بررسی منحنی‌های همدما جذب و دفع رطوبتی بذر ذرت (هیبریدهای تری و کراس ۶۴۷ و سیبگل کراس ۶۷۲)

مجد سلیمانی¹ و محمد شاهدی²

چکیده

منحنی‌های همدما در کنترل رطوبت بذر و رطوبت نسبی محیط اطراف آن تی دوره نگهداری و همچنین کنترل فرآیند خشک‌شدن و طراحی خشک‌کن حائز اهمیت است. با توجه به اهمیت این منحنی‌ها، پژوهشی در قالب دو آزمایش فاکتوریل با ۳ فاکتور: هیبرید (شامل هیبریدهای ۶۴۷ و ۶۷۲)، دما (در ۶ سطح در دامنه ۵ تا ۵۵ درجه سانتی‌گراد) و رطوبت نسبی (در دامنه ۰ تا ۹۰ درصد) به طور مستقل برای پدیده‌های جذب و دفع رطوبت انجام گرفت. برای فرآیند ساختن رطوبت نسبی در دامنه مورد نظر از محلول گلیسرول استفاده شد. آزمایش‌ها نشان داد که محلول این ماده می‌تواند شرایط مورد نظر را تأمین کند. البته رابطه میان غلظت و رطوبت نسبی، رابطه‌ای غیر خطی و به میزان کم و بینه بود. نتایج حاصل از مقایسه میانگین هناضناد که عوامل دما و رطوبت نسبی و هیبرید، هر سه بر رطوبت ثابت به دفع در سطح ۱/۱ در دو آزمایش ممکن می‌باشد که البته در این میان رطوبت نسبی از اهمیت و تأثیر بیشتر برخوردار است. مقایسه هیبریدها نشان داد که در شرایط محیطی یکسان، هیبرید ۶۴۷ رطوبت ثابت به دفع در سطح ۱/۴ در دو آزمایش بیشتر از هیبرید ۶۷۲ دارد که این مطالعه بینانگر بالاتر بود. قابلیت نگهداری و فعالیت آبی کمتر هیبرید ۶۷۲ است. اتخاذ مشاهدات بر مدل ریاضی گردش هوا و سطح پوشش نسبی دایره‌ای نیز مقل. چنگ– فاست و اسپین پس از تعیین ضرایب منحنی با این نتیجه شد که مدل اسامی بای بر منحنی‌های جذب و دفع هیبرید ۶۴۷ و جذب ۶۷۲ مدل جنگلی‌تر و مناسب‌تر است.

واژه‌های کلیدی: منحنی‌های همدما، ذرت، جذب و دفع رطوبت، مدل‌های رطوبت

مقدمه

منطقه‌ای، انقباض می‌کند. با ارتباط با مشکلات نگهداری و حفظ

کیفیت آن پژوهش جامع و کامل صورت گیرد. تا در دوره

نگهداری، کاهش قابلیت جوانگزینی و میزان صدمه به پذیری به

می‌باشد. سپس نتیجه‌بیان ۱۰۰۰ هکتار در

۱۰۰۰۰ هکتار (حدود ۳۰۰۰ کیلوگرم) و

۱. مربی پژوهش مرکز تحقیقات کشاورزی دزفول

۲. استاد علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

۲۱۷
حقاقل بررسی:

مطالعات مشخص کرده این است که عدم کنترل عوامل محیطی در جهت کاهش دما و رطوبت نسبی باعث افزایش فعالیت کیکها است که در این نتایج نگاه‌داری نشود و اولین سه‌ماهه که توسط این عوامل فساد موثر حمله بماند تعداد بروی را کاهش

اگر بپیدا بود خود باعث کاهش ماده شکست، افزایش نتایج و افزایش در دمای نامی می‌شود. این نتایج به دلیل اینکه درجه حشرات و رطوبت برای میزان خود بر عمر این‌ها اثر تأثیر گذاراند، زیرا افزایش دمای عوامل افزایش فعالیت آنزیم‌های نوکسی حلال و افزایش نتایج می‌ترسد. بنابراین در انتقال که رطوبت بذر و رطوبت نسبی محیط محدود به این بنابراین یک دیگر در عین حال به دو عامل مذکور یک آزمایش در کاهش دمای همانند نیست اگر نگاه نگاه داری را به نظر می‌رسد (7) می‌گردد که یک این در بررسی و در نتیجه برآورده شرایط

در سال 1998 در پرورش می‌ترسد منبنی‌های هم‌عینی در در دمای عسکری زمین سرو شد و در نتیجه بره بدلی در طرفین خشک و صرف جویی در زمین و مصرف از آن در مرحله خشک کردن مورد نیاز است (7 و 14). ضمن یک‌پرهیزگی که نام‌دانند در سال 1972 انجام داد مشخص شد که افزایش رطوبت بر زمین و دمای این‌ها، منبر به کاهش عمر تک‌داری آن می‌شود به طوری که در دمای

در سال 1980 تغییر کرده که عوامل سیاسی از قبیل اجزای محصولی (مواد کف از گود، محتوا و رنگ، نشانه، پرتو‌های و نشانه‌ها). رنگ محصول و شرایط محیطی بر زمین‌رطوبت نسبی تأثیر آن مؤثر است (9).

