تأثیر آبیاری با فاضلاب خانگی خام و رودی و پساب تصیفه ثانویه تصیفه خانه فاضلاب شهرک

آکتیو پتر میزان انتقال فسفر به زیر عمق توزعه ریشه‌ها

علیرضا حسن‌اقلی، عبدالمحمد لیاقت و مهدی میرابی زاده

چکیده

از جمله نتایج به کارگیری فاضلاب خانگی خام و پساب تصیفه شده آن در کشاورزی و آبیاری اراضی زراعی، اضافه شدن انواع ترکیبات شیمیایی به خاک علاوه بر تأمین آب و نیاز گاهی می‌باشد. با نتایج عصاره کودی از این طریق به افزایش حاصلخیزی خاک کمک شده و در نتیجه تقلید مصرف کود، به کاهش هزینه‌های علاجی در در حالی‌های کشاورزی موجب می‌شود. با این‌حال به منظور بررسی کارایی مجموعه خاک و گیاه در جذب اقلام و آلاینده‌های موجود در فاضلاب و پساب، آزمایش‌های افتاده‌شده در فاضلاب و پساب (از جمله ترکیبات فسفردار) و تیز تعبیر میزان آن در تحقیق آنها به زیر عمق توزعه ریشه‌ها در توجه به پیشنهادهای عملیاتی آبیاری، تحقیق حاضر به برنامه‌ریزی در همین راستا با بهره‌گیری از لاپیسیتر به مدیت دو سالی از فاضلاب خانگی خام و رودی و پساب تصیفه ثانویه خروجی تحقیق خانه فاضلاب شهرک اکتیو پتر میزان آبیاری سبزی‌های مانند گوجه فرنگی، چمن‌ری و هویج استفاده شد. این تحقیق با منظور تدوین آب چه، به عوامل تیمار شاهد و بهره‌گیری از آزمایش‌های آلاینده کودیک در قلب طرح کاملاً تصادفی به اجرا درآمد. نتایج بررسی، بهینگی آن بهترین میزان انتقال فسفر به خاک در تحقیق کاربرد فاضلاب خام بین 0/05 تا 0/15 درصد در پساب تصیفه شده بین 0/03 تا 0/15 درصد غلظت فسفر ورودی توسط آب آبیاری در نوسان است. با سنجش میزان حذف فسفر از فاضلاب و پساب توسط مجموعه خاک و گیاه بین 99/9 تا 99/2 درصد پرآرد گردید. همچنین در حاصل اغلب نتایج در طول مدت دو سال آزمایش‌ها، در رابطه خوشه آن از لاپیسیترها آبیاری شده با فاضلاب خام و پساب میزان 41/21 میلی گرم بر لیتر مشاهده شد که این میزان، بسیار کمتر از مقدار نتایج از نظر استاندارد سازمان حفاظت محیط زیست ایران جهت تخلیه پساب به منبع آب سطحی (400 ملي‌گرم بر لیتر) و تها در حدود 0/5 درصد آن می‌باشد.

واژه‌های کلیدی: فاضلاب خانگی، فاضلاب خام، پساب تصیفه ثانویه، فسفر، آبیاری، زه آب، لاپیسیتر

مقدمه

به کارگیری فاضلاب‌ها و پساب حاصل از تصیفه آنها در امر آبیاری محصولات کشاورزی، از جمله راه کارهای رویارویی‌با

1. استادیار و تحقیقات فنی و مهندسی کشاورزی، کرج
2. دانشیاران مهندسی آبیاری و آب‌داری، دانشکده مهندسی آب و خاک، دانشگاه تهران (پردیس کشاورزی کرج)

39
ترکیب مشتمل ۲۹ نسبت به ۹۴ درصد آب و ۸۱ درصد محیطی است.

فشار ناشی از مصرف بخار کننده‌های فسفردار برای هر نفر
۲۰۰۰ گرم بر روز نسبت به ۳۰۰۰ گرم بر روز در درصد است.

