بررسی اثر فشار بر کارایی و گرتفگی غشا در عمل فراپالایش شیر

سیدمحمدعلی رضوی، سیدعلی مرتضوی و سیدمحمد موسوی

چکیده
در این تحقیق اثر تغییرات اختلاف فشار عملیاتی (TMP) بر کاهش شار ناشی از مقاومت‌های قطبی غلظت و جذب سطحی (گرتفگی) و همچنین درصد دفع پروتئین در طی فراپالایش شیر پس جرخ بازاری از مورد بررسی قرار گرفته است. برای انجام آزمایش‌ها یک سیستم پالایشی محیط به دست نمونه‌ای مارپیچی با غشاء پلیسولفون آماده‌ساخته شده است. استرسیون عمیق سه مرحله‌ای بر میاب قدرت تهیه شده، تأثیر بر ثابتی TMP تأثیری بر مقاومت کاهش شار نسبی کل نداشت، و لی در هر ثابتی کاهش شار عمدتاً به دلیل قطبی غلظت اتفاق می‌افتد و گرتفگی به سبب کمی در کاهش شار داشت. در حالی که پایین دنیمیکی کاهش شار ثابت کرد که افزایش مقادیر کاهش شار نسبی کل در طی عملیات به دلیل گرتفگی است. تثبیت تأثیرمایه‌ی مقاومت‌های هیدرولیکی غشا. تابع نشان داد که بر TMP مقاومت‌های هیدرولیکی کل و مقاومت گرتفگی برگشت پذیر و گرتفگی می‌باشد. اگر مقاومت غشا و مقاومت گرتفگی برگشت تا حدودی به تفاوتی نسبی شد که افزایش مقاومت ثابت در طول زمان عملیات، باید گذاشت زمان عملیات، تأثیر چندانی بر TMP و گرتفگی نداشت. درصد دفع پروتئین‌ها ناشناخته است و تنها باعث افزایش آن به میزان 2-4 درصد می‌باشد.

واژه‌های کلیدی: ثابتی، فراپالایش، قطبی غلظت، گرتفگی، مدل مقاومت‌های سطحی، شار، درصد دفع (بازداری)

مقدمه

فرابالایش (Ultrafiltration(UF)) یک فرآیند مهم غشاپذیری در صنایع غذایی به‌خصوص در صنایع لبنی برای تغییر نیروی است. یک شرکت عمده در فرابالایش غشاپذیری همچنین "آلتوفیلتریسم" گرتفگی (Fouling) است. که باعث کاهش شار و تغییر خصوصیات پازداری (Retention) می‌شود.

1. به ترتیب دانشجو دکتری و استاد علم و صنایع غذایی، دانشگاه کشاورزی، دانشگاه فردوسی مشهد.
2. استادیار مهندسی شیمی، دانشگاه مهندسی، دانشگاه فردوسی مشهد.
مدل شار

تاکنون مدل‌های مختلفی برای بیان رفتار شار در طی فیلترالیش
محلول‌های حاوی ترکیبات کلرونیتریک و مولکول‌های بزرگ از
جمله شیروانی ارائه شده است. مدل‌های رویالی (Hagen-Poiseuille
(Mass transfer model or film theory)
) مدل الکتریکی جرم (تروری فیلم)
) مدل الکتریکی جرم (تروری فیلم)
در محدوده فشار‌های پایین (Pressure-dependent region
(Pressure - independent region)
) مدل تبادل الکتریکی (Gel-Polarization model)
وزیگی های خوراکی پس از دخالت خوارا
برای تغییراتی در فیلترالیش با نام متقاد نمی‌گردد.
مقادیر مربوط به فشاری‌های شار، گرفتن و میزان تأثیر آنها
در کاهش شار ضروری است.

بنابراین رفتار شار در طی فیلترالیش، تحت تأثیر عوامل
مختلفی ازجمله ترکیب هوا، کرونیت و شرایط
هیدرودینامیکی (فشار، سرعت جریان و دما) است (5). در طی
فیلترالیش شرایط جریان، شار، تراوی (Permeate (Flow rate))
از درون حفظ‌های غشا) اثر یافته سرعت جریان عرضه يا
(Transmembrane pressure) (TMP) (Transmembrane pressure)
اختلاف فشار عملاژی (Pressure - independent region)
به‌طور می‌باشد (3 و 7). این موضوع نشان می‌دهد که شار و
گرفتنی به کمک عوامل هیدرودینامیکی قابل کنترل است.

