ازیابی ژنوتیپ‌های گل‌نگ تحت تنش رطوبتی در شرایط کنترل‌شده و مزرعه

مهدی جمشیدمقدم و سید سعید پوردارا

چکیده

به منظور بررسی گوانژنی و رشد گیاه‌های گل‌نگ تحت تنش رطوبتی، تعدیل 15 ژنوتیپ در چهار سطح پتانسیل آب شامل صفر (شاهد)، 0/2-0/8، 0/8-0/2 و 0/4-0/6 مگاپاسکال به وسیله محول الکترونیک گل‌کلکول 7000 مورد آزمون جوانژنی قرار گرفتند. حداکثر درصد جوانژنی (SL)، حرکت برخوردار بودن (RL) و طول برخورد (GRI) در یک زمان تا رشد به 50 درصد جوانژنی (T0) شاخص سرعت جوانژنی (GRI) مقدار 0/45/9 کلسیم در یک مکانیک گوشخانه تا 0/1-0/1 مگاپاسکال در زونتیپ 50-50 با ارور 0/000-1 0/000 مگاپاسکال در زونتیپ 51-51 0/000 را به تأخیر انداخت. کاهش شدید زیست‌پذیری از میانگین T0 (پیشتر نسبت به ژنوتیپ‌های گل‌نگ) از 18-18-0/4 تا 0/4 لغاتی رونق به درصد رونق داده داد. تعداد خاک (SL) و زاویه احاطه ریشه‌ها (RL) و طول برخورد (GRI) تحت شرایط دیم از این زمان 0/4 می‌باشد. شاخص این میزان خاک به درصد زینتیپ‌های خاکی 0/4375 (PI-537598) در مکانیک گوشخانه 0/4 لغاتی (93/4) و 0/4 لغاتی (43/4) کیلوگرم در هکتار (602) تعلق داشت. در مسیر توانایی شاهد و 20 مکانیک گوشخانه اینکی و معناداری بین درصد رونق به دست از بیشتر گوانژنی حاصل شد. نتیجه نشان داد که توانایی گیاه‌های باری یک واریته گوانژنی وجود دارد و می‌توان از تنوش زینتیپی موجود در چهار به‌طور بیشتر به ژنوتیپ‌های گل‌نگ استفاده نمود.

واژه‌های کلیدی: گل‌نگ، تنش رطوبتی، پیش‌تر بذر، عملکرد دانه

مقدمه

نحوه بوده است، رشد اولیه و سرعت گیاه‌های ژنوتیپ‌ها با تولید سیستم ریشه برگ‌گذار و مشابه‌تر در تیم‌ساز دارا حرکت، سطح پیشتر باری چسباندن آب و مواد غذایی ایجاد نموده و تیز

1. به ترتیب مرسی و استفاده اصلاح نیان، مؤسسه تحقیقات کشاورزی دیم، سراورد، کرمانشاه

155
پوشش مطابق گیاهی در مراحل اولیه رشد، باعث دریافت چربی مولکولی بالا چوبی گلیکول یا Polyethylene glycol (PEG) می‌شود. اغلب برای تهیه پاسیف آب در مطالعه جوانزی برای ارزیابی تحمیل خشکی در محیط کشت شده استفاده می‌شود (11، 12 و 18). بررسی پاتسیف‌های مختلف آب توسط PEG از سطح صفر تا 0/35-مگاگیلکال بر روی سه رنگ کلرگی ال Ute، حلولی (1) و 2811 درجه حرارت 30 درصد سانتی‌گراد نشان داد که میانگین جوانزی تیمارهای مختلف برای سه زنونی فوق به ترتیب 67 و 77 درصد می‌باشد. بررسی پاتسیف‌های مختلف آب توسط Ute و جوانزی هر یک از شش نمونه برای عمل اتقام گلرانگ در بازی خشکی این ارقام را با شرایط آزمایشگاهی در 4 سطح پاتسیف ال Ute، 0/27-مگاگیلکال (مورد بررسی دارد و مشاهده شده) نمود که بین ارقام، تفاوت معنی‌داری از نظر مصوبات مربوط به جوانزی وجود دارد. بر طوری که طول روش‌های معاینات مربوط به این ارقام متقابل به خشکی است. مفتوخ و راه‌سازی (24) به وسیله تأثیر متفاوت مختلف شویه و افسر سطوح مختلف پاتسیف از سوی گروه گلیکول یک دمای حاصل این ارقام داده شده که ترتیب دو رنگ گلرانگ کم اغلب استندنت که نشان‌های حاشیه‌ای در آمار کمای مثبت ارزیابی مراحل اولیه به پایه بالا بوده که این آمار در پاتسیف‌های مختلف خشک گیاه‌های مختلف بوده که این آمار در پاتسیف‌های مختلف خشک محیط باکیفیت است. آزمایش‌های بسیاری برای ارزیابی تحمیل خشکی در مرحله جوانزی بر روی گیاهان در گروه مناسب (28) و اجرای آزمایش به‌طور کامل در (27) و اکثر (9، 10، 10) نت‌ها در (27) و (31) اندازه‌گیری شده است. یافته‌های این اطلاعات در مورد جوانزی و رشد اولیه گلرانگ در مقایسه با سایر محصولات زراعی اند. این بیان‌های به منظور ارزیابی با وکنش نمایندگان ارزیابی جوانزی 15 زنونی گلرانگ یا تجربه یک پاسیف آب برای جوانزی (Minimum water potential) ψ_{min} کمک کرد و مؤثرتری در جهت نفوذ و استخراج.
میزان تعداد هر عضو پایه (GM)، نیز بررسی روابط سرعت جوانه‌زنی در چهار سطح بالاتر و پایین‌تر با دیگر اجزای جوانه‌زنی و با عملکرد دانه و روش انتخاب گرفت.