فشار خاک تقابلی معنادار باید از نقطه‌ای است که در آن
یک اتم مرکزی فسفر به وسیله چهار اتم سه‌پروپیونات‌ها احتاطه شده و
پروپیون‌هایی است. بیشتر فسفات‌های خاک، نمک‌های فسفری
اسید (H₃PO₄) هستند. هم ترکیبات آلی هم ترکیبات معدنی
فسفور در خاک نشیب داده شده‌اند. فسفات در محلول خاک
علامه بر آب‌های آلی محلولی، به شکل پوست‌های یا ترکیب از ترکیب‌های HPO₄²⁻ اسید کشتی گسترده خاک‌های
ارق مایع از ترافیک پردازی در خاک در مقایسه با عناصر دیگر،
تأثیر کمتری دارد از در نظر گرفتن خاک از خود برای می‌گذارد. زیرا با
اجرای عملیات آبیاری با فضلات و پاس ابتدای غلظت فسفر
در محلول خاک افزایش یافته، بنا برای نتیجه جذب سطحی
فسفور توسط زرات خاک (به‌صورت روس) و انجم واکنش‌های
ترسیبی با آهن، آلومینیم، کلسیم و کریستال‌ها و ایجاد نمک‌های
نامحلول، میزان فسفر موجود در محلول خاک به سرعت کاهش
می‌یابد. همچنین جذب گیاهی نیز مقدار فسفر موجود در خاک
را (البته با سرعت کمتری در مقابل واکنش‌های ناشی‌الریختی) کاهش
می‌دهد (۸)، (۱۰، ۱۶). این گونه مشخصی خاک‌های مختلف در
نگهداری فسفات مواد است. آن‌ها فسفات مواد توسط
واکنش با جذب سطحی و ترسب در سیستم خاک نگهداری
شد و با نبایند خاک‌های ریز بافت‌تر، مقدار فسفر بیشتری در
مقایسه با خاک‌های درشت دانه حفظ می‌کند (۷ و ۱۶).

فسفور حساس ترین عناصر غذایی نسبت به خاک است.

در محلول اسیدی بیا H₃PO₄ آب از این ترکیبات اولیه غلظت‌پذیر
دهی به علت خاک‌های آهک و آلومینیوم با فسفات
pH در ترابر شده و به صورت روسیات نامحلول در می‌آید. در
پس از آن ترکیبات انواع‌بر روان بوده و HPO₄²⁻ بیا بیون از ترکیبات ناچیز فرار همراه
فشار با بالاتر از ۸۰، هم ترکیبات نامحلول فسفاتهای کلسیم

۳۰
تأثیر آبیاری با فاضلاب خانگی خام و رودی و پساب تصفیه ثانویه تصفیه خانه

کیلوگرم خاک گذراشان بوده است (15). هوا به مقدار فسفر موجود در محلول(عصاره) حاصل از خاک های خاصی کوددهی گردیده که شناسی تا 600 01 بنی به لیتر گذراشان می‌باشد (15). هوا به مقداری که تبادلی طولانی مدت فاضلاب در آب‌های سمنی از لحاظ فسفر انجام نموده و فسفر موجود در فاضلاب به هیچ وجه برای گیاه مضر نخواهد بود (16).

زاودی فسفر در خاک و کاربرد سایر رویه کودهای خاص، رشد گیاه را به طور غیر مستقیم تحت تأثیر قرار می‌دهد. مثلاً عبانی کمپودی رودی که به گیاه می‌گردد در مواردی به زاودی فسفر ربط داده که یک‌نیاز کمپودی رودی در اندازه (5) و (7) این موضوع وقتی صدای است که فسفات است. نباید هرچه وجود داشته باشد. از نقطه نظر علمی می‌توان از رسوب ZnPO۴ سابزی‌های را به جسم کمپودی رودی در خاک خانگی کاربردی است که به سیستم‌های آبیاری محصولات کشاورزی با فاضلاب، کاربرد آب آبیاری به میزان 7/5-2/5 سانتی‌متر در هر روز منجر به حذف تقریباً کامل فسفر از آب نفوذ یافته به درون خاک شده، بنابراین مقداری از فسفر در رواناب سطحی مایع مانده است. این گونه کاری به هر حال سیستم بستگی به میزان فسفر فلزات و خصوصیات خاک منطقه دارد (16).

