مطالعه همبستگی صفات زراعی و تجزیه علمی در برنج

ابوذر ابروذری گزاردویی، رحمت هرنژاد، محمدحسین فتوکیان و علی اسلامی

چکیده

به منظور بررسی تجزیه علمی و میزان همبستگی بین 16 صفت کشی، تعداد 49 رقم برنج ایرانی و خارجی انتخاب شدند. در مزرعه آزمایش آموزش، کشاورزی تکان در قالب طرح لاو مربع با دو تکراری، مورد مطالعه قرار گرفت. تجزیه واریانس داده‌ها نشان داد که نتایج نشان داد که به منظور بررسی تجزیه علمی و میزان همبستگی بین 16 صفت کشی، تعداد 49 رقم برنج ایرانی و خارجی انتخاب شدند.

مقدمه

برنج یکی از گیاهان مهم زراعی است که با در نظر گرفتن جایگاه آن در تأمین پروتئین و انرژی برای انسان، ضرورت افزایش تولید این محصول با استفاده از برنامه‌های بهینه‌ی به‌زنایی و به‌زراعی محصولات است. برای معرفی یک رقم جدید، خصوصیات بیماری در نظر گرفته می‌شود که اکثر آنها با یکدیگر و عملکرد دانه همبستگی بالایی دارند. ارقام اصلاح

1. مربی زنتیک و اصلاح نباتات، مجتمع آموزش جهاد کشاورزی مازندران، مرکز آموزش کشاورزی تکان
2. به ترتیب استاد و مربی زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه گیلان
3. مربی زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید، تهران
گرزینی غیر مستقیم برای صفات مهم از طریق صفات کم اهمیت که بعضاً دارای شرایط اندبازگیری آسان‌تری است، اقدام نمود.

مواد و روش‌ها

این تحقیق در بخار و تایبان سال 1380 در مرکز آموزشی کشاورزی تکنیک واقع در کیلومتر 22 جاده پالوس دنبال کمکی در قابلیت طرح لایه مربع ساده با دو تکرار اجرای گردید. میزان اصلی به صورت تک نشان توسط کارگر، نشانکاری شد. عمليات کاشت و داشتن شامل آماده کردن زمین اصلی، تهیه کردن نشان‌کاری باریک باریک، نشان‌کاری در زمین کامل آب و برقی با لیزر هرمز و بیماری‌ها، مصرف کود عفاف منطقه انجام گرفت. برای ترتیب که پس از نشان‌کاری مزرعه آبیاری شده و در تمام طول دوره رشد برنج در مزرعه و یک هفته قبل از برداشت، در گرنت 1 ووجود داشت، از علف کش بوتاکر (Butachlor) میزان 0.1 در هکتار یک هفته بعد از نشان‌کاری استفاده شد. عمل ورنی بازار در روز بعد از نشان برنج 15 روز بعد از نشان انجام شد. نظر تهیه انجام خواهد کرد. تهدیه برنج در تاریخ‌های مختلف و تسویه داس انجام گرفت.

برای انجام‌گیری صفات کمی مورد نظر، تعداد 5 بونه از هر رقم به طور تصادفی انتخاب گردید. از آنجا که اندبازگیری صفات مختلف در زمین‌های مختلف بررسی گردید، با این نشان‌کاری جهت دویی از هر گونه استابیلیتی بینهایت زبان‌های کاهش داده شد، برای کاهش و تجربه‌های آماری از میان‌گین 5 تهیه انجام داده شد استفاده گردید.

امضاء‌گر صفات بر اساس دستورالعمل سیستم استاندارد ارزیابی برنج (18) انجام گرفت. صفات مورفولوژیک اندبازگیری شده به ترتیب زبان خوش‌هایه، مدت زمان خوش‌هایه و هم‌اکنون و گرمایش غلاف دانه ریف می‌باشد (14).