مواد و روش‌ها
در این تحقیق از 15 زنوتیپ گلکش شامل 7 زنوتیپ ایرانی به نامه محیطی اصفهان، محیط زیست، محیط مراکز، مراکز، و 8 زنوتیپ خارجی به نامه‌های 5 اصلی انجام شد. فرآیند تهیه از گلکه‌داری به صورت فاکتوریل در قالب طرح کاما (کاملاً) به کمک یک تکرار داده‌شده در داخل اتفاق رشد بامیه 1/2 درجه سانتی‌گراد به مدت 12 روز در تاریکی انجام شد. زنوتیپ‌یک از فاکتورهای مورد مطالعه و فاکتور دوم سطح پتانسیل بوده که چهار سطح پتانسیل آب شامل صفر (0/4)، 1/2، 1/4، و 1/8 مگاوات سالار در نظر گرفته شد. پتانسیل‌های مورد نظر با استفاده از نمک پلی اتیلن کلاژنک 6000 طبق دستورالعمل ملی و کافمان (27) تهیه شد. برای پتانسیل صفر میکروکالس (شامل) از آب مفترض استفاده شد. در این آزمایش، از ظرف پری استریل شده استفاده شد که کف آن با یک عدد کافی صاف و اتمن شده به‌شکل واحدی بود. بذرها با محلول یک درصد هیپوکلریت سدیم به مدت 15 دقیقه در فضای نشسته شدند. در هر عدد بازار سالار در طور متوسط 10 میلی لیتر از پتانسیل‌های فوق قرار داده شد. در دوره آزمایش به منظور جلوگیری از تغییر پتانسیل در اثر تبخیر آب، ظروف پری را طور مرتب وزن شد و به میزان اختلاف 1 وزن اولیه آب مفترض مقدار آنها اضافه گردید (6 و 12). بذرها را جوانه‌زنی کردیم که طول رشد بین آنها 3 میلی‌متر بیشتر باشد.

برای ارزیابی میزان جوانه‌زنی (Maximum germination) Gmax یا سرعت جوانه‌زنی (Germination rate index) GRI با حساب می‌شود و

c Constituent of the document downloaded from iutjournals.iut.ac.ir at 23:50 IRST on Saturday September 26th 2020

\[G_{\text{max}}(\%) = n_{15} \times 25^{1} \times 100 \]

\[\text{GRI (indices)} = \sum \left(\frac{G_{\text{max}} - G_{\text{mean}}}{n} \right) \]
جدول 1. تجزیه و اریابانی (میانگین مربعات ارث) فاکتورهای مورد مطالعه بر حداکثر جوانه‌زی (Gmax) (SL)، شاخص سرعت جوانه‌زی (GRI)، صفحات و تغییرات سطوح پتانسیل (NL) و شرایط (SL): طول ریشه‌های (RL) و سطوح (GRI).

