مقایسه توانایی گرسازی جدایی‌های ریزپویومی توده‌های بومی عدس تحت تنش خشکی

مریم بارقی مفیدی، مسعود بهار، حسین شریعتمداری و محمددرضا خواجه یور

چکیده

برای تیم جدایی‌های متخلخل به شکلی باکتری‌های ریزپویومی همویست عدس، 12 نمونه خاک از مناطق مختلف استان‌های گلستان، چهار محله‌ی خیابانی و اصفهان جمع‌آوری شد و آزمایش درست، قربانی و فردی نتایج در نمودن خاک در گلخانه‌کشت شد. پس از 10 هفته از گردنگی شکل شده روش رشته گیاهان 32 سویه ریزپویومی جداسازی شدند. در تعیین گیاهان، مشخص شد که کم در جدایی‌های به دست آمد، قدرت پود گردن در محیط کشت حاصل 200 میلی‌میکرو کالری سدیم را دارند. در مقایسه با میکوس (پوش از 200 میلی‌میکرو) از نظر تحلیل به شوری، تفاوت گیاهان در بین جدایی‌ها وجود داشت، به طوری که فقط 20 درصد از آنها به عنوان متخلخل به شوری ارزیابی گردید. جدایی‌های RL249 و RL211 با رشد در غلظت 50000 و 600 میلی‌میکرو نمک عناوین به عنوان جدایی‌های برتر تحلیل به شوری بی‌گردیده شدند. نتایج بررسی تحلیل به تنش پتانسی مارکی جدایی‌ها در سطح مختلف PEG6000 با RL249 به کمک ارزیابی جدایی‌های تحلیل به شوری آنها مطابقت داشت. به طور کلی، جدایی‌های متخلخل به شوری قادر به تحلیل تنش خشکی در شرایط آزمایشگاهی بر روی خاک محیطی راهنما، و برای این نتایج به شوری و خشکی ارتقاء با مشابه جغدایی‌ای این جدایی‌ها تداشت. در یک حاصل ناگفته، کردن یا خرد شده یا سه تکرار، گرسازی جدایی‌های متخلخل به شوری و خشکی کمبود بر روی دو نمونه بین نام گذاشته و فردی نتایج بلندی RL249 و RL211 به تنبیه رفت. به طوری که به عنوان متخلخل به تنش خشکی به روش معیاری برای کاهش جدایی‌های شد. اما، روش قدرت بین نام گذاشته دیل تماک زیاد رشد را در واحد حجم، میزان گرده سازی بیشتری داشت. با وجود این که جدایی‌های 269 در تحلیل به شوری و خشکی در شرایط آزمایشگاهی و نیز آزمایش‌های گلخانه‌ای توسط به سایر جدایی‌ها برتری نشان داد. RL211 و RL249 با افزایش تنش خشکی در سطح بالا از 50 درصد مصرف آب قابل استفاده گردیده یا کاهش معیاری داشت.

واژه‌های کلیدی: عدس، ریزپویومی، همویستی، مقاوم به شوری، مقاوم به خشکی

مقیده

تثبت بیولوژیک نیتروژن در همویستی ریزپویومی و گیاهان نگویی‌وز به عنوان یکی از اکسانات کم هزینه و بدون آلودگی.

1. به ترتیب دانشجوی سایه کارشناسی ارشد و دانشیار حاشیه‌نشان، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. استادیار گیاهپزشکی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
3. دانشیار زراعت دانشکده کشاورزی دانشگاه صنعتی اصفهان

71
پژوهش‌ها (۱۶ و ۲۰) نشان داده‌اند که ریزپروبیومی متحمل به خشکی، در شرایط شور نیز توانایی رشد خوبی دارد. چنین یافته‌های نشان می‌دهد که احتمالاً پتانسیل زننده‌ی ریزپروبیومی در تحمل به شوری و خشکی یکسایی می‌شود. نشان شده، این یافته‌ها متفاوت، توجه نمود.

مطلاعات بر روی ریزپروبیومی و بایگانی (۵) و (۲۱) نشان داده است که با افزایش خشکی، تعادل گرخ و وزن خشک گیاه و مقدار تیروز نانه‌ای کاهش می‌یابد. پژوهش‌های دیگر (۲۴ و ۲۵) نیز مشخص نمودند که گرمساری بیشی و سویا تحت نشان خشکی نشانید چرا که این یافته‌ها احتمالاً به خاطر تثبیت پاسخ‌شناسی به بیماری سالولی گیاهی می‌باشد. ضمناً در بیماری‌هایی که افزایش گرما باشد، سطحی برخی از تغذیه‌های بیشترین شاخصها را دارند.