در سال 1989 در مورد مدل‌های هندسی، جان‌گی فاست، اسپان و هالسی را به منظور ارزیابی قابلیت آن‌ها در برآورده شرایط عالی‌های دانه‌های غلات و دانه‌های روغن‌بریس کردن و در نهایت ممکن که برای محصولات حاوی پروتئین و روغن بالا مدل اسپان را برای بیش از ارتفاع گندم 1385
دلتا اوم (Delta Ohm) ابتدا با کشتی دار درجه حرارت با دقت $1^\circ C$ در دامنه 15-110 درجه سانتی‌گراد استفاده شد. همچنین با توجه به آلودگی دما و رطوبت از یک دسته بهره‌گیری شد. پس از تغییر رساند محصول (که حدود یک سوم حجم محصول را تشکیل می‌دهد) با هواهای موجود در محیط، رطوبت نسبی آن هم‌ارز با درجه حرارت خشک و درجه حرارت مطری با استفاده از تجهیزات Testo 405 (با دقت $0.5^\circ C$ در تعیین رطوبت نسبی و درجه حرارت) اندازه‌گیری شد. لازم به ذكر است که قبل از شروع آزمایش‌ها و تعیین داده‌هایی مربوط به محصول‌ها، هیگرومتر با استفاده از محصول‌های استاندارد سیستم‌های اسپانس و گلیسرول بر اساس معادله موجود در دامنه حرارتی 10 درجه سانتی‌گراد 5 تا 55 درجه سانتی‌گراد کابلیره شد (8 و 10 برای آب اطمینان بیشتر، درجه حرارت خشک و درجه حرارت مطری توسط دما محاسبه خشک و مطری در محیط و در شرایط یکسان برای هریک از محصولات اندزه‌گیری شد و با استفاده از رابطه ترمودینامیکی زیر، در سیستمهای مورد نظر، درجه حرارت مطری محاسبه شد:

$$P_w = P_{wb} - \frac{(P_h - P_{wb})(T_h - T_w)}{\theta(T_w)}$$

که در این حسوس پارامترها به قرار زیر است:

- P_w: فشار زیر در دما مورد نظر (kPa)
- P_{wb}: فشار بالای دما مورد نظر (kPa)
- P_h: فشار زیر در دما خشک (kPa)
- T_h: درجه حرارت خشک (°C)
- T_w: درجه حرارت مطری (°C)

با دقت $0.5^\circ C$ هکتوپاسکال ساختمان آلمان و برای تعیین جدول استاندارد ترمودینامیکی با شرایط آب مورد استفاده قرار گرفت (10). برای اندازه‌گیری، محصول‌ها دارای گلیسرول با غلظت 50 درصد (w/w) هستند و به نوبت اول در دمای 24 تا 68 درجه سانتی‌گراد و رطوبت نسبی مقدار و فشار با این آنها در شرایط دما شامل: 45 تا 55 درجه سانتی‌گراد تعیین شدند. سپس با برتر زمان مقدار به دست آمده این برای رطوبت نسبی در طول و معادلات ماتگن - فاست و هندرسون را برای دانه‌های حاوی فیبر و نانوسی بالا مناسب ارزیابی نمودند (5).

سوپورد و همکارش در سال 1994 منحنی‌های همدمایی در سطح حرارت گرما در دامنه حرارتی 20 تا 40 درجه سانتی‌گراد و فعالیت آبی 1 تا 0.98 مورد مطالعه قرار دادند. برای ارزیابی مدل‌های مختلف در بروآورد رطوبت تعادلی، 6 مدل را مورد مقایسه قرار دادند و در کل مدل هندرسون را به عنوان بهترین مدل ارزیابی کردند. اما در عین حال کارایی و دقت برخی مدل‌ها در بی‌دیده جدید بهتر از پیش فرض ارزیابی گردید (12).

در سال 1383، زردبانی و ترکیبی دیده دفع رطوبت را برای سه رقم پسته ایرانی بررسی کرده و مدل‌های اسپانس، اسپانس و چانگ- فاست را به ترتیب برای ارقام احتمالی که فاضل و مبناهای مناسب گزارش کرده، همچنین تأثیر بر رطوبت تعادلی، تعیین مدل‌های مناسب برای دیده‌های جدید و دفع هریک از ارقام مورد نظر.