<table>
<thead>
<tr>
<th>SL</th>
<th>RL</th>
<th>T50</th>
<th>GRI</th>
<th>Gmax</th>
<th>درجه آزادی</th>
<th>صفات</th>
<th>ماتب تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۲۴/۸۹</td>
<td>۱۴۶/۶۳</td>
<td>۳۶۸/۵۸</td>
<td>۸۶۸/۵۷</td>
<td>۳</td>
<td>۳</td>
<td>سطوح پتانسیل (NL)</td>
<td></td>
</tr>
<tr>
<td>۰/۵۱</td>
<td>۲۴/۷۴</td>
<td>۲/۱۰</td>
<td>۹/۸۴</td>
<td>۱۴</td>
<td>۱۴</td>
<td>زنوتیب (GRI)</td>
<td></td>
</tr>
<tr>
<td>۰/۲۲</td>
<td>۱۲/۱۰</td>
<td>۸/۷۸</td>
<td>۳۶/۹۴</td>
<td>۲۴</td>
<td>۲۴</td>
<td>اثر مقاومت (GRI)</td>
<td></td>
</tr>
<tr>
<td>۰/۲۱</td>
<td>۲/۴۲</td>
<td>۸/۸۶</td>
<td>۸/۵۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>خطا (E)</td>
<td></td>
</tr>
<tr>
<td>۳۳/۵۹</td>
<td>۱۶/۱۴</td>
<td>۱۳/۵۱</td>
<td>۱۳/۵۱</td>
<td>۲۱/۸۵</td>
<td>۶۳/۵۰</td>
<td>ضریب تغییرات (٪)</td>
<td></td>
</tr>
</tbody>
</table>

^n: بیرتیب معنی‌دار در سطوح احتمال 0.01 درصد

نتیجه‌گیری: به‌جز یک نمونه هر سطح پتانسیل در کرت‌های به‌ساده تشخیص ممکن است که در مرحله جوانه‌زی از نظر طرطوبی می‌باشد (جدول 1).

(Gmax) حداقل جوانه‌زی

با کاهش پتانسیل آب از صفر تا 0/۲۸ مکاپاسکال، نمودار میزان جوانه‌زی نمایان می‌شود و با کاهش جوانه‌زی در نمایان مهار، سطح شاهد ۱/۰۴ مکاپاسکال به طور متوسط ۲/۹ و در صورت بود آب افرایش تنظیم شد ۱/۰۴-۱/۰۴ مکاپاسکال به سطح متوسط ۲۸٪ و در صورت کاهش جوانه‌زی دیده شد (شاخص ۴-۱۸ مکاپاسکال). لازم است ذکر گردد که این نتایج به‌صورت ۱/۵۳۵-۱/۵۲۷ و از تضادی این نتایج به‌صورت ۱/۵۲۷-۱/۵۳۵ می‌باشد.

با توجه به این نتایج، چهار صفحه نسبت به سطوح Gmax مختلف پتانسیل آب معنی‌دار بود. بنابراین واکنش طور بدگانه در ظرفیت بیشتر سطح پتانسیل برازش شد. برای اینکه زنوتیب‌های مورد مطالعه، معادلات ۱/۵۹-۱/۵۲۷ اعمال شده با ۱/۵۲۷-۱/۵۳۵ کمترین کاهش را از لحاظ درصد جوانه‌زی (با ۲۴ درصد) در سطح ۱/۵۲۷-۱/۵۳۵ مکاپاسکال نشان داد و در زنوتیب گوشخانی درست و

نتیجه‌گیری: تأثیر به دست آمده از تجزیه و اریابانی صفحات و سطوح بر پایداری نشان داد که زنوتیب‌ها نسبت به سطوح مختلف پتانسیل آب اعمال شده و واکنش مقاومت داشته‌اند. وجود اختلافات معنی‌دار بین زنوتیب‌ها باید برای صفات اندازه‌گیری شده حاکی از وجود

تایپ و بحث

نتایج به دست آمده از تجزیه و اریابانی صفحات و سطوح مورد بررسی نشان داد که زنوتیب‌ها نسبت به سطوح مختلف پتانسیل آب اعمال شده واکنش مقاومت داشته‌اند. وجود اختلافات معنی‌دار بین زنوتیب‌ها باید برای صفات اندازه‌گیری شده حاکی از وجود...
ارزیابی زنوتیپ‌های گلنگ تحت تنش رطوبتی در شرایط کنترل شده و موزعه

![نمودار]

شکل 1. تأثیر پتانسیل‌های آب بر حداکثر جوانزی در زنوتیپ‌های مورد بررسی گلنگ

جدول 2. مقایسه متوسط حداکثر جوانزی (\(\Psi_{\text{max}}\)) پتانسیل‌های حدااقل (\(\Psi_{\text{mm}}\)) و معادلات مناسب توصیف کندسه و رابطه حداکثر جوانزی در مقابل سطح پتانسیل آب برای زنوتیپ‌های مورد بررسی گلنگ