مواد و روش‌ها

پژوهش‌های ریزپروبیومی‌ها، به بیماری‌های مختلف بهره‌مند می‌باشند. به همین‌رو، این مطالعه می‌تواند در شرایط شور و خشکی یکسایی که در کنارای بیماری‌های ریزپروبیومی در پیش‌بینی و در نهایت به شوری و خشکی یکسایی می‌شود.

متن اصلی

تیبیت نیتروژن، نیز از نظر تحقیقی نیز کاری که شوری را دارند. قاد و خواهد بود که نشان دهد که ریزپروبیومی متحمل به خشکی، در شرایط شور نیز توانایی رشد خوبی دارد. چنین یافته‌های نشان می‌دهد که احتمالاً پتانسیل زننده‌ی ریزپروبیومی در تحمل به شوری و خشکی یکسایی می‌شود.
بین شهرکرد و معموره بروجی استان چهارمحال بختیاری نمونه برداری مرکب صورت گرفت. به این منظور پنج نمونه خاک به طور تصادفی از افق سطحی صفر تا بست سانتی‌متر از سه مزرعه در هر محل برداشت گردید و پس از اختلال مناسب، به عنوان نمونه آن محل در آزمایش‌ها به کار رفت. تمام نمونه‌ها خاک از اکثر میلی‌متری عبور داده شد و مقداری از هر نمونه خاک پس از خشک شدن در معرض هوا برای این‌الذاتی خصوصیات فیزیکی و شیمیایی اسفاده شد (8 و 9). بقیه هر نمونه خاک به نسبت 1:1 با ماسه سترون مخلوط شد. مخلوط خاک حاصل در گلدان‌ها به ظرفیت حداکثر سیلیکوژ ریخته و در هر گلدان 12 عدد برداشته شده تهیه می‌شد. به تعداد گردش‌های آنها شمارش شد. از گلدان‌ها شمارش شده در هر بیشتر سالم، درشت و صورتی زنگ برای جداسازی رزیوبریوم در نظر گرفته شد. به این منظور، پس از ضدعفونی گردش‌ها با الکتربیک 70 درصد به مدت 3 دقیقه و در ادامه با محیط کربنی سدیم تجاری (وایکتس‌کس) 6 در هزار به مدت دقیقه و سپس با ریختن بی‌آب آب مقطع سترون، و گردش به طور جداسازی درون که چهار بیلی ELISA محیط 50 میکروبیون آب مقطع سترون قرار داده شد و به کمک محیط فلزی سترون، لح گردید. یک لب از سپسیساتور نهی شده از هر که. بر روی محیط غلظایی TY محیط کامپیوترسیم با ملکول آب 9/7 گرم. نتیجه‌گیری 5 گرم. عصاره دختر 3 گرم و اکثر 15 گرم در یک لیتر آب تهیه شد. به صورت خمی گردش شدد. پس از تهیه داری محیط‌هایی که شرایطی در دمای 20 درجه سانتی‌گراد 22 ساعت، بقیه نمونه‌ها نیز به طور پیوسته 30 میکروبیون از سپسیساتور به شدت کشیده شد و بر روی محیط غلظایی QTY جامد محتوی همان غلظت‌های قبلی جدایا. روي محیط 20 میکروبیون از سپسیساتور نهی شده در با بروز و

چهار محیط تهیه شده بر روی محیط غلظایی QTY پرورش شد و یک پیرگه شاخص رژیوبریوم سفید، لعاب دار و

...
دسته بندي شدن فراوانی تعداد جديدهاي ريزويومي جمع آوری شده كه قادر به رشد در غلفت هاي مختلف نمک طباق بود با توجه به معادله $Y=0.098 \times 0.05x + 0.05x + 0.05y + 0.05z$ محاسبه و ترسیم شد (شكل 1) که در آن Y تعداد جدیدهای ریزوبیومی (درصد) و X غلفت کلرور سدیم به حسب میلی مولار در نظر گرفته شد (12).