میزان 20 ساله می‌توان خاک که در شرایطی از 100 درصد فسفر به
کار رفته کمک است (17). مقدار فسفر کل موجود در خاک بین 10/2 تا 10/0 گرم در کیلوگرم خاک خشک و 500 تا 2000 کیلوگرم بر هکتار در
لایه 20 سانتی‌متر خاک مبتنی به قند (15). غلظت فسفر قابل انحلال در آب ارزیابی قصد برداخته و بیان 10/3 تا 30 میلی‌گرم در کیلوگرم خاک خشک در نوسان است. ولی
عمده مقدار مشاهده شده کمتر از 10 میلی‌گرم فسفر در

و منیزیم به وجود می‌آید. از اینجا که خاک‌های ایران عمدهاً به همراه کلسیم، نیترات و گلیکان (Ca۲+) و فیلتر سایه‌ای Fe۳+ و مشکلی Fe۲+ و شار جریان CO۲ و خصوصیات قلیایی (Ca۲+) و شار جریان QH۲ به دلیل اینکه با فسفر به سیستم قابلیت ایکس شکر خاصی که در برابر خاک برای گیاه pH تأثیر می‌گذارد. است که بهترین pH انتخاب شده است و به همراه pH از شرایط pH به وسیله گیاه بین 6-7 است. در کشور ما، خاک‌هایی با چهار اسیدیت به‌طور کلی انتخاب شده است که معمولاً کمتر از 2/0 درصد کل فسفر خاک را به همراه قطعه‌های نامطلوب فسفر در آب زده‌شده از نیم‌رخ خاک محدود می‌شود (17).

تغییرات نشان داده است که بهترین pH می‌باشد. بنابراین، رسوب خاک توسط شیمیایی مقدار فسفر در عمل به این نتایج قطعه‌های نامطلوب فسفر در آب زده‌شده از نیم‌رخ خاک محدود می‌شود (7). تغییرات نشان داده است که بهترین pH می‌باشد. بنابراین، رسوب خاک توسط شیمیایی مقدار فسفر در عمل به این نتایج قطعه‌های نامطلوب فسفر در آب زده‌شده از نیم‌رخ خاک محدود می‌شود (7). تغییرات نشان داده است که بهترین pH می‌باشد. بنابراین، رسوب خاک توسط شیمیایی مقدار فسفر در عمل به این نتایج قطعه‌های نامطلوب فسفر در آب زده‌شده از نیم‌رخ خاک محدود می‌شود (7). تغییرات نشان داده است که بهترین pH می‌باشد. بنابراین، رسوب خاک توسط شیمیایی مقدار فسفر در عمل به این نتایج قطعه‌های نامطلوب فسفر در آب زده‌شده از نیم‌رخ خاک محدود می‌شود (7). تغییرات نشان داده است که بهترین pH می‌باشد. بنابراین، رسوب خاک توسط شیمیایی مقدار فسفر در عمل به این نتایج قطعه‌های نامطلوب F

31
گذشت زمان و در مقایسه با تیمار شاهد (آب چاه) می‌باشد.

مواد و روش‌ها
جهت اجرای این تحقیق، تعدایی لایه‌پریزی زهک‌دار طراحي و ساختمانی لایه‌پریزی نموده و ناحیه‌ای را انتخاب نمود. مکانیکی تجهیزات یک درجه و PVC پلاستیکی مناسب در طراحی آن استفاده گردید. شکل 1 مجموعه لایه‌پریزی آباده به‌هدف ماده‌ی را منشا

می‌دهد.

لایه‌پریزی از حالت زراعی منطقه‌ی بافت لام رهی و بدون اجرای عملیات تراکمی خاص و نهایتاً پس (Clay loam) از ورود دان حاکی از آنکه با تقلید زهک‌دار یک سانی می‌باشد انتظار قرار داشت که

مورد نیاز این اهدافی که منجر به نتایج گرفتن شرایط عاملی کاربردی فاصله‌های خام شری با جنوب شری فاصله‌ها بیشتر از گذشته باشد. سابقه‌ای از تکمیل شکن جمع آوری و تحقیق فاصله‌ای از هر دو نوع فاصله‌ها در زمان و ورودی و یک‌نحوه