تاکنون اطلاعاتی محدودی در حال‌الحال شرایط
هیدرودینامیکی بر رفتار شار گرفتنی و خصوصیات پذیرار
در طی فیلترالیش تغییر دارند. بررسی‌های قبلی به
طور عمدی بر پیشگیری شار تراوی در طی فیلترالیش تحت
شرایط پایدار متغیر شده (0.1, 0.3, 0.5 و 0.7) و مطالعه کمی
درباره چگونگی توسعة گرفتنی و نقش عوامل هیدرودینامیکی
در آن صورت گرفته است.

هدف از این بررسی، امکان شناسایی فشار عملاژی بر رفتار
شار، نوآور گرفتنی و میزان عبور پوستن در طی فیلترالیش شیر
پس جریان (Calculated Pressure drop)
در مدل‌های (Resistance - in - Series model)
و نوع میزان استرسی علی‌لی (Resistance - in - Series model)
س مدل‌های که با استفاده از این مقاله,
امکان تشخیص مکانیسم کاهش شار و نیز کنترل کارایی غشا

192
شکل 1. شماتیک مقاومت‌های سر راه جریان در فرآیند فرآینالیش جریان عرضی

محسوب می‌شود که در آن براساس یک استراتژی آزمایشگاهی سه مرحله‌ای، می‌توان سه مقاومت متوالی یعنی مقاومت هیدرولیکی غشا، لایه فلز غلظت و لایه جذب شده به غشا و آثار هر یک را بر شار به صورت جداگانه به دست آورد که در (۵ و ۶). انتقال آب از درون غشا به صورت جریان ویسکوز صورت می‌گیرد. شار آب خالص از درون یک غشا تیزی (J_{W}v) را می‌توان به کمک قانون دارسی (Darcy’s law) توصیف کرد:

\[J_{W} = \frac{\Delta P_{T}}{\mu_{W}R_{M}} \] \[(T M P) \]

که در آن:
\[\Delta P_{T} \] اختلاف فشار در عرض غشا
\[\mu_{W} \] کندیتیت آب
\[R_{M} \] مقاومت خالص غشا
\[R_{G} \] مقاومت مقاومت غلظت غشا
\[R_{cp} \] مقاومت گرفتگی غشا

در فرآینالیش جریان عرضی (Cross flow) از رابطه زیر

\[\Delta P_{T} = \frac{P_{i} + P_{o}}{2} - P_{p} \]

به دست می‌آید:

به دست می‌آید:

\[J_{V} = \frac{\Delta P_{T}}{\mu_{p}(R_{T} + R_{if} + R_{ef})} \]

\[J_{WF} = \frac{\Delta P_{T}}{\mu_{WF}(R_{m} + R_{if})} \]
جدول 1. مشخصات نی سیستم پایلوتی

<table>
<thead>
<tr>
<th>طول مدل:</th>
<th>450 میلیمتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>دماه تحلیل:</td>
<td>pH: 2-11</td>
</tr>
<tr>
<td>دماه تحلیل دما:</td>
<td>5-55 درجه سانتی‌گراد</td>
</tr>
<tr>
<td>قطر خارجی مدل:</td>
<td>52 میلیمتر</td>
</tr>
</tbody>
</table>

نوع مدل: ماریچ حملوی (Spiral wound)

- جنس غشا: پلی‌سولفون آمید
- (Molecular Weight Cut Off) MWCO
- سطح مؤثر غشا: 0.3 متر مربع
- شار آب خالص: 20 - 25 لیتر در ساعت

Formula (R عنصر)

\[
R' = \frac{R_{HF} + R_{Hf}}{R_m}
\]

- یخی: جسور (JHF) عبارت است از:

\[
J_{HF} = 1 - J_I = \frac{R' - \overline{R}}{R'}
\]