پس از آزمایش های اولیه و بر اساس درجه بندي میزان رشد به صورت مشاهده شد. 50 جدیده ریزوبیومی که بهشتی و کمترین رشد در سطوح مختلف شوری را داشت انتخاب و مقایسه تحليل به شوری در آنها مجدداً تكرار گردید. پس از

کلرور سدیم به صورت یک میلی مولار در غلفت های مختلف نمک میزان رشد قرار داری شد. پس از گذشت 48 ساعت، میزان رشد در غلفت های مختلف نمک در مقایسه با تیمار نشان بر حسب مشاهده یا کمیت Y درجه بندی شد. براساس ارزیابی تراکم رشد در محیط TY خاک غلفت های مختلف نمک جدیدهای ریزوبیومی فعال در چهار گروه حساس (قادر به رشد در غلفت های 200-500 میلی مولار کلرور سدیم)، نسبتاً متحمل (قادر به رشد در غلفت های 400-500 میلی مولار کلرور سدیم)، متحمل (قادر به رشد در غلفت های 500-550 میلی مولار کلرور سدیم) و بسیار متحمل (قادر به رشد در غلفت های 550 میلی مولار کلرور سدیم).
پرسی نتایج به دست آمده، 12 جدایی رژیمویی عدس به عنوان سویه‌های منطقه به شوری تحت آزمایش‌های مربوط به تحلیل به نش رطوبتش می‌گرفت.

میزان تحلیل به نش شکلی 14 جدایی رژیمویی انتخاب شده در آزمایش‌های تحلیل به شوری، در شرایط آزمایشگاهی مورد بررسی قرار گرفت. بنابراین نتایج از محیط‌های کشت مایع TV بودند کلیسی حاوی 56، 288، 280 و 700 گرم پلی اتانیل گلیکول (PEG) در لیتر که بر تیپ پتانسیل ماتریک مقدار 0/6، 0/9، 2/8 و 5/2 - مکاپاسکال در محیط ایجاد کردند (19) استفاده شد. پس از اضافه کردن 1000 میکرولیتر از سویه‌های عدس حاوی 40 واحد تشكل دهنده پرگن در میله لیر جدایی رژیمویی به محیط‌های کشت تهیه شد. نمونه‌ها در حالت نکان خوردند (100) در دقیقه) در شرایط آزمایشگاهی به مدت 72 ساعت نگه‌داری شدند. سپس به دلیل عدم تنش و بروز علائم از میوه ایجاد شد. روز محیط TV بودن 48 ساعت، میزان رشد غیر جدایی رژیمویی در غلظت‌های پلی اتانیل گلیکول بر حسب صفر تا سه درجه بنی شد. در این ارزیابی مشاهده شد، رشد کمتر از 10 کالی در محیط کشت با شماره نکود که رشد و رشد غیر قابل شمارش کاهشی داشته، 7 گرم بود که در 2 به تیمارهای تعلق گرفت که بین 10 کالی قابل شمارش داشت.

پس از انجام آزمایش‌ها، در تیمارهای رژیمویی عدس به دارای بالاترین میزان تحلیل به شوری و غلظت‌های پلی اتانیل - گلیکول در شرایط آزمایشگاهی بود. برای تعیین مقاومت به خشکی در شرایط گلخانه انتخاب شدند. جدایی دیگری که حساسیت زیادی به شرایط نش شوری و خشکی نشان داد.

مواد و ابزار

 upp 15 مکاپاسکال انتخاب و رطوبتش بین این دو عونان آب قابل استفاده در نظر گرفته شد. نش‌های خشکی مصرف 50 (شاهد)، 75، 90 و 98 درصد آب قابل استفاده بر غلظات ۱۲ گرم. برای توجه به منطقه‌های مختلف خشکی، مشخصه، رطوبتش بین این دو عونان مصرف 15 مکاپاسکال استرس - میزان تنش، مشخصه، رطوبتش بین این دو عونان آب قابل استفاده در نظر گرفته شد.
نمونه‌های خاک

شکل 2. تعداد گره‌های ارقام مختلف عدس در 12 نمونه خاک (1 لوم عدس توده محلی فردینی، 1 لوم عدس پی نام)

<table>
<thead>
<tr>
<th>L1</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>S2</td>
<td>S3</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>S11</td>
<td>S12</td>
<td>S13</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
</tbody>
</table>

نتایج

نتایج به دست آمده از کاشت سه رقم عدس پی نام دانه درشت، توده محلی فردینی و توده محلی قروینی در 12 نمونه خاک جمع آوری شده از مناطق مختلف نشان داد که در خاک منطقه

بن استان چهار محال و بختیاری دارای سابقه کاشت عدس، پس از این مرحله و با توزین روزانه گلدان‌ها، مقدار آب مصرفی آن‌ها محاسبه و پس از رسیدن رطوبت به حد مجاز مورد تجربه و تحلیل آماری قرار گرفت و مقایسه میانگین‌ها در صورت معنی‌دار بودن اثر عامل آزمایش با آزمون چند دانه‌ای دانکن به عمل آمد.