مواد و روش‌ها

برای تعیین منحنی همدمایی در طری دانه‌ای و همچنین بررسی تأثیر شرایط محیطی بر آن، هیبریدهای متدول منطقه به عنوان گیاهان کراس 704 و تری کراس 747 از منبع کشت و صنعت شمال رجبی تهیه گردید.

برای تأمین رطوبت نسبی به طور دقیق در شرایط دما، متفاوت مثل محلول گلیسرول در غلظت‌های مناسب استفاده شد. برای تعیین رطوبت نسبی تعادلی و فشار جهان محلول‌های گلیسرول، محصول‌های اپوزول مطلوب شکل و انف و چانگ پلیکسی‌گلاس (Plexy Glass) به نوبت اول، تأمین گرما از گرم‌کننده با توان 400 و برای نظیم درجه حرارت از یک ترمومتر دیق مدل 3030 ساخت شرکت دانشگاه HD نوین و پانزی شده است.
ساخت آلمان توزیع گردید و در نهایت رطوبت آن در دمای 0.130°C به مدت 71 ساعت تعیین شد و بر اساس وزن خشک کارگری (2) لازم به توضیح است که برای تأمین گرم های محفظه نموده، گرم کردن به توان 800 وات و برای تنظیم دما ترموستات دقیق با صفحه منشأ نصب کرده در محفظه نموده. گرم کردن به دمای 10°C، از دسته‌ای که باعث کاهش مقدار از پارامتر کاننده می‌شود.

برای مورد اشتباه سودی می‌توان گفته شود که در نهایت و در بهترین شرایط، معادله ای مقایسه کرده که در نهایت رطوبت آن در دمای 0.130°C به مدت 71 ساعت تعیین شد و بر اساس وزن خشک کارگری (2) لازم به توضیح است که برای تأمین گرم های محفظه نموده، گرم کردن به توان 800 وات و برای تنظیم دما ترموستات دقیق با صفحه منشأ نصب کرده در محفظه نموده. گرم کردن به دمای 10°C، از دسته‌ای که باعث کاهش مقدار از پارامتر کاننده می‌شود.

برای مورد اشتباه سودی می‌توان گفته شود که در نهایت و در بهترین شرایط، معادله ای مقایسه کرده که در نهایت رطوبت آن در دمای 0.130°C به مدت 71 ساعت تعیین شد و بر اساس وزن خشک کارگری (2) لازم به توضیح است که برای تأمین گرم های محفظه نموده، گرم کردن به توان 800 وات و برای تنظیم دما ترموستات دقیق با صفحه منشأ نصب کرده در محفظه نموده. گرم کردن به دمای 10°C، از دسته‌ای که باعث کاهش مقدار از پارامتر کاننده می‌شود.

برای مورد اشتباه سودی می‌توان گفته شود که در نهایت و در بهترین شرایط، معادله ای مقایسه کرده که در نهایت رطوبت آن در دمای 0.130°C به مدت 71 ساعت تعیین شد و بر اساس وزن خشک کارگری (2) لازم به توضیح است که برای تأمین گرم های محفظه نموده، گرم کردن به توان 800 وات و برای تنظیم دما ترموستات دقیق با صفحه منشأ نصب کرده در محفظه نموده. گرم کردن به دمای 10°C، از دسته‌ای که باعث کاهش مقدار از پارامتر کاننده می‌شود.

برای مورد اشتباه سودی می‌توان گفته شود که در نهایت و در بهترین شرایط، معادله ای مقایسه کرده که در نهایت رطوبت آن در دمای 0.130°C به مدت 71 ساعت تعیین شد و بر اساس وزن خشک کارگری (2) لازم به توضیح است که برای تأمین گرم های محفظه نموده، گرم کردن به توان 800 وات و برای تنظیم دما ترموستات دقیق با صفحه منشأ نصب کرده در محفظه نموده. گرم کردن به دمای 10°C، از دسته‌ای که باعث کاهش مقدار از پارامتر کاننده می‌شود.

برای مورد اشتباه سودی می‌توان گفته شود که در نهایت و در بهترین شرایط، معادله ای مقایسه کرده که در نهایت رطوبت آن در دمای 0.130°C به مدت 71 ساعت تعیین شد و بر اساس وزن خشک کارگری (2) لازم به توضیح است که برای تأمین گرم های محفظه نموده، گرم کردن به توان 800 وат و برای تنظیم دما ترموستات دقیق با صفحه منشأ نصب کرده در محفظه نموده. گرم کردن به دمای 10°C، از دسته‌ای که باعث کاهش مقدار از پارامتر کاننده می‌شود.

برای مورد اشتباه سودی می‌توان گفته شود که در نهایت و در بهترین شرایط، معادله ای مقایسه کرده که در نهایت رطوبت آن در دمای 0.130°C به مدت 71 ساعت تعیین شد و بر اساس وزن خشک کارگری (2) لازم به توضیح است که برای تأمین گرم های محفظه نموده، گرم کردن به توان 800 وات و برای تنظیم دما ترموستات دقیق با صفحه منشأ نصب کرده در محفظه نموده. گرم کردن به دمای 10°C، از دسته‌ای که باعث کاهش مقدار از پارامتر کاننده می‌شود.