- پرینا که: مقاومت سطحی از (JRF) در آن صورت 100 عیب گونه کاهش شای نسبت به آب خالص دیده نیست شد، وی باشد: یک مقاومت از یک گرفتگی و یک مقاومت از یک گرفتگی و یک مقاومت از یک گرفتگی

ربا روابط زیر به دست می‌آید:

\[
J_{HF} = J_{HF} + J_{IF}
\]

\[
J_{HF} = 1 - J_{HF} + J_{IF}
\]

\[
J_{IF} = \frac{J_{IF} - J_{H}}{J_{H}}
\]

مواد و روش‌ها

سیستم غشایی و نحوه عملیات

در این تحقیق از یک سیستم غشایی پایلوتی ساخت شرکت Biocon company برای استفاده شده است. مشخصات این سیستم بی‌خود خروک، یک سانتریفژی، یک نانو (UF) مندل حرارتی لوله‌ای، و یک فلز انتقالی عقربه‌ای به دست آمده است. این واحدهای مجهز به تکنولوژی نانو و میکرو‌نیروگرافی، بی‌خود خروک، مدل حرارتی لوله‌ای، و یک فلز انتقالی عقربه‌ای به دست آمده است.

بررسی مشکلات عامل‌های (Total relative flux reduction)

- تعیین کردن:

\[
J_r = \frac{J_{IF}}{J_{H}} = \frac{1}{1 + R'}
\]

- کمک:

194
بررسی اثر فشار بر کارایی و گرگنگ غشا در عمل فعالیاتی شیر

شکل ۲: شماتیک کلی واحد پابلتوی UF

الکترونیکی قابل اتصال به کامپیوتر و چاپگر است (شکل ۲).

هر بار عملیات فرآیند در ۴ مرحله زیر انجام خواهد گرفت:

۱. پالایش آب مقطر از طریق غشا تمرین می‌شود که در کلیه مقدار کافی (حدود ۱۲ لیتر) درون مخزن ریخته شده و سپس بر روی

۲. پالایش شیر پس از چرخ برای مدفن در زمان معین می‌شود. به‌طور کلی پالایش آب مقطر از طریق غشا مقدار شده شده شام‌نشست با محول (Cleaning In Place) CIP

۳. سیکل UF و آب مقطر

هدف از مرحله اول، تعیین شار آب خالص (Iw) براساس مقادیر غشا (Rm) و محاسبه مقادیر دامنه غشا (ΔR) براساس معادله ۵ بوده است.

در این سلسله، غشا (Rm) به دست آمده که براساس معادله ۱ را به دست آورد. در این شرایط، شرایط یکته برای برآورد فشار پایین وارد هندسه مقطر و سرعت بسیار بسیار بر طرف گردید. به دست آمده در چرا زمانی مورد نظر، شرایت آب در غشا مقدار شده شده شده شام‌نشست با محول (Cleaning In Place) CIP و گرفتگی (Rf)

می‌باشد. در اینجا به مزَور با دمای کرم گرفتگی (Rf)

سیگنال دیجیتال دیمبی خروجیکه در طی عملیات جلوگیری باید از این سیگنال دیجیتال دیمبی خروجیکه در طی عملیات

کنترل شده باشد از طریق بادی حرارتی در حدمورد نظر تنظیم شد.
شفافیت شاخص بعنوان تغییر در سه تکرار بیای آب مخلوط اول، تراو، و آب pH در مخلوط سوخت در دمای 40 درجه سانتیگراد شده است. شیوع ذکر با اختلاف شاخص pH در نتیجه تراو، آب مختلط و محلول سوخت در طی هر بار آزمایش به دست آمده. درصد دفع ظاهری پروتئین در طی اکسیدیز شاخص از رابطه زیر به دست آمد (2):

\[R_{obs} = 1 - \frac{C_p}{C_b} \]

که:
- \(C_p \) طبق مصرف پروتئین در تراو
- \(C_b \) طبق مصرف پروتئین در خوراک (بی ناتراو)

نتایج و بحث

درصد تکراری نمونه‌های شیر پس جرخ و مقدار پروتئین و مواد جامد کل تراو و ناتراو در قوالب فاصل زمانی 30 دقیقه گزارش شده است. درصد ابزار عملیاتی با استفاده از مدل‌سازی میلکوسکن در (Funke Gerber) ساخت شرکت فانک زئری (Milk Scan) تکرار اندازه‌گیری شده در این تحقیق نمونه‌های شیر پس جرخ به طور متوسط دارای 0.9 درصد پرکننده، 0.2 درصد مقدار معلم، و 0.5 درصد مواد جامد کل و pH برای 0.2 درصد پروتئین.