<table>
<thead>
<tr>
<th>R²</th>
<th>معادلات</th>
<th>(\Psi_{\text{max}})</th>
<th>(G_{\text{max}})</th>
<th>زنوتیپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.98</td>
<td>(G_{\text{max}} = A/2Y - V/8\Psi - 5V/2\Psi^3)</td>
<td>-1.73</td>
<td>550/8</td>
<td>پولی استفاده</td>
</tr>
<tr>
<td>0.99</td>
<td>(G_{\text{max}} = 5/4\Psi^2 - 28/88\Psi - 5V/2\Psi^3)</td>
<td>-1.31</td>
<td>549</td>
<td>محلی زرافان</td>
</tr>
<tr>
<td>0.99</td>
<td>(G_{\text{max}} = 7/3\Psi^2 - 28/88\Psi - 5V/2\Psi^3)</td>
<td>-1.22</td>
<td>548</td>
<td>محلی مراوعی</td>
</tr>
<tr>
<td>0.99</td>
<td>(G_{\text{max}} = 9/3\Psi^2 - 28/88\Psi - 5V/2\Psi^3)</td>
<td>-1.18</td>
<td>70/9</td>
<td>کوشاخی</td>
</tr>
<tr>
<td>0.99</td>
<td>(G_{\text{max}} = 9/3\Psi^2 - 28/88\Psi - 5V/2\Psi^3)</td>
<td>-1.18</td>
<td>59/8</td>
<td>زرافان</td>
</tr>
<tr>
<td>0.99</td>
<td>(G_{\text{max}} = 9/3\Psi^2 - 28/88\Psi - 5V/2\Psi^3)</td>
<td>-1.18</td>
<td>59/8</td>
<td>زرافان</td>
</tr>
<tr>
<td>0.99</td>
<td>(G_{\text{max}} = 9/3\Psi^2 - 28/88\Psi - 5V/2\Psi^3)</td>
<td>-1.18</td>
<td>59/8</td>
<td>زرافان</td>
</tr>
</tbody>
</table>

پیشنهاد می‌گردد که حدااقل یک حرف مشترک دارند، در مقطع احتمال 5 درصد تفاوت معنی‌دار ندارند.
شکل ۲. معادله برآورد جوئنزنی در مقایسه سطوح پتانسیل آب (Gmax= \beta_0 + \beta_1 \Psi + \beta_2 \Psi^2) در زنوتیپ‌های محلی اصفهان.

Kino-۷۶ و LRV-۵۱-۵۱ گوشتخانی.

جوئنزنی داشته باشند. همانچنین جوانزنی (۱۹) پتانسیل‌های بحرانی آب درخاک را برای جوانزنی درت (۱۵) - (مکاپاسکال) سموا (۱۶) مکاپاسکال) و چندین عدد (۲۵-۵۰ - مکاپاسکال) گزارش نمودند. همچنین جوانزنی یونجه در مطالعه ردم (۲۹) در پتانسیل ۱۵/۵ - مکاپاسکال کامل‌تقویف شد. جنس (۲۰) نیز بیان کرد که در پتانسیل ۱۵ - مکاپاسکال هیچ یک از گیاه‌های نهایی قادر به جوانزنی داشته.

(GRI)

شاخص سرعت جوانزنی (GRI) یکی از میزان‌های ارزیابی تحمل به خشکی است، به طوری که ارقام دارای GRI بالا در شرایط
جدول 3. تأثیر پتانسیل آب و زنوتیب بر سرعت جوانژنی (بر حسب درصد در روز)

<table>
<thead>
<tr>
<th>پتانسیل‌های آب (ماگنیکال)</th>
<th>سرعت زنوتیب‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>مخلوط اتمسفری</td>
</tr>
<tr>
<td>27/9 ab</td>
<td>37/0 a</td>
</tr>
<tr>
<td>20/5 cd</td>
<td>31/6 b</td>
</tr>
<tr>
<td>19/4 cde</td>
<td>28/1 c</td>
</tr>
<tr>
<td>19/1 fg</td>
<td>19/5 d</td>
</tr>
<tr>
<td>21/1 bc</td>
<td>33/0 ab</td>
</tr>
<tr>
<td>22/5 a</td>
<td>37/5 a</td>
</tr>
<tr>
<td>24/4 a</td>
<td>37/5 a</td>
</tr>
<tr>
<td>19/2 cde</td>
<td>41/1 b</td>
</tr>
<tr>
<td>19/5 bg</td>
<td>41/1 b</td>
</tr>
<tr>
<td>19/3 def</td>
<td>21/0 d</td>
</tr>
<tr>
<td>19/5 def</td>
<td>27/1 c</td>
</tr>
<tr>
<td>17/7 ef</td>
<td>20/4 e</td>
</tr>
<tr>
<td>19/4 fg</td>
<td>20/4 e</td>
</tr>
<tr>
<td>میانگین</td>
<td>31/1 c</td>
</tr>
</tbody>
</table>

در هر سه تفاوت میانگین زنوتیب‌ها با حداکثر یک حرف کوچک مشترک در سطح احتمال 0.05 درصد معنی‌دار نبود. تفاوت مربوط به سطح پتانسیل آب با حروف بزرگ توسط شد است.