برای مورد اشتباه سودی می‌توان گفته شود که در نهایت و در بهترین شرایط، معادله ای مقایسه کرده که در نهایت رطوبت آن در دمای 0.130°C به مدت 71 ساعت تعیین شد و بر اساس وزن خشک کارگری (2) لازم به توضیح است که برای تأمین گرم های محفظه نموده، گرم کردن به توان 800 وات و برای تنظیم دما ترموستات دقیق با صفحه منشأ نصب کرده در محفظه نموده. گرم کردن به دمای 10°C، از دسته‌ای که باعث کاهش مقدار از پارامتر کاننده می‌شود.

برای مورد اشتباه سودی می‌توان گفته شود که در نهایت و در بهترین شرایط، معادله ای مقایسه کرده که در نهایت رطوبت آن در دمای 0.130°C به مدت 71 ساعت تعیین شد و بر اساس وزن خشک کارگری (2) لازم به توضیح است که برای تأمین گرم های محفظه نموده، گرم کردن به توان 800 وات و برای تنظیم دما ترموستات دقیق با صفحه منشأ نصب کرده در محفظه نموده. گرم کردن به دمای 10°C، از دسته‌ای که باعث کاهش مقدار از پارامتر کاننده می‌شود.

برای مورد اشتباه سودی می‌توان گفته شود که در نهایت و در بهترین شرایط، معادله ای مقایسه کرده که در نهایت رطوبت آن در دمای 0.130°C به مدت 71 ساعت تعیین شد و بر اساس وزن خشک کارگری (2) لازم به توضیح است که برای تأمین گرم های محفظه نموده، گرم کردن به توان 800 وات و برای تنظیم دما ترموستات دقیق با صفحه منشأ نصب کرده در محفظه نموده. گرم کردن به دمای 10°C، از دسته‌ای که باعث کاهش مقدار از پارامتر کاننده می‌شود.

برای مورد اشتباه سودی می‌توان گفته شود که در نهایت و در بهترین شرایط، معادله ای مقایسه کرده که در نهایت رطوبت آن در دمای 0.130°C به مدت 71 ساعت تعیین شد و بر اساس وزن خشک کارگری (2) لازم به توضیح است که برای تأمین گرم های محفظه نموده، گرم کردن به توان 800 وات و برای تنظیم دما ترموستات دقیق با صفحه منشأ نصب کرده در محفظه نموده. گرم کردن به دمای 10°C، از دسته‌ای که باعث کاهش مقدار از پارامتر کاننده می‌شود.

برای مورد اشتباه سودی می‌توان گفته شود که در نهایت و در بهترین شرایط، معادله ای مقایسه کرده که در نهایت رطوبت آن در دمای 0.130°C به مدت 71 ساعت تعیین شد و بر اساس وزن خشک کارگری (2) لازم به توضیح است که برای تأمین گرم های محفظه نموده، گرم کردن به توان 800 وات و برای تنظیم دما ترموستات دقیق با صفحه منشأ نصب کرده در محفظه نموده. گرم کردن به دمای 10°C، از دسته‌ای که باعث کاهش مقدار از پارامتر کاننده می‌شود.
جدول 1: غلظت‌های مورد نیاز گلیسرول (w/w) برای تأمین رطوبت نسبی مورد نظر

<table>
<thead>
<tr>
<th>90</th>
<th>70</th>
<th>50</th>
<th>30</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5/89)</td>
<td>(25/89)</td>
<td>(3/77)</td>
<td>(1/45)</td>
<td>(1/65)</td>
</tr>
<tr>
<td>37/9</td>
<td>44/6</td>
<td>80/2</td>
<td>90/5</td>
<td>97/5</td>
</tr>
<tr>
<td>(11/51)</td>
<td>(7/63)</td>
<td>(2/34)</td>
<td>(1/28)</td>
<td></td>
</tr>
<tr>
<td>85/9</td>
<td>45/25</td>
<td>81/1</td>
<td>90/8</td>
<td>94/7</td>
</tr>
<tr>
<td>(1/38)</td>
<td>(16/43)</td>
<td>(1/28)</td>
<td>(2/28)</td>
<td></td>
</tr>
<tr>
<td>35/9</td>
<td>46/5</td>
<td>81/5</td>
<td>91</td>
<td>97/7</td>
</tr>
<tr>
<td>(37/96)</td>
<td>(29/52)</td>
<td>(21/94)</td>
<td>(12/55)</td>
<td>(2/22)</td>
</tr>
<tr>
<td>36/9</td>
<td>45/95</td>
<td>81/5</td>
<td>91</td>
<td>97/7</td>
</tr>
<tr>
<td>(4/69)</td>
<td>(30/72)</td>
<td>(35/42)</td>
<td>(21/56)</td>
<td>(7/19)</td>
</tr>
<tr>
<td>37/9</td>
<td>46/5</td>
<td>81/5</td>
<td>91</td>
<td>97/7</td>
</tr>
<tr>
<td>(59/94)</td>
<td>(17/73)</td>
<td>(55/52)</td>
<td>(23/31)</td>
<td>(11/10)</td>
</tr>
</tbody>
</table>

اعداد داخل پرانتز در جدول بیانگر فشار بخار ایجاد شده بر حسب میلی‌متر جیوه در غلظت ارائه شده در بالای آن است.