نتایج به دست آمده از کاشت سه رقم عدس پی نام دانه درشت، توده محلی فردینی و توده محلی قروینی در 12 نمونه خاک جمع آوری شده از مناطق مختلف نشان داد که در خاک منطقه بن استان چهار محال و بختیاری دارای سابقه کاشت عدس، پس از این مرحله و با توزین روزانه گلدان‌ها، مقدار آب مصرفی آن‌ها محاسبه و پس از رسیدن رطوبت به حد مجاز MSTATC مورد تجربه و تحلیل آماری قرار گرفت و مقایسه میانگین‌ها در صورت معنی‌دار بودن اثر عامل آزمایش با آزمون چند دانه‌ای دانکن به عمل آمد.

نتایج به دست آمده از کاشت سه رقم عدس پی نام دانه درشت، توده محلی فردینی و توده محلی قروینی در 12 نمونه خاک جمع آوری شده از مناطق مختلف نشان داد که در خاک منطقه بن استان چهار محال و بختیاری دارای سابقه کاشت عدس، پس از این مرحله و با توزین روزانه گلدان‌ها، مقدار آب مصرفی آن‌ها محاسبه و پس از رسیدن رطوبت به حد مجاز MSTATC مورد تجربه و تحلیل آماری قرار گرفت و مقایسه میانگین‌ها در صورت معنی‌دار بودن اثر عامل آزمایش با آزمون چند دانه‌ای دانکن به عمل آمد.

نتایج به دست آمده از کاشت سه رقم عدس پی نام دانه درشت، توده محلی فردینی و توده محلی قروینی در 12 نمونه خاک جمع آوری شده از مناطق مختلف نشان داد که در خاک منطقه بن استان چهار محال و بختیاری دارای سابقه کاشت عدس، پس از این مرحله و با توزین روزانه گلدان‌ها، مقدار آب مصرفی آن‌ها محاسبه و پس از رسیدن رطوبت به حد مجاز MSTATC مورد تجربه و تحلیل آماری قرار گرفت و مقایسه میانگین‌ها در صورت معنی‌دار بودن اثر عامل آزمایش با آزمون چند دانه‌ای دانکن به عمل آمد.

نتایج به دست آمده از کاشت سه رقم عدس پی نام دانه درشت، توده محلی فردینی و توده محلی قروینی در 12 نمونه خاک جمع آوری شده از مناطق مختلف نشان داد که در خاک منطقه بن استان چهار محال و بختیاری دارای سابقه کاشت عدس، پس از این مرحله و با توزین روزانه گلدان‌ها، مقدار آب مصرفی آن‌ها محاسبه و پس از رسیدن رطوبت به حد مجاز MSTATC مورد تجربه و تحلیل آماری قرار گرفت و مقایسه میانگین‌ها در صورت معنی‌دار بودن اثر عامل آزمایش با آزمون چند دانه‌ای دانکن به عمل آمد.

نتایج به دست آمده از کاشت سه رقم عدس پی نام دانه درشت، توده محلی فردینی و توده محلی قروینی در 12 نمونه خاک جمع آوری شده از مناطق مختلف نشان داد که در خاک منطقه
مقایسه نتایج رژیومی از جودایه‌های رژیومی توده‌های...
جدول 1. تجزیه و تحلیل اثر تیمارهای مورد بررسی بر تعداد گره و وزن ترشی عدس