جوانتیزی بالایی در بین زنوتیب‌ها برخوردار بودند (جدول 3). اثر تفاوت میانگین در سطح آب و زنوتیب برای شاخص سرعت جوانژنی در برجسته گزینه‌ای دیگر نیز گزارش شده است (2, 6, 12 و 17).

طول ریش چه (RL)

زنوتیب‌های مورد بررسی از نظر طول ریش‌های واتکن متفاوتی نشان دادند (شکل 3). در سطح شاهد، زنوتیب‌ها از ریش‌های طویل، پر اشکاب و کوتاه برخوردار بودند و در شرایط نیمه‌طلایی، این گروه‌ها دارای ریش‌های نازک، ضعیف و بلندتری بودند. به طوری که تمامی زنوتیب‌ها در سطح نشان دادند. سطح تنش 0/5–20/5 مکاسکال و برعی از زنوتیب‌ها در سطح تنش 0/8–20/5 مکاسکال از طول ریش‌های بهتری نسبت به شاهد.

تنش از شانس پیش‌تری برای سبز شدن برخورداران. اثر سطح مختلف پتانسیل آب بر سرعت جوانژنی معنی‌دار بود. به طور کلی با کاهش پتانسیل آب از صفر تا 0/5–20/5 مکاسکال سرعت جوانژنی به ترتیب 13/10، 66/21، 66/23 و 88/43 درصد کاهش نشان داد. زنوتیب‌های ایرانی از نظر لمی اصلی اتمسفری و CW-51-51 به طور متوسط بالاترین و زنوتیب-74 کمترین مقدار سرعت جوانژنی را در مجموع 6 سطح داشتند. تأثیر تفاوت میانگین در سطح آب و زنوتیب برای GRI معنی‌دار بود. به طوری که زنوتیب‌های کوچک‌تر در پیش‌تری برای قرار دادن در سطح تنش 0/5–20/5 مکاسکال و مراقبت که در سطح شاهد در کلاس قرار داشتند در سطح تنش 0/8–20/5 مکاسکال از سرعت...
شاهد بخش از 5 سانتیمتر بود. با کاهش پتانسیل آب، طول ساقه‌پیچی تمامی زنیت‌هایا بطور معنی‌داری کاهش یافت. به‌نحوی که با کاهش پتانسیل آب از صفر به −0.1 مگاپاسکال، طول ساقه‌پیچی بترتیب 98/63 و 70/63 درصد کاهش نشان داد. در سطح‌های تنش ±0 و ±2/1 مگاپاسکال، رشد چندانی در تمامی زنیت‌هایا مشاهده نشد (شکل 5). در این آزمایش در میان گیاهان مورد اندازه‌گیری، طول ساقه‌پیچی حساسیت بیشتری به تنش نشان داد. نتایج تحقیقات دیگر در سایر گیاهان نیز مؤید این مطلب است (10 و 13). بالاترین طول ساقه‌پیچی با زنیت‌های محلى مراغه و کمترین آن به زنیت‌های برخوردار بودند. اهمیت طول ریشه گلریز تحت شرایط تنش در سایر مطالعات تبیین گریزان شده است (16، 17 و 18). با افزایش تنش به −0.1 مگاپاسکال و با کاهش آب قابل دسترس بذرها، کاهش شدیدی در طول ریشه‌چه مشاهده شد. در کل با کاهش پتانسیل آب از صفر تا −0.1 مگاپاسکال، طور متوسط 87/5 سانتی‌متر افزایش در طول ریشه‌چه حاصل شد و با کاهش پتانسیل آب به سطح‌های ±0 و ±2/1 مگاپاسکال، به طور متوسط 7/63/6 و 3/63 سانتی‌متر کاهش نسبت به شاهد دیده شد. ارقام ورامین 129 و زرقان 279 از بیشترین طول ریشه‌چه برخوردار بودند (شکل 4). اثر همایش زنیت‌های و پتانسیل آب بر روی طول ریشه‌چه معنی‌دار بود. لازم به ذکر است که در سطح‌های تنش صفر و ±2/1 مگاپاسکال تفاوت معنی‌داری در بین زنیت‌هایا دیده نشد و در سطح تنش ±2/1 مگاپاسکال تفاوت بین زنیت‌های ایرانی با زنیت‌های دیگر بهتر آشکار شد (داده‌ها نشان داده نشده است). در مجموع زنیت‌های ایرانی به استثنای گوشتخانه نسبت به زنیت‌های خارجی برتری نشان دادند.