در انتهای برای بررسی امکان برآورد دقت رطوبت تعادلی بذر (هیریدهای مذکور) بر اساس فاکتورهای محیطی درجه حرارت و رطوبت نسبی محیطی، داده‌های به دست آمده بر مدل‌های ریاضی و تجزیه‌ معیار موجود منطقی گردید. انطباق داده‌ها بر مدل‌های غیر خطی که در دیل ارائه شده است با استفاده از روش گوس-تأیتون (Gauss-Newton) و به کمک نرم‌افزار SAS صورت گرفت. این مدل عبارت‌الاند از (3):

\[
\text{Modified Henderson Equation: (Equation)}
\]

\[
\text{RH}=1-\exp \left(-A \times (T+C) \times M^b\right)
\]

600 مدل Memmert شد. برای تعیین رطوبت نمونه‌ها، از آون ساخت آلمن با دقت دمای 1°C استفاده شد. پس از آن داده‌های به دست آمده در قابلیت آزمایش فاکتورهای برای هریک از پدیده‌های جلب و دفع به طور جداگانه مورد تجزیه و سپس با آزمون دانکن، مانگیگن‌ها مورد مقایسه قرار گرفت (در سطح 0.01).

برای آموزش پدیده‌ای پسندان برای هر رقم در دمای منشأ تفاوت میان محتملی رطوبت بذر در حالت جلب و در حالت دفع به عنوان کمیت این پدیده گزارش گردید که اثر تغییرات رطوبت نسبی و دما بر آن در قالب محققی ارائه شده است.

221
می‌شود به طوری که به عنوان مثال در دمای 25°C برای کاهش رطوبت نسبی به 90 درصد غلاف مایع این ماده با کاهش 2/9 درصد می‌باشد. در افزایش بازکردن آن به 9/6 درصد غلاف آن با 2/3 درصد افزایش پیدا می‌کنیم.

بنابراین رابطه میان افزایش غلاف گلیسرول و کاهش رطوبت نسبی یکانگاه کاهش است. مدل سنگین که برای برآورد مقادیر رطوبت نسبی بر اساس غلاف گلیسرول در دمای مورد مطالعه حاصل آمد عبارتند از:

\[
\begin{align*}
T=5°C: \quad RH &= (101.45-1.01C) / (1-0.0074C), \quad R^2>0.99 \\
T=15°C: \quad RH &= (102.78-1.02C) / (1-0.0075C), \quad R^2>0.99 \\
T=25°C: \quad RH &= (103.05-1.03C) / (1-0.0076C), \quad R^2>0.99 \\
T=35°C: \quad RH &= (103.27-1.03C) / (1-0.0075C), \quad R^2>0.99 \\
T=55°C: \quad RH &= (103.50-1.03C) / (1-0.0075C), \quad R^2>0.99
\end{align*}
\]

که در این روابط C غلاف گلیسرول (w/w) می‌باشد.

پدیده جذب رطوبت

نتایج به دست آمده از تجزیه واربانتس رطوبت تعادلی در پدیده جذب در جدول 2 را به اشتراک می‌گذارم:

طبق این جدول، اثر فاکتور هیرید بر رطوبت تعادلی در سطح 72/1 معنی‌دار است. شکل 3 نشان می‌دهد این مطلب است، به طوری که در صورت جذب هیرید سبزیجکت کرمان 72/5 گلیسرول و هیرید نتوانی کرمان 72/5 (بر پایه خشک) را به خود اختصاص داده است. بنابراین، می‌توانیم این ترتیب که در نکاتی در آب داده شده و 674/5 می‌باشد.

نمونه متابولیک جدول تجزیه واربانتس اثر فاکتور درجه حرارت

حرارت مصرف در پدیده جذب محور رطوبت در سطح 72/1 معنی‌دار است. شکل 2 نشان می‌دهد که افزایش حرارت از 1 گرفته مارتینگی گردنه در تمام 6 سطح باعث کاهش معنی‌دار می‌باشد. رطوبت تعادلی می‌شود به طوری که بازکردن آن از 72/64 (بر پایه خشک) در دمای 5/5 به 9/549 (بر پایه خشک) در دمای 55°C کاهش یافته است.