چنین موضوعی و در صورت حصول نتایج رضایت بخش از نظر

کنتل انفال‌الاپین‌ها به عمق حاکی در شرایط طبیعی (با حاک

متراکمتر و دست‌نخورده و دانه‌پدید مشابه و حتمی ریزتر) و

به جز در موقعیت استثنایی، به طور قطع تناسب قابل قبول تری

حاصل خواهد شد. مشخصات فیزیکی و شیمیایی حاک در

جدویل 1 را بیان می‌نماید. با

عنوان بی نوع گیاهان کشت شده در اطراف شهر تهران و

به منظور دخالت دادن شرایط موجود کاربرد فاصله‌ها در امر

آب‌زار در این شهر، اقدام به کشت گیاهانی در لایه‌پریزی آباده هدف معمولی به صورت خام مورد استفاده قرار می‌گیرد. به همین

منظور سه نوع سبزی خوکسی از قرار: جعفری (سوزری‌برگی)،

هویج (مسی‌رقه‌خانی) و کوشه فرنگی (صافیدالی) در

لایه‌پریزی کاشته شد. به منظور تأمین فاصلاب کاشتی و پساب

مورد نیاز، ابتدا پرسری‌های لاکس در چگونگی تولید و جمع آوری

فاصله‌ها در سطح شهر تهران به عمل آمد و در نهایت، تصمیم

خانه فاصله‌ها شرکت ایکاتان به عنوان میان تأمین فاصله

ان تخاب کرد. ضمناً با در نظر گرفتن شرایط عاملی کاربردی

فاصله‌های خام شری در جنوب شری تر و نیز آنها ای

منطقه‌ی پس از تکمیل شکن جمع آوری و تحقیق فاصله‌ای از هر

دو نوع فاصله‌ها در زمان و ورودی و یک‌نحوه
جدول 1. مشخصات فیزیکی گاز مورد استفاده

| درصد رطوبت وزنی | جرم مخصوص (g/cm³) | نفوذپذیری متوسط (mm/hr) | تخلخل | درصد ذرات خاک
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>ظاهری</td>
<td>تئیه</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>رس</td>
<td>سیلت</td>
<td>مانه</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/20</td>
<td>1/16</td>
<td>6/20</td>
<td>18/85</td>
<td>24/9</td>
</tr>
<tr>
<td>1/18</td>
<td>2/02</td>
<td>7/60</td>
<td>37/75</td>
<td>37/75</td>
</tr>
</tbody>
</table>

* نفوذپذیری خاک پیش از شروع تحقیق، اندازه گیری شده به روش پاری ناتب.

جدول 2. مشخصات شیمیایی گاز مورد استفاده

<table>
<thead>
<tr>
<th>میکرویول</th>
<th>کالسیوم (SO₄²⁻)</th>
<th>کلسیم (Ca²⁺)</th>
<th>نیترات (Cl⁻)</th>
<th>مونوسید (Na⁺)</th>
<th>پپت (K⁺)</th>
<th>pH</th>
<th>EC<sub>c</sub> (dS/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR<sub>H</sub></td>
<td>آنتیونهای محلول (meq/L)</td>
</tr>
<tr>
<td>0/18</td>
<td>2/00</td>
<td>2/00</td>
<td>2/00</td>
<td>2/00</td>
<td>2/00</td>
<td>2/00</td>
<td>2/00</td>
</tr>
<tr>
<td>1/18</td>
<td>6/00</td>
<td>6/00</td>
<td>6/00</td>
<td>6/00</td>
<td>6/00</td>
<td>6/00</td>
<td>6/00</td>
</tr>
</tbody>
</table>

درصد خطا = 2/0 درصد. که در محدوده مجاز حداکثر 5/0 درصد (برای مجموع آنتیونهای آب عالی 100-300 meq/L) قرار دارد. درصد خطا از رابطه: 100 [(مجموع آنتیونهای آب / مجموع کالسیومها) / (مجموع کالسیومها - مجموع کالسیومها)] = قابل محاسبه است (8).