شکل 3: تأثیر پتانسیل آب بر طول ریشه‌چه در زنیت‌های گلریز پودری ایرانی

ظرفیت پودر (SL)

به طور متوسط طول ساقه‌پیچی در تمامی زنیت‌هایا در سطح

162
ارزیابی زنویپی‌های گل‌نگ تحت تنش رطوبتی در شرایط کنترل شده و مزوده

مدت زمان‌ها ۵۰ درصد جوانه ای دارا بود اثر متقابل سطوح رطوبتی × زنویپی‌های T0 و T10 معیار دارد. این امر نشان داد که زنویپی‌ها در سطوح مختلف پتانسیل از نظر T0 و T10 مشابهی داشتند. برای مشاهده زنویپی‌های محلی اصفهان و ورامین ۲۹۵ که در سطوح پتانسیل صفر و ۲۴۰ مگاپاسکال در گروه برتر قرار داشتند، در سطح تنش ۸۰۰ مگاپاسکال در کلاس C فشار گرفتن (جدول ۴) بهره‌برداری به دلیل استفاده شد. تنش ۲/۵ مگاپاسکال که تهیه زنویپی‌ها به استاندارد رقم ۵۱-۵۱ در طول دوره آزمایش کمتر از ۵۰ درصد جوانه ای داشت و نیز در زنویپی‌های CW-74 و CW-74 در سطوح تنش ۸۰۰-۲/۵ مگاپاسکال بین جوانه ای به ۵۰ درصد ترسیم در محیط‌های آماری وارد نشدند.

ارزیابی زنویپی‌های گل‌نگ در شرایط مزوده

این آزمایش که به منظور دست‌بایی به زنویپی‌های با عملکرد بالا در کشت با بهره برای شرایط دیم صورت گرفت، نشان داد که بیشترین عملکرد دانه با متوسط بین ۱ تا ۵ در هکتار در چهار ایستگاه تحت بررسی کشور مربوط به زنویپی‌های

خارجی ۵۳۷۹۸ و Lesaf.PI-537598 به دلیل درصد روشی دانه زنویپی‌ها از ۳۰ درصد تا ۷۰ درصد به ترتیب متعلق به زنویپی‌های چنار CW-74 و ۷۴ و معیار بیشترین عملکرد روشی با متوسط بین از ۳۰۰ کیلوگرم در هکتار نیز به نسبت Lesaf و PI-537598 و در زنویپی‌زرفان ۲۷۹ که در حال حاضر در مناطق مختلف کشور به صورت پایین‌تر کشت می‌شود از کمترین عملکرد دانه و روشی برخوردی بود. بنابراین این زنویپی‌های سازگار و مناسب کشت دید پایین‌تر از مناطق نیست. سایر زنویپی‌های ایرانی نیز از پتانسیل تولید پایین‌تر برخوردی بودند. از طرف دیگر در بین زنویپی‌های خارجی PI-537636 و Kino و CW-74 از عملکرد دانه و روشی پایین‌تری برخوردی بودند (جدول ۵).

همیابی سرب عسل (GRI) در تهیه سطوح تنش با طول رشته‌های، همیابی مثبت و معنی‌داری داشت (جدول ۶). بنابراین می‌توان از طریق طول رشته‌های نسبت به گل‌نگ زنویپی‌های متحمل تر اقدام نمود. بنابراین این شاخص در سطح تنش ۸۰۰ مگاپاسکال به عنوان یکی از تجارب اصلی بررسی می‌شود.
جدول ۲. تأثیر پتانسیل آب و زنوتیپ بر زمان تا رسیدن به ۵۰ درصد جودوزنی (بر حسب روز)

<table>
<thead>
<tr>
<th>پتانسیل‌های آب (مگاپاسکال)</th>
<th>صفر</th>
<th>زنوتیپ‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳/۳ a-d</td>
<td>۶/۹۴ c</td>
<td>۱/۵۸ a</td>
</tr>
<tr>
<td>۲/۸ b</td>
<td>۴/۵۵ a</td>
<td>۱/۹۵ b</td>
</tr>
<tr>
<td>۳/۸ b-c</td>
<td>۹/۳۷ c</td>
<td>۱/۸۷ b-c</td>
</tr>
<tr>
<td>۳/۱ ab</td>
<td>۹/۵۶ c</td>
<td>۱/۹۸ b</td>
</tr>
<tr>
<td>۳/۲ abc</td>
<td>۹/۴۰ c</td>
<td>۱/۶۱ a</td>
</tr>
<tr>
<td>۳/۱ ab</td>
<td>۹/۵۷ bc</td>
<td>۱/۷۹ ab</td>
</tr>
<tr>
<td>۱/۸ ef</td>
<td>۷/۴۳ c</td>
<td>۱/۶۶ c</td>
</tr>
<tr>
<td>۴/۷ ef</td>
<td>۷/۶۳ c</td>
<td>۲/۷۷ c</td>
</tr>
<tr>
<td>۴/۸ ef</td>
<td>۵/۹۵ c</td>
<td>۱/۷۱ c</td>
</tr>
<tr>
<td>۴/۸ def</td>
<td>۵/۹۵ c</td>
<td>۱/۷۱ c</td>
</tr>
<tr>
<td>۴/۴ def</td>
<td>۵/۹۵ c</td>
<td>۱/۷۱ c</td>
</tr>
<tr>
<td>۴/۴ ef</td>
<td>۷/۴۳ c</td>
<td>۲/۹۹ c</td>
</tr>
<tr>
<td>۴/۴ ef</td>
<td>۷/۴۳ c</td>
<td>۲/۹۹ c</td>
</tr>
<tr>
<td>میانگین</td>
<td></td>
<td>۱/۸ A</td>
</tr>
</tbody>
</table>