ضریب همبستگی که به عنوان میزان اندبازگیری رابطه خطی بین دو متغیر به کار می‌رود، می‌تواند اندازه‌گیری ریاضی است و بر روابط علمی و معنی‌دار دانش ندارد (1).

تنها از تجربه علمی به عنوان ابزار برای ارزیابی اهمیت صفات موثر بر عملکرد استفاده می‌شود. در حقیقت تجربه علمی، تصویر کامل با روش‌ها و تربیت‌های ساده را نشان داده و ضریب همبستگی بین دو متغیر علمی و معمول را به اثرات مستقیم و غیر مستقیم تفکیک می‌کند (10 و 11).

همبستگی بین صفات در برنج و تفکیک آنها به روش تجربه علمی، موضوع مطالعات متعددی بوده است (9 و 12). از دستگاه‌های مفهومی و همبستگی (27) همبستگی مفهوم و معنی‌دار بین عملکرد دانه به تعداد کل بذر و تعداد ساقه بارور گزارش نمودند. کیهوانی و هرمز و همکاران (20) نشان دادند که در انتخاب برای افزایش عملکرد دانه، صفات تعداد دانه در خورش و وزن صد دانه توان می‌تواند کاکروزه از معیارهای انتخاب استفاده شود. همچنین نتایج حاصل از تجربه علمی نشان داد که تعداد ساقه بارور، تعداد دانه در خورش و وزن صد دانه از صفات مهم‌ترین کیهوانی بر اثر عملکرد دانه اثر می‌گذارند. کوثر و همکاران (21) در بررسی همبستگی بین صفات و تجربه علمی گزارش مستقیم برای ارتفاع گیاه، طول خورش و تعداد ساقه بارور را پیشنهاد نمودند. نتایج به دست آمده از تجربه علمی در بررسی‌های مختلف (20 و 28)، نشان داد که صفات تعداد پنجه بارور و وزن هزار دانه به ترتیب دارای بیشترین اثر مستقیم بر عملکرد دانه بوده است.

هدف از این پژوهش بررسی همبستگی بین بعضی صفات زراعی و اجتماعی صفات است که دارای بیشتر برمی‌گردد. از طریق تجربه علمی بررسی می‌شود، ناب دندان و وسایل بستن با استفاده از صفات مهم متبرک با عملکرد به بهبود این هدف مهم اصلاحی دست پایش همبستگی با مطالعه و بررسی و جوید همبستگی بین صفات کم اهمیت صفات با اهمیت می‌تواند به
مطالعه هم‌استگیز صفات زراعی و تجزیه علت در بیوت

زمان می‌رسید، تعداد دانه در خوشه، طول دانه، قطر دانه، طول بالاترین میانگین، طول خوشه، ارتفاع گیاه، وزن صد دانه، نسبت طول به قطر دانه به وسایل افزایش نسبت طول به قطر می‌باشد. نسبت طول به قطر دانه به وسایل افزایش نسبت طول به قطر می‌باشد. نسبت طول به قطر برگ سیاه، طول برگ پرچم، نسبت طول به طول برگ برآورد.

تجزیه و تحلیل با استفاده از نرم‌افزار MSTATC

طرح لاتینسی (Lattice design) اغلب صفات مورد بررسی پایین‌بودن سودپذیری نسبی (Relative efficiency) حاکی از پیکنواخت بودن سالاد آزمایشی و عملیات اجرایی بوده؛ بنابراین تجزیه تحلیل‌های آماری بر اساس طرح لاتینسی کامل تجزیه نشان داد.