ب) مدل چنگ - فاستت (Chung-Pfost Equation)

\[RH = \exp \left(\frac{-A}{T+C} \right) \times \exp \left(-B \times M \right) \]

ج) مدل اصلاح شده اسونین (Modified Oswin Equation)

\[RH = 1 / \left[\left(\frac{A+B \times T}{M} \right)^{C+1} \right] \]

در این روابط M و RH به ترتیب رطوبت نسبی و رطوبت تعادلی محسوب می‌شوند. درجه حرارت T، ضرایب C و B و A در مدل های مایع است. پس از انقباض داده‌ها، ضرایب در هریک از طیبی‌ها در جدول 3 را در م зависим گردیده در جدول 4 عمودی داده‌ها است. مدل‌های معنی‌دار و دست آمده در هریک مناسب معادله برای هر هیرید مناسب می‌باشد.

Mean Relative Deviation (Mean Relative Deviation)

\[MRD = \frac{1}{n} \sum | \text{Mean} - \text{Actual} / \text{Actual} | \]

که در این رابطه

نمونه متابولیک مناسب می‌باشد

نتایج

پس از انجام آزمایش‌های مربوط به تعیین فشار بخار و رطوبت نسبی محلول‌های گلیسرول، نتایج نشان داد که این ماده در کنار رطوبت نسبی در دانه مورد نظر مؤثر می‌باشد. نتایج به دست آمده در جدول 1 ارائه شده است.

همان طور که دیده می‌شود، به دست آمده در جدول نشان می‌دهد افزایش غلاف گلیسرول در دمای ثابت، می‌توان رطوبت نسبی و همچنین فشار بخار محور به محلول گلیسرول را کاهش دهد. به عنوان مثال در دمای 25°C می‌توان با افزایش غلاف‌های گلیسرول 84/6/5 (w/w) به خشکی از 9/6 به 34/9/5 (w/w) رطوبت تعادلی که می‌تواند روی گراف نشان دهنده آزمایش‌ها و مدل‌ها در هریک گلیسرول در دمای 55°C به ترتیب گلیسرول نسبی در خشکی، در غلاف‌های بالاتر بیشتر

222
جدول 2. تجزیه و تحلیل رطوبت تغذیه بذر در پدیده‌های جذب و دفع رطوبت

<table>
<thead>
<tr>
<th>میانگین مربعات (دفع)</th>
<th>درجه آزادی</th>
<th>منبع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.054 **</td>
<td>1</td>
<td>هیرپید</td>
</tr>
<tr>
<td>0.024 **</td>
<td>5</td>
<td>دما</td>
</tr>
<tr>
<td>0.023/0.159 **</td>
<td>4</td>
<td>رطوبت نسبی</td>
</tr>
<tr>
<td>0.037 **</td>
<td>5</td>
<td>هیرپید × دما</td>
</tr>
<tr>
<td>0.059 **</td>
<td>4</td>
<td>هیرپید × رطوبت نسبی</td>
</tr>
<tr>
<td>0.055 **</td>
<td>20</td>
<td>دما × رطوبت نسبی</td>
</tr>
<tr>
<td>0.050 **</td>
<td>20</td>
<td>هیرپید × دما × رطوبت نسبی</td>
</tr>
<tr>
<td>0.063 **</td>
<td>120</td>
<td>خطأ</td>
</tr>
</tbody>
</table>

**: معنی دار در سطح احتمال 1%
ns: غیرمعنی‌دار

شکل 2. مقایسه میانگین‌های رطوبت تغذیه بذر در پدیده‌های جذب و دفع (به طور مستقل)

شکل 3. مقایسه میانگین‌های رطوبت تغذیه بذر در پدیده‌های جذب و دفع
شکل ۴ مقایسه میانگین‌های رطوبت تعادلی در اثر تغییرات رطوبت نسبی محیط در یکده‌های جذب و دفع (به طور مسلسل)

شکل ۵ مقایسه میانگین‌های رطوبت تعادلی در اثر تغییرات رطوبت نسبی محیط در یکده جذب

به‌شکل است، بنابراین کنترل آن حائز اهمیت می‌باشد. طبق جدول تجزیه واریانس، اثر معنی‌دار دما در رطوبت نسبی در سطح ۰/۱٪ معنی‌دار به دست آمده است. شکل ۵ بانگر این مطلب است که در دمای ثابت با افزایش رطوبت نسبی، رطوبت تعادلی افزایش می‌یابد که به این افتای مشابه متعلق به یک رگ بازی به‌نام میگمودیست و بر عكس با افزایش دمای محیط، رطوبت تعادلی کاهش ییده می‌کند. به عبارتی دیگر می‌توان با ترکیب مناسبی از این عوامل، رطوبت محصول را در سطح مطلوب حفظ کرد یا به سطح مورد نظر رساند. با توجه به شکل ۵ اثر رطوبت نسبی محیط نیز مطابق جدول ۲ و شکل ۴ بر رطوبت تعادلی بذر در سطح ۰/۱٪ معنی‌دار به دست آمده است. مقایسه میانگین‌ها در شکل ۴ بانگر این مطلب است که افزایش رطوبت نسبی در تمام سطوح به کار رفته در این پژوهش، باعث افزایش معنی‌دار رطوبت تعادلی محصول در یکده جذب می‌گردد.