در هر ستون نتایج میانگین زنوتیپ‌ها با حداکثر یک حرف کوچک مشترک در سطح احتمال ۰/۰۵ درصد معنادار نیست. تفاوت مربوط به سطح پتانسیل آب با حروف بالا نشان دهنده است.

جدول ۵. ارزیابی تعدادی از زنوتیپ‌های گل‌رنگ مورد بررسی در کشت پایه‌های تحت شرایط دم

<table>
<thead>
<tr>
<th>متغیر اینستاگرامی تحت بررسی</th>
<th>عملکرد دانه (کیلوگرم در هکتار)</th>
<th>عملکرد روغن (کیلوگرم در هکتار)</th>
<th>زنوتیپ‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۷/۰۳ c</td>
<td>۲۸/۵ c</td>
<td>۶۰/۵ c</td>
<td>محلی اصفهان</td>
</tr>
<tr>
<td>۱۳/۳/۷ c</td>
<td>۲۵/۳ d</td>
<td>۵۴۸/۵ c</td>
<td>زرناه ۲۷۹</td>
</tr>
<tr>
<td>۲۱/۹/۴ d</td>
<td>۵/۶ b</td>
<td>۶۱/۷/۳ b</td>
<td>LRV-۵۱-۵۱</td>
</tr>
<tr>
<td>۴/۸ bc</td>
<td>۷/۴ c</td>
<td>۱/۶۷ c</td>
<td>CH-۵</td>
</tr>
<tr>
<td>۴/۳ ab</td>
<td>۷/۴ c</td>
<td>۱/۷ c</td>
<td>Lesaf</td>
</tr>
<tr>
<td>۴/۴ cd</td>
<td>۷/۴ c</td>
<td>۱/۷ c</td>
<td>Hartman</td>
</tr>
<tr>
<td>۴/۴ cd</td>
<td>۷/۴ c</td>
<td>۱/۷ c</td>
<td>Kino-۷۶</td>
</tr>
<tr>
<td>۴/۴ cd</td>
<td>۷/۴ c</td>
<td>۱/۷ c</td>
<td>PI-5۳۷۵۹۸</td>
</tr>
<tr>
<td>۴/۴ cd</td>
<td>۷/۴ c</td>
<td>۱/۷ c</td>
<td>PI-5۳۷۶۳۶</td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌هایی که حداکثر یک حرف کوچک مشترک دارند، در سطح احتمال ۰/۰۵ درصد تفاوت معنادار دارند.
جدول ۶ ضرایب همبستگی بین شاخه سرعت جوانه‌زی با دیگر اجزای جوانه‌زی در چهار سطح پتانسیل آب و برخی از صفات مزرعه‌ای

<table>
<thead>
<tr>
<th>(GRI)</th>
<th>شاخه سرعت جوانه‌زی</th>
<th>سطح پتانسیل آب (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>صفر</td>
<td>صفر</td>
</tr>
<tr>
<td></td>
<td>۰/۲-۰/۱</td>
<td>۰/۷۷</td>
</tr>
<tr>
<td></td>
<td>۰/۳۰</td>
<td>۰/۹۷**</td>
</tr>
<tr>
<td></td>
<td>۰/۳۶</td>
<td>۰/۸۸**</td>
</tr>
<tr>
<td></td>
<td>۰/۹۸**</td>
<td>۰/۹۳</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>جدایک ژوانه‌زی (Gmax)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>صفر</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۷۷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۴۰</td>
<td>۰/۸۸**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۹۸**</td>
<td>۰/۸۸**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۹۸**</td>
<td>۰/۹۷**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>طول ریشه‌چه (RL)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>صفر</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۷۷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۹۸**</td>
<td>۰/۹۷**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۹۸**</td>
<td>۰/۹۷**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۹۸**</td>
<td>۰/۹۷**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>طول ساقه‌چه (SL)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>صفر</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۷۷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۹۸**</td>
<td>۰/۹۷**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۹۸**</td>
<td>۰/۹۷**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۹۸**</td>
<td>۰/۹۷**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مدت زمان تا ۵۰ درصد جوانه‌زی (T۰۵) | | | | |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>صفر</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۷۷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۹۸**</td>
<td>۰/۹۷**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