برای درک بهتر روابط جاری در عملکرد دانه این AF با نمونه‌گیری، از تجزیه ضرایب میزان دبیری ضرایب هم‌استگیز زمینی و فنوتیپی استفاده شد. بی‌بندانی بررسی با استفاده از ضرایب هم‌استگیز و تجزیه رگرسیون گام به گام با نظر کردن عملکرد دانه به عنوان می‌تواند (Y) و 15 صفت درگیر به عنوان می‌تواند علت یکی (X1) منجر به یکی از تغییرات متغیر را برای نمونه‌گیری، شناختی شد. سپس از طرف سنجش و غیر مستقیم صفات انتخابی با استفاده از نرم‌افزار Path74 اقدام به استفاده در محاسبه گردیده. به منظور انجام محاسبات آماری، تیپین ضرایب هم‌استگیز، تجزیه رگرسیون از نرم افزار SPSS و تجزیه علت از نرم افزار

شک

نتایج و بحث

ضرایب هم‌استگیز بین صفات کمی در ارقام بریج مورد مطالعه، در جدول 1 نشان داده است. عناصر هم‌استگیز های فنوتیپی و زمینی در اثر موارد مشابه بود و ولی از نظر مقدار در بسیاری موارد با اختلاف داشتند از اینجاه که صفات مورد بررسی کمی بودند و محیط هم تأثیر قابل ملاحظه‌ای بر روی آنها داشت، وجود این اختلاف دور از اندازه‌بندی است.

101
| عنوان | نقوش کشاورزی و منابع طبیعی | سال دهم | شماره دوم | تابستان 1385 |
جدول 2: برآورد مدل رگرسیون جنگ متغیره به روش گام به گام برای عملکرد دانش به عنوان متغیر وابسته و دیگر صفات به عنوان متغیر مستقل

<table>
<thead>
<tr>
<th>متغیر مستقل</th>
<th>ضریب رگرسیون</th>
<th>جمع‌آوری ضریب (R²)</th>
<th>عرش از میدا</th>
<th>صفات وابسته ورود</th>
<th>مربوط به</th>
<th>تعادل دانه در</th>
<th>تعادل دانه در</th>
<th>تعادل دانه در</th>
<th>تعادل دانه در</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>وزن صد</td>
<td></td>
<td>1/2865</td>
<td>0/204</td>
<td>0/133</td>
<td>0/589</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>بارور</td>
<td></td>
<td>0/262</td>
<td>0/262</td>
<td>0/837</td>
<td>0/983</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>دانه در خونه</td>
<td></td>
<td>0/75</td>
<td>0/75</td>
<td>0/271</td>
<td>0/627</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>بارور</td>
<td></td>
<td>0/871</td>
<td>0/871</td>
<td>0/371</td>
<td>0/837</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>دانه در خونه</td>
<td></td>
<td>0/557</td>
<td>0/557</td>
<td>0/271</td>
<td>0/627</td>
</tr>
</tbody>
</table>

دانه در خونه و وزن صد دانه به ترتیب وارد مدل گردید (جدول 2). سایر صفات مورد مطالعه تأثیر می‌دارند بر چند نداشتوان به همه‌مین دلیل اختلاف‌زندی‌ها از نظر صفت عملکرد دانش‌های گام‌های می‌توان به تفاوت در صفات فوق‌العاده داد. در تجزیه رگرسیون گام به گام توسط فیل پور و همکاران (۶) نیز به ترتیب سه صفت: تعادل خونه، تعادل دانه در خونه و وزن صد دانه به مدل وارد شدند. در این زمینه صفات تعادل دانه و وزن صد دانه به ترتیب ۱/۲۸ و ۱/۲۸ درصد تعادل دانه در خونه با ضریب تبیین ۲/۲۵ درصد و وزن صد دانه به ضریب ۱/۲۵ درصد، از بین صفات مورد بررسی به میزان ۹۳/۸ درصد از تغییرات مدل رگرسیونی مربوط را توجه می‌کند. تجزیه رگرسیون توسط گراوس و وکینگ (۱۴) نیز جهت انتخاب صفات مؤثر بر عملکرد رنگ‌های دانه به‌نام استفاده و صفات وزن خونه و تعادل ساقه بارور به ترتیب در مدل وارد گردید.