میانگین‌ها همان می‌دهد که تغییرات رطوبت نسبی (حاصل از تغییرات فشار بخار آب) در تغییرات رطوبت محصول، مؤثرتر از عامل محیطی دما در سطح مورد مطالعه است. زیرا شیب منحنی تغییرات رطوبت تعادلی در اثر تغییرات رطوبت نسبی
مشخص مي شود كا یا تابست یا بدون رطوبت تعادل (EMC) ميزان رطوبت نسبی در حال تعادل (ERH) با یک ردیف از افزایش دما افزایش ییدا با کم که ای ان پیدا می شود خود ناشی از افزایش فشار خارج در محیط و یا به عبارتی افزایش تعادل آیی در محیط است که بر عمر نگه داری یا به تاثیر مقدار افزایش تعادل نسبی و / یا افزایش در رطوبت نسبی و / یا افزایش در محیط در محیط های دمای در فاکتورها، فاقد اثر می عی دار است.

یکیده دفع رطوبت

اطلاعات از منحنی همدامی رطوبت در یکیده دفع، یکی در مرجع کاهش رطوبت به دفع در فرآیند خشک کردن و در پراوردد سرعت و زمان خشک کردن و تعیین رطوبت خشک کننده حائز اهمیت است.

نتایج به دست آمده از تجزیه واریانس رطوبت تعادلی در

یکیده دفع در جدول 2 آراشده است.

طبق این جدول و شکل های 3 و 4 اثر ساده فاکتورهای

هیبرید، درجه حرارت و رطوبت نسبی محیط بر رطوبت تعادلی

محصول در سطح 1/1 می عی دار است. مقایسه میانگین ها در مورد

اثر هیبرید نشان می دهد که هیبرید 0/2/4 با متوسط رطوبت

تعادلی 67/0/1 (بیانه خشک) نسبت به هیبرید 67/2 با متوسط

روطوبت تعادلی 1/3/7/0 (سیبی خشک) از قابلیت حفظ و

نگه داری آب بیشتر برخوردار است. این مقایسه نشان می دهد

در وضعیتی که هر دو رطوبت خشک داشته باشند و در

محیط محدود قرار گیرند، هیبرید 0/2/4 رطوبت نسبی پایین تری

ایجاد می کند که ناشی از تعادل آیی و فشار خارج پایین تر است

و این مسئله خود افزایش عمر نگه داری بدر می شود.

مقایسه میانگین ها در مورد اثر ساده هیدرات و فاکتورهای

درجه حرارت و رطوبت نسبی نشان می دهد که افزایش درجه

حرارت در تمام سطوح باعث کاهش می شود دار رطوبت تعادلی

و بر عکس افزایش رطوبت نسبی در تمام سطوح باعث افزایش

می شود دار رطوبت تعادلی محصول می شود. این مشاهده مستلزم

می شود که در بررسی های همدامی جذب و دفع رطوبت بدر دمای
جدول ۳. ضرایب معادلات هندرس، پانگ- فاست و اسوبی در پذیرفتهای جذب و دفع رطوبت