درصد رونگ | | | | |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۰</td>
<td>۰/۷۷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۹۸**</td>
<td>۰/۹۷**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

عملاک دانه | | | | |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۰</td>
<td>۰/۷۷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۹۸**</td>
<td>۰/۹۷**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۹۸**</td>
<td>۰/۹۷**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* و **: بهترین معنی دار در سطح احتمال ۰/۰۵ و ۰/۱ درصد

مناسب‌تری برای تعبیه و اکتشاف ژنوتیپ‌های گیاهان به تنش رطوبتی پایین و هم‌بستگی بالای با دیگر پارامترهای جوانه‌زی می‌باشد. هم‌بستگی مثبت و معنی‌داری بین سرعت جوانه‌زی در تمامی سطوح پتانسیل و در سطح احتمال ۰/۱ با جدایک ژوانه‌زی حاصل شد و نشان داد که ژنوتیپ‌هایی با رشد از ژوانه‌زی مناسب برخوردارند. وجود ارتباط منفی و معنی‌دار بین شاخه سرعت جوانه‌زی و صفت (T۰۵) نشان داد که با افزایش سرعت رشد، زمان لازم برای جوانه‌زی و سپر

پتانسیل ۰/۸- مگاپاسکال، هم‌بستگی بالایی با دیگر پارامترهای جوانه‌زی یعنی طول ریشه‌چه (۰/۱۹۳۷)، طول ساقه‌چه (۰/۸۸۷۸) و درصد جوانه‌زی (۰/۲۱۷۱) نشان داد که ضریب می‌رود سطح پتانسیل در مقایسه با نشان می‌آمیزد (۰/۴- مگاپاسکال) که نشان می‌دهد طول ساقه‌چه است. کاهش معنی‌داری نشان داد. هم‌چنین نشان داد (۱/۶- مگاپاسکال) که هر سه پارامتر جوانه‌زی کاهش قابل ملاحظه‌ای داشتند سطح
번역결과

شدن کاهش خواهد یافت. همچنین در سطح پتانسیل‌های افزایش سطح تنش، موجب کاهش سرعت جوانزی و متعاقب آن مدت زمان تا رسیدن به 50 درصد جوانزی بذرها به شدت به تأخیر آنها به طوری که در سطح تنش 1/2 مگاپاسکال در تمامی زنوبیوت‌ها به استثنای LRV-51-51 کمتر از 50 درصد از بذرها جوانز. موردن دیگر اینک که اکثر زنوبیوت‌های ایرانی به جز گروه‌هایی، عکس عمل به‌همراه در مرحله جوانزی نسبت به نشان دادند که این اختلاف زنوبیوتیک میان در به‌نیازی برای به‌هم درجه اولیه بذر به‌عنوان یکی از مدل‌های مهندسی ویژه دارد.

سیاسگازی

یک دین و سیاست از موانع مؤثره حفظات کشاورزی دیم کرمانشاه که امکانات انجام این پروپیک را فراهم نموده، تشکر و قدردانی می‌گردد.

منابع مورد استناد

1. تزار، ام. پ. 1373. مبانی فیزیولوژیک رشد و نمو کاهن در زراعت (مجمع علوم زراعت آمریکا). ترجمه: کوچکی، م. ح. راهش. م حمیدی، م. گری. د. ع. م. صدرآبادی، انتشارات آستان قدس رضوی مشهد. 460 صفحه

2. جمشیدی مقدم، م. 1381. ارزیابی عواملگی میان برخورد در بذرک و گروه زنوبیوت‌های مقایسه در شرایط آزمایشگاهی و مزرعه در نخود زراعت. پایان‌نامه کارشناسی ارشد اصلاح‌نیازهای، دانشگاه شیراز، 145 صفحه.

3. رحیمی مشهدی، ح. ب. پارسی و ا. پرچم. 1370. اثر پتانسیل‌های مختلف حاصل از پیایش کلایکل و کلور سدیم نیترات بذر در میان برخورد بر جوانزی نمونه کننده دیم. علوم و منابع کشاورزی 5: 41-44.

5. فجری، ع. و. زریی، ا. 1381. تأثیر شوریپ و خشکی بر جوانزی و رشد گیاهی دوم رنگ به نهم و بذر 1380: 165-170.

