن تاثیر چگونگی آب در محیط و با استفاده از یک زیر برنامه مجزا محاسبه می‌کند.

2. در کل نتایج مشابه که عملکرد مدل از مدل‌های معادلاتی در محیط خشک تا مدل‌های با مدل‌های محاسبه می‌کند.

3. در نتایج مشابه که عملکرد MLEACHC و SWAP مدل‌های مناسبی در محیط خشک هستند. در این مدل‌های محاسبه می‌کند.

4. در نتایج مشابه که عملکرد MLEACHC و SWAP مدل‌های مناسبی در محیط خشک هستند. در این مدل‌های محاسبه می‌کند.

5. با استفاده از چندین مدل از محیط شوری نیم‌بند الحرکت و توزیع رطوبت در محیط شوری نیم‌بند الحرکت و توزیع رطوبت در محیط شوری N,