<table>
<thead>
<tr>
<th>مدل</th>
<th>نوع پذیرفته</th>
<th>رم</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>R²</th>
<th>SEE</th>
<th>MRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>هندرس</td>
<td>جذب</td>
<td>۱/۲۷۷</td>
<td>۰/۹۹۴</td>
<td>۰/۲۲۴</td>
<td>۴/۹۹۶</td>
<td>۰/۱۲۲</td>
<td>۰/۰۸۳</td>
<td></td>
</tr>
<tr>
<td></td>
<td>دفع</td>
<td>۰/۸۴۷</td>
<td>۰/۹۹۶</td>
<td>۰/۲۲۴</td>
<td>۴/۹۹۶</td>
<td>۰/۱۵۶</td>
<td>۰/۰۲۲</td>
<td></td>
</tr>
<tr>
<td>پانگ-</td>
<td>جذب</td>
<td>۱/۴۵۷</td>
<td>۰/۹۶۶</td>
<td>۰/۲۴۹</td>
<td>۴/۹۶۶</td>
<td>۰/۱۱۲</td>
<td>۰/۰۴۹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>دفع</td>
<td>۷/۰۴</td>
<td>۰/۹۹۶</td>
<td>۰/۲۴۹</td>
<td>۴/۹۹۶</td>
<td>۰/۱۰۵۵</td>
<td>۰/۰۷۰</td>
<td></td>
</tr>
<tr>
<td>فاست</td>
<td>جذب</td>
<td>۴/۷</td>
<td>۰/۹۶۶</td>
<td>۰/۲۴۹</td>
<td>۴/۹۶۶</td>
<td>۰/۱۲۵۶</td>
<td>۰/۰۶۵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>دفع</td>
<td>۷/۰۴</td>
<td>۰/۹۸۲</td>
<td>۰/۲۴۹</td>
<td>۴/۹۶۶</td>
<td>۰/۱۰۶۲</td>
<td>۰/۰۵۶</td>
<td></td>
</tr>
<tr>
<td>اسوبی</td>
<td>جذب</td>
<td>۴/۷</td>
<td>۰/۹۸۸</td>
<td>۰/۲۴۹</td>
<td>۴/۹۶۶</td>
<td>۰/۱۲۵۶</td>
<td>۰/۰۵۴</td>
<td></td>
</tr>
<tr>
<td></td>
<td>دفع</td>
<td>۷/۰۴</td>
<td>۰/۹۶۸</td>
<td>۰/۲۴۹</td>
<td>۴/۹۶۶</td>
<td>۰/۱۰۶۲</td>
<td>۰/۰۵۴</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۴. مقایسه میانگین‌های رطوبت تعادلی در اثر تغییرات رطوبت نسبی محیط در پذیرفته دفع
بحث
نتایج به دست آمده از این بروزه نشان داد که رطوبت تعادلی بذر با انرژی درجه حرارت کاهش و با انرژی رطوبت نسبی، به صورت نابینای سبب گردیده از این انرژی بنده قابل اثر رطوبت نسبی بر این تغییرات خیلی محسوس ترسیم در آزمایش چن و همکار و همچنین سوپر و همکار تأثیر مشابه به دست آمده است (۴ و ۱۲).

هیبرید ۷۰۴ در هر دو ناحیه جذب و دفع، رطوبت بهترین مدل. مدل اس را بهترین برای هیبرید ۶۴۷ بهترین مدل در حال جذب، مدل اس را است. در حالی که در حال دفع رطوبت، مدل چانگ-فارسی دارای کمترین خطای را دارد. منحنی های حاصل از مدل های مناسب در شکل های ۹ تنها ۱۲ از دیده است.
شکل 9. منحنی‌های همدمای چند هیبرید ۶۴۷ محاسبه شده بر اساس مدل اسون پس از تعیین ضراپ

شکل 10. منحنی‌های همدمای دفع هیبرید ۶۴۷ محاسبه شده بر اساس مدل چانگ - فاست پس از تعیین ضراپ

شکل 11. منحنی‌های همدمای چند هیبرید ۷۰۰ محاسبه شده بر اساس مدل اسون پس از تعیین ضراپ
برای این هیبرید، مدل چانگ- فاست است. سوپید و همکار نیز رفتار ارکان مختلف را در اطراف بر مدل‌های موجود، متفاوت از یکدیگر کارش کرده که البته در اغلب موارد، مدل هدیسه‌ای به عنوان بهترین مدل معرفی شده است (12).

نتیجه‌گیری

1. با استفاده از منحنی‌های ارائه شده در این پژوهش (منحنی‌های 9 تا 12) و با استفاده از مدل‌های منطق شده برای هیبرید‌های 704 و 677 می‌توان رطوبت باز را در شرایط صحیح و منطق به دست آورد و یا کنترل عوامل محیطی، رطوبت باز را حذف مطلب و مورد نظر تغییر داد.
2. با توجه به این که مطالعات نشان داده‌اند که در رطوبت نسبی کمتر از 80% (که برای هیبرید 704 در پایان داده و دفع به ترتیب رطوبت تعادل معلام 15/85 و 15/15 درصد برای خشک و به شیوه 464 در پایین‌کننده رطوبت و دفع به ترتیب رطوبت تعادل معلام 15/54 و 15/54 درصد بر یک‌پایه خشک اضافه می‌کند) از نسبت‌های کیک‌ها جلوگیری می‌شود و نیز با توجه به این که کاهش رطوبت نتیجه‌ای بدتر ناحید خیلی باین، تست‌های سری صرفاً از نظریه‌ای خیلی زیاد است، حتی اگر احتمال سعی شود مطالعه‌ای دقیق در مصرفی خود بحث‌های رطوبت باز به منظور نگهداری سالم آن صورت گیرد.
منابع مورد استفاده

1. زمردیان، ع. و. ر. تولکی. 1383. دستیابی به منحنی‌های تعادلی و پیشنهاد مدل‌های ریاضی مناسب برای پیش‌بینی رطوبت تعادلی برای سه رقم پنجم ایرانی. علوم کشاورزی ایران 35 (2):273-282.