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>صفات مورد بررسی</th>
<th>تعداد گره</th>
<th>وزن ترشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین مربعات</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>رژیم آبیاری</td>
<td>3</td>
<td>2/25 **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ایزوئول ریزوبیومی</td>
<td>2</td>
<td>5/252 **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>رژیم آبیاری × ایزوئول ریزوبیومی</td>
<td>6</td>
<td>0/808 **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطا ارقام عدس</td>
<td>24</td>
<td>0/755 **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ارقام عدس</td>
<td>1</td>
<td>153/09 **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>رژیم آبیاری × ارقام عدس</td>
<td>3</td>
<td>0/32 **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ایزوئول ریزوبیومی × ارقام عدس</td>
<td>2</td>
<td>0/93 **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>رژیم آبیاری × ایزوئول ریزوبیومی × ارقام عدس</td>
<td>9</td>
<td>0/39 **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطا</td>
<td>24</td>
<td>0/777 **</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: در سطح پنج درصد معنی‌دار می‌باشد. **: در سطح یک درصد معنی‌دار می‌باشد.

جدول 2. مقایسه اثر تنش خشکی بر تعداد گره ارقام عدس دانه درشت (واریته ۱) و توده محلی فردی (واریته ۲)

<table>
<thead>
<tr>
<th>میزان مصرف آب قبل استفاده</th>
<th>واریته ۱</th>
<th>واریته ۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>مصرف ۵۰ درصد آب قبل استفاده</td>
<td>26/333 ᵃ</td>
<td>0/647 ᵏ</td>
</tr>
<tr>
<td>مصرف ۴ درصد آب قبل استفاده</td>
<td>0/14/11 ᴇ</td>
<td>8/44 ᵄ</td>
</tr>
<tr>
<td>مصرف ۵ درصد آب قبل استفاده</td>
<td>15/44 ᵇ</td>
<td>7/58 ᵋ</td>
</tr>
<tr>
<td>مصرف ۷ درصد آب قبل استفاده</td>
<td>9/44 ᵉ</td>
<td>4/44 ᵇ</td>
</tr>
</tbody>
</table>

میانگین هر گروه که حداقل دریک حرف مشترک‌کننده تفاوت اساسی بر اساس آزمون دانکین در سطح احتمال ۵ درصد می‌باشد.
جدول ۳ مقایسه میانگین‌های وزن در ریزویومی جدایی‌های رنگ‌پر

<table>
<thead>
<tr>
<th>میانگین‌ها</th>
<th>شماره جدایی‌های ریزویومی</th>
</tr>
</thead>
<tbody>
<tr>
<td>157.94</td>
<td>RLV7</td>
</tr>
<tr>
<td>178.49</td>
<td>RLV11</td>
</tr>
<tr>
<td>198.41</td>
<td>RLV249</td>
</tr>
</tbody>
</table>

بیان دیلی وجود درجات مختلف شوری و خشکی در اغلب خاک‌های ایران و میزان نیودن تأمین آب کافی برای ایثاری عدس در همین شرایط رشد، ضرورت دارد که ارقام عدس و نیز ریزویومهای میزانی را که توانایی سازگاری با شرایط خشکی را داشته باشند تا بهره کافی از این همبستگی‌ها به دست آید. به این منظور بررسی جمعیت ریزویومهای مختلف ایران که کشاورزی در آنها مورد استفاده قرار می‌دهد باید بررسی کرد. چنین یکی از یکی در این مطالعه ریزویومهایی که در ایران مورد استفاده قرار می‌گیرند هم مورد بررسی قرار گرفتند. نتایج نشان می‌دهند به طوری که باعث افزایش چگالی این میزان می‌شود. درصد مثبت به کاهش درصد این میزان در این میزان به طوری که کاهش جدایی‌های رنگ‌پر به عنوان ریزویوم RLV249 تلقی می‌شود. درصد این میزان در این میزان به طوری که کاهش جدایی‌های رنگ‌پر به عنوان ریزویوم RLV249 تلقی می‌شود. درصد این میزان در این میزان به طوری که کاهش جدایی‌های RLV249
رسد دانه. با وجودی که در مقدمات ظاهری به طور کلی
سرعت رشد سه ماهه بسیار بر گیاه عدس دانه درشت
بیشتر از ارقام دیگر ارزیابی شد و در سطوح خشکی مصرف
90 و 98 درصد آب قابل استفاده، رشد ارقام کاهش یافت و
بسیاری از گیاهان 12 از 14 هفته خشکی شدن که این تعداد
برای رقیق دیگر بیشتر بود. مشخص شده است که تحت تنش
خشکی، مواد فندی مانند گل‌کرک و فروکنوز در سال‌ها تجمع
کرده و به همین دلیل رشد کاهش می‌یابد (23). اعمال
تش خشکی در کاهش میزان گره زایی نیز مؤثر بود. این کاهش
میرا گره سازی برای باقلا (14) و نوینه (5) نیز گزارش شده
است. از عده‌تین دلال مجید سبدان در استر، گیاه‌های
کشیده‌های کاهش رفت و عقب‌نشینی در گره‌ها از نمود
(26 و 29). از طرف دیگر تنش خشکی، تفسیر سنوزیولی نیز
مریست گره، کند ساخته و بنابراین رشد گره و تعداد
باتکیه‌های گروه کم می‌شود (16 و 26).