درصد مواد جامد کل و pH برای 0.2 درصد پروتئین.

חסپ پاسکال-تالیو و دانیش (ancer حسب کیلوگرم بر متر مکعب) به ترتیب توسط وسکومتر لوله مولی UF شکل 3 رفتار شرایط غذا و رساندن شرایط آب خالص به حالت قبل از عملیات، سیکل شستشو به صورت کامل صورت می‌گرفت.

در صورت کل مراحل هر بار عملیات برای نمونه آورده شده است. شیوع ذکر با اختلاف شاخص pH در نتیجه تراو، آب مختلط و محلول سوخت در طی هر بار آزمایش به دست آمده. درصد دفع ظاهری پروتئین در طی عملیات از رابطه زیر به دست آمد (2):

\[R_{obs} = 1 - \frac{C_p}{C_b} \]

که:

- \(C_p \) طبق مصرف پروتئین در تراو
- \(C_b \) طبق مصرف پروتئین در خوراک (بی ناتراو)

نتایج و بحث

شیر پس جرخ به طور متوسط دارای 0.9 درصد پرکننده، 0.2 درصد مقدار معلم، و 0.5 درصد مواد جامد کل و pH برای 0.2 درصد پروتئین.

که:

- \(C_p \) طبق مصرف پروتئین در تراو
- \(C_b \) طبق مصرف پروتئین در خوراک (بی ناتراو)

نتایج و بحث

شیر پس جرخ به طور متوسط دارای 0.9 درصد پرکننده، 0.2 درصد مقدار معلم، و 0.5 درصد مواد جامد کل و pH برای 0.2 درصد پروتئین.

که:

- \(C_p \) طبق مصرف پروتئین در تراو
- \(C_b \) طبق مصرف پروتئین در خوراک (بی ناتراو)
پایداری (Steady state) می‌رسد (شکل ۴). این رفتار در تمامی فشارها مشابه است، با این نتایج که مقادیر شار در فشارهای ۰/۸ بار در تمام مدت عملیات نسبت به سایر فشارها کاهشی کمتر است، ولی در سایر فشارها مقادیر شار با یکدیگر تفاوت‌های چندانی ندارد. این رفتار در شکل ۵ بهتر قابل درک می‌باشد. با اندازه‌گیری شرایط

شاخص دینامیکی شار در فشارهای مختلف

شکل ۴: پاشی دینامیکی شار در فشارهای مختلف

شکل ۵: اثر فشار بر شار متوسط (Jv) و شار نسبی (Jr) فاصله فیلترالیش شرایط جرخ
پایگاه دینامیکی کاهش شارهای نسبی در طی فرازیالی‌شیوه پس‌چرخ در شرایط ثابت عملیاتی (فشار و دما)

شکل 7. پایگاه دینامیکی کاهش شارهای نسبی در طی فرازیالی‌شیوه پس‌چرخ در شرایط ثابت عملیاتی (فشار و دما)

طوری که در تمامی موارد حداکثر 90-97 درصد کاهش شار به دلیل فشردگی طیفس غلظت و 75/8 درصد مربوط به فشردگی بوده است. ولی پایگاه دینامیکی کاهش شارهای نسبی در فشار 13 بار و دما 300 درجه سانتی‌گراد در فشار J_1, J_2, J_3, J_4 (در فشار 13 بار و دما 300 درجه سانتی‌گراد) در طول عملیات تناها در حداکثر 6 درصد فشردگی می‌باشد که به طور عمده به دلیل افزایش است و کاهش شار نسبی از طرفی غلظتی J_5 (تقییاً تناها) می‌باشد (شکل 7).