به مانور درک بهتر و تفسیر دقیق تر نتایج به دست آمده از همبستگی‌های ساد و رگرسیون گام به گام، متغیرهای وارد شده در مدل نهایی رگرسیون مورد تجزیه علت نهایی حاصل گرفت. نتایج تجزیه علت‌فلوئوئیتی و زنیتیکی بر اساس ضریب همبستگی فلوئوئیتی و زنیتیکی طبق جدول ۳ نشان داد که بیشترین آثار مثبت در هو تجربه و این صفت تعادل دانه و وزن بارور مربوط است. در تجزیه علت‌فلوئوئیتی صفت تعادل دانه
جدول 3: اثرات مستقیم و غیر مستقیم اجزای عملکرد دانه بر اساس ضراب هیپستگی زنیکی (عدد بالا) و ضراب هیپستگی فنوتی (عدد پایین)\(^{1}\)

<table>
<thead>
<tr>
<th>ضراب هیپستگی با عملکرد</th>
<th>تعداد دانه در خوشه</th>
<th>تعداد ساقه بارور</th>
<th>وزن صد دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>685</td>
<td>372</td>
<td>23</td>
<td>0.277</td>
</tr>
<tr>
<td>275</td>
<td>264</td>
<td>0.25</td>
<td>0.244</td>
</tr>
<tr>
<td>845</td>
<td>282</td>
<td>0.28</td>
<td>0.569</td>
</tr>
<tr>
<td>585</td>
<td>372</td>
<td>0.28</td>
<td>0.277</td>
</tr>
<tr>
<td>264</td>
<td>282</td>
<td>2.88</td>
<td>0.430</td>
</tr>
<tr>
<td>564</td>
<td>382</td>
<td>0.28</td>
<td>0.282</td>
</tr>
<tr>
<td>864</td>
<td>282</td>
<td>0.28</td>
<td>0.264</td>
</tr>
<tr>
<td>564</td>
<td>372</td>
<td>0.28</td>
<td>0.264</td>
</tr>
<tr>
<td>864</td>
<td>282</td>
<td>0.28</td>
<td>0.282</td>
</tr>
</tbody>
</table>

1. **Cumulative 50/01 معنی دار است**

2. **Cumulative 0.01 معنی نیست**

3. "20/01 = درصد مانده زنیکی

4. "20/01 = درصد مانده فنوتی

آثار مستقیم بر تولید دانه، همچنین از طریق سایر صفات که در مراحل بعدی رشد و نمو گیاه ظاهر می‌شوند اثر غیر مستقیم بر عملکرد دانه‌دهنده (10) در تجربه علت فنوتی (جدول 3) بس از افراد تعداد ساقه بارور صفت تعداد دانه در خوشه با اثر مستقیم 0.804 از اهمیت خاصی برخوردار است. اسامی این تحقیق بنابر اعلام نمود که تعداد دانه در خوشه بیشترین اثر مستقیم را بر عملکرد دانه دارد. در حالی که در بررسی فنچ و همکاران (5) تعداد دانه در خوشه اثر مستقیم کمی بر عملکرد دانه از خود نشان داد. این صفر در جدول هیپستگی می‌باشد (جدول 1) نمی‌دانیم چه در یک عملکرد بود. از آنجا که تعداد دانه در خوشه دایری بیشترین اثر مستقیم منفی از طریق تعداد ساقه بارور صفت بوده است. بنابراین دست‌بستن به شاخص معین جهت افزایش توانام تعداد ساقه‌های بارور در بود و تعداد دانه در خوشه بتواند به هیپستگی منفی بین درصد از طریق انتخاب توانام اهداف است که با پایدار بودن توجه اصلاح گران قرار گیرد. مهم‌ترین که دسترسی به این هدف ممکن است. مقدار اثر غیر مستقیم تعداد دانه در خوشه از طریق وزن صد دانه منفی و قابل اطمینان بود.
درسیدن، قالب اندوزه‌گیری است بی‌بایان با توجه به اثر مستقیم به‌وسیله‌ی همبستگی مثبت و معنادار با عملکرد دانه، امکان انتخاب رقم با عملکرد دانه باقی از ردیابی می‌باشد. همچنین این پژوهش نشان داد که افزایش تعداد فیلم‌های جهانی در ذخیره‌گیری ارقام در ایران، باعث تغییر عملکرد دانه می‌شود. با توجه به دقت زمان انجام تحقیق، این پژوهش برای سایر ارقام برای پذیرش از بین نشان می‌رود تا به‌صورت مستقل و تعیین نتایج با عملکرد دانه در ماه‌های دیگری روش‌های تأمین مالی که باعث افزایش یابد دقت بیشتری شود.