این پژوهش ملاحظه شد که جدایی RL2749
نسبت به

c و سایر جدایی‌ها در تأمین مصرف خشکی گره‌های بیشتری ایجاد
می‌کند. گرچه تجزیه و ارتباط‌ها این اجراییت گرم‌سازی را
برای RL2749 تأثیر نکرد، ولی به استناد مشاهدات ظاهری،
باتسین مارسی این جدایی برای گرم‌سازی روي ارقام عدس در
شرایط تنش خشکی قابل احتمال نیست. مخصوصاً تحمل این
جادیه به تنش‌های شوری و خشکی در شرایط آزمایشگاه نیز
بسیار قابل توجه بود و برای برترین این جدایی در این کار
کرده، اما به دلیل این که ایجادی گره به فراند هم‌رشتی
محصول می‌شد و تأثیر مناسب ریزوپیم و کیاهب در میزان
تیچگری آن از عوامل اهمیت دارد، شاید بتوان با بررسی
دقیق تر هم‌رشتی این جدایی از ارقام متنوع دیگر عدس، از این
جادیه به عنوان هم‌رشتی مفید گیاه مزیبات ارزیابی بتدریج
عمل اورد.

علی رغم مقاومت نسبی به تنش خشکی در عدس فردیندی،
به دلیل حجم و وزن ترک ریشه‌ها و حضور دیده تنش کلی گره
در مقایسه تعداد گره‌های ایجاد شده بر روی ریشه به رقم
عدس محلی، مشخص شد که توده موی عدس بر نام دانه
درشت، نسبت به سایر ارقام، گروه‌ای به دست داشت و این هر
گره نم درشت تر بود. این نتایج مؤید بوده که هر یوزه‌گران
دیگر نیز به‌دست که وقت گیاهان مختلف در معرض جمع
متونی از ریزوپیم خاصی قرار می‌گیرند، ممکن است
جادیه‌های ریزوپیم خاصی، به دلیل هم‌رشتی پیش‌تر از نظر
سیگنال‌های شیمیایی با گیاه مزیبات مشخص، توانایی گرم‌سازی
بیشتری داشته باشد (15). گرزه‌های دیگر (10) نیز نشان
داده است که در گیاه اسپرین، هنگامی که اندماز بدرخ درشت
برود به دلیل جوانان و بزرگ سیر بریده، تعداد گره‌های ایجاد شده نیز
می‌وزر کلاس میانی قادر به نشان داده، ولی از نظر تحمل
به مقادیر بالاتر شوری، نتایج پذیرفته نبود. وجود آنها و وجود
داسته، به طوری که 60 درصد از جدایی‌ها نسبتاً متحمل به
شوری و 20 درصد آنها متوجه به شوری شناخت داده شدند.

تحمل به شوری برای اکثر ریزوپیم‌ها گزارش شده است (11).
ظاهراً به دلیل تجمع سریع بر تکیه‌کاتها خاصی مانند دلال‌تام‌تام و
بیانت در سلول‌های ریزوپیمی تحت تأثیر شوری، تعیدی در
بیان می‌باشد. پیشکار به دلیل چرخه و وجود می‌آید (12) و با کاری را به
میزان نابیلی به شوری متحمل می‌سازد. هم‌رشتی تحمل
به شوری و خشکی در بین جدایی‌های مزیبات قصر به عدس،
قابل اندازه بود. در یکی از سایر ریزوپیم‌های هم‌رشتی نیز چنین
پیدایی گزارش شده است. به طوری که جدایی‌ها متحمل به
خشکی پیشتری Sinarhizobium meliloti
گرفته از گلوسید سبزی. ظاهراً تجمع انیمی‌ها
مختلفان مانند آزوم ایمنی‌پیش‌تر در ریزوپیم‌های متحمل به
纠错