شکل 6. سهم کاهش شار ناشی از طیفس غلظتی J_1 و فشردگی J_2 در فشارهای مختلف

شکل 7. پس‌چرخ در شرایط ثابت عملیاتی (فشار و دما)

پیچیده گرفتن (J_3) سهم بسیار کمی در کاهش شار دارد، به

شکل 6. سهم کاهش شار ناشی از طیفس غلظتی J_1 و فشردگی J_2 در فشارهای مختلف

شکل 7. پس‌چرخ در شرایط ثابت عملیاتی (فشار و دما)

پیچیده گرفتن (J_3) سهم بسیار کمی در کاهش شار دارد، به
پروسه اثر فشار بر کارایی و گرافیک غشا در عمل فراپاراشی شیر

شکل 8: اثر فشار بر مقاومت غشا (R_m), مقاومت گرفتگی برکناری (Rf) و مقاومت گرفتگی برکناری نابیضرب (Rf)

شکل 9: پاسخ دینامیکی مقاومت هیدرولیکی کل (R_T) در طی فراپاراشی شیر پس از جراح در فشارهای مختلف

مقاومت های بر مقاومت هیدرولیکی کل (R_T), مقاومت ناشی از TMP (R_m), مقاومت گرفتگی برکناری (R_f) و مقاومت گرفتگی برکناری نابیضرب (R_{nf}) در شکل 8 آمده است.

لا پار زمان و ترکیبی های شیر در طی فراپاراشی است (1، 5 و 8). در فاصله افزایش TMP, میزان گرفتگی به طور تدریجی افزایش یافته است و گرافیک غشا به سطح غشا و همین تغییر افزایش حدود 13 درصدی شار تراو تا حدی افزایش می یابد (5 و 8).

شاپار زمان, رقیق بوده و تغییر چندانی نیست که گرافیک برکناری نابیضرب از جذب مستقیم پروتئین به محلول نیز می تواند تنشیت
شکل 10. اثر فشار بر درصد دفع ظاهری پروتون‌ها در طی فرآیند فرابالاوش شیرپس سیروخ

شکل 11. پاسخ دینامیکی دفع ظاهری پروتون‌ها در طی فرآیند فرابالاوش شیرپس سیروخ در فشارهای مختلف

به شدت افزایش می‌یابد. ولی به مختص رسیدن شار به حالت پایدار، مقاومت هیدرولیکی کل نیز ثابت می‌ماند. قطره‌ای
غلظی در جدول نیز در این حالت به دلیل دفع سریع و ناکهفان
اجزای محلول تشکیل و بخش عمده مقاومت کل را تشکیل
می‌دهد (64.23 درصد در فشارهای مختلف). گرفتگی
برگشت‌ناپذیری که نتیجه مقاومت شرایط داخلی غشا و حذف
مولکولاتی کوچک‌تر می‌باشد، گرفتگی‌های غشافت‌یاب
کاهش زمان افزایش نیز افزایش می‌یابد، ولی سهم آن
از مقاومت کل در مقابل مقاومت برگشت‌پذیر کوچک‌تر
است (15.29 درصد مقاومت کل). بنابراین می‌توان نتیجه
گرفت که افزایش مقاومت هیدرولیکی در طول زمان عملیات
نتیجه افزایش نسبت به نوع گرفتگی برگشت‌پذیر و برگشت‌ناپذیر

است (3 و 5).

درصد دفع ظاهری پروتون‌ها
نتایج میزان درصد دفع پروتون‌ها در انتهای هر عملیات (120
دقیقه) تحت شرایط مختلف فرابند در شکل 10 نشان می‌دهد.
که میزان عبور پروتون‌ها افزایش TMP در حد بسیار کمی
کاهش می‌یافته است. دلیل این موضوع احتمالاً افزایش مقاومت
برگشت‌پذیر (Rt) و کاهش شار نراوی است (5). همچنین
نتایج تغییرات درصد دفع با گذشت زمان نشان می‌دهد که میزان
درصد دفع ظاهری پروتون‌ها در هر TMP به طور کلی حدود
-3/5 درصد افزایش می‌یابد (شکل 11). این پدیده می‌تواند
به دلیل افزایش هر دو گرفتگی برگشت‌پذیر و برگشت‌ناپذیر در