عملکرد دانه دارد.

بر اساس نتایج به‌دست آمده از تجزیه علی‌ثبوتی و زیئینی می‌توان یک درصد مهم‌ترین صفاتی که معنادار به عنوان شاخص برای گزینش عملکرد معرفی شوند، عبارتند از: سایر، تعداد سایر، کاهش صفات و تعداد دانه در خودشه است. در مجموع، بررسی‌های انجام شده (۱۲ ضریب، ۲۳ و ۲۴) تعداد دانه در خودشه و تعداد سایر باعث کاهش تعداد علی‌ثبوتی تا نسبتاً بالا تر است. گرچه تعداد سایر در ماه‌های موجده است، صفت تعداد سایری بارور در مراحل خودش دهی نا

茑

منابع مورد استفاده

1. ابوذری‌گرگاندویی، ا. ۱۳۸۱. بررسی تغییرات زیئینی و همبستگی بین صفات مورفولوژیک و گاهویی‌های مختلف در ارقام برخی از ایران. دانشکده کشاورزی، دانشگاه گیلان.

2. اله قلی‌پور، م. و. محمد صالحی. ۱۳۸۲. تعیین علی‌ثبوتی و علی‌ثبیتی در سن‌های مختلف. نهال و بذر ۱۹ (۱): ۶۱-۷۲.

3. سیاه‌سر، ب. و. ع. رضاپی. ۱۳۷۹. تعیین تغییر و تحلیل همبستگی و ضریب مسیر صفات مورفولوژیک و فنون‌یابی مربوط به عملکرد. مجله علمی کشاورزی ۱۳۰۶: ۱۹۵-۱۹۵.

4. غلامی تاجی، م. و. هادی‌پور، م. و. محمد صالحی. ۱۳۷۷. بررسی تغییرات زیئینی و تجزیه علی‌ثبوتی برای عملکرد دانه در ارقام مختلف. دانشکده کشاورزی، دانشگاه گیلان.

5. فتحی، ق. و. رضاپی. ۱۳۷۹. تعیین تغییرات علی‌ثبوتی و علی‌ثبیتی. مجله علمی کشاورزی ۱۳۰۶: ۱۹۵-۱۹۵.

6. قلی‌پور، م. و. هادی‌پور، م. و. محمد صالحی. ۱۳۷۷. تعیین تغییرات صفات مهم‌ترین روي عملکرد دانه بریش. فصلنامه علمی-پژوهشی ژانوری، دانشگاه.

8. محمدی، ع. و. محمدی، ب. و. اکبری. ۱۳۷۷. مطالعه همبستگی و تجزیه علی‌ثبوتی برای تعیین روابط میان صفات مهم و تکثیر صفات مورفولوژیک بر روی عملکرد. مجله علمی کشاورزی. ۱۳۰۶: ۱۹۵-۱۹۵.

9. نعمت‌زاده، ق. و. محمدی، ب. و. محمدی، ب. و. اکبری. ۱۳۷۷. ارزیابی تغییرات علی‌ثبوتی و علی‌ثبیتی در صفات مهم و تکثیر صفات مهم. مجله علمی کشاورزی. ۱۳۰۶: ۱۹۵-۱۹۵.

۱۰۵