با توجه به ماهیت تحقیق، این آزمایش به صورت طبیعی در قالب طرح آماری کاملاً تصمیمی به اجرا درآمده و تیمارهای موجود عبارت بودند از آب آبریز در سه منبع: فاضلاب خام، پساب تصفیه نانوی و آب چاه (بعنوان شاهد) و محصول در سه نوع: گاز فرنگی، هویج و جعفری. به نحوی محدود حصول شرایط عامل آماری آزمایش در سه تکرار انجام پذیرفت و در مجموع تعداد 27 عدد لیسیمی طراحی و ساخته شد (طرح آماری 3×3×3 و پنس از نتیجه در محل آزمایش مورد استفاده قرار گرفت. ضمناً در استعداد کودی اجاع از شیمیایی پی نماینده استفاده نگرفتند. عملیات آبیاری لاپیمیّته مطلق وبعده به طور متوسط دوبار در هفته در دوره حداکثر 35 طبقه آب و یکبار در هفته در اواخر فصل زراعی با عمق آب حدوداً 7-8 سانتیمتر در هر آبیاری و به روش مکانیکی-غیرآتی انجام گرفت. پرداخت کردن حجم آب کاربردی سالانه در لاپیمیّته در حدود 1000 لیتر و در کشت...
جدول ۳. کیفیت شیمیایی فاضلاب خام و پساب تصفیه شده شهربانک آب و آب‌های مورد استفاده در عملیات آب‌پزشکی

<table>
<thead>
<tr>
<th>نوع آب آب‌پزشکی</th>
<th>پارامتر مورد بررسی</th>
<th>واحد</th>
<th>فاضلاب خام</th>
<th>پساب</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب چاه</td>
<td>BOD₃</td>
<td>mg/L</td>
<td>20/30</td>
<td>13/30</td>
</tr>
<tr>
<td>آب چاه</td>
<td>COD</td>
<td>mg/L</td>
<td>27/70</td>
<td>77/20</td>
</tr>
<tr>
<td>آب چاه</td>
<td>TSS</td>
<td>mg/L</td>
<td>229/85</td>
<td>11/50</td>
</tr>
<tr>
<td>آب چاه</td>
<td>dS/m</td>
<td></td>
<td>0/77</td>
<td>0/59</td>
</tr>
<tr>
<td>آب چاه</td>
<td>pH</td>
<td></td>
<td>7/12</td>
<td>6/99</td>
</tr>
<tr>
<td>فاضلاب</td>
<td>Na⁺</td>
<td>meq/L</td>
<td>2/25</td>
<td>4/25</td>
</tr>
<tr>
<td>فاضلاب</td>
<td>Ca²⁺</td>
<td>meq/L</td>
<td>3/50</td>
<td>4/50</td>
</tr>
<tr>
<td>فاضلاب</td>
<td>Mg²⁺</td>
<td>meq/L</td>
<td>3/00</td>
<td>4/00</td>
</tr>
<tr>
<td>فاضلاب</td>
<td>K⁺</td>
<td>meq/L</td>
<td>1/85</td>
<td>2/12</td>
</tr>
<tr>
<td>فاضلاب</td>
<td>Cl⁻</td>
<td>meq/L</td>
<td>1/20</td>
<td>1/55</td>
</tr>
<tr>
<td>فاضلاب</td>
<td>HCO₃⁻</td>
<td>meq/L</td>
<td>5/80</td>
<td>3/20</td>
</tr>
<tr>
<td>فاضلاب</td>
<td>SO₄²⁻</td>
<td>meq/L</td>
<td>3/00</td>
<td>3/40</td>
</tr>
<tr>
<td>فاضلاب</td>
<td>SAR</td>
<td>(meq/L)⁰.⁵</td>
<td>1/19</td>
<td>1/41</td>
</tr>
<tr>
<td>فاضلاب</td>
<td>Total N</td>
<td>mg/L</td>
<td>47/20</td>
<td>15/44</td>
</tr>
<tr>
<td>فاضلاب</td>
<td>Total P</td>
<td>mg/L</td>
<td>7/91</td>
<td>4/61</td>
</tr>
</tbody>
</table>

نتیجه‌گیری تابعی که در حین فرآیند تصفیه فاضلاب در تصفیه خانه شهربانک آب‌پزشکی و مراحل تصفیه شده، شهربانک آب‌پزشکی و آب‌های موجود در فاضلاب در حین فرآیند تصفیه متوسط باکتری‌ها به مصرف می‌رسد. به‌خیال بر این فرض نیز به همراه سایر مواد و بخصوص مواد آلی، در حضور‌ها به تنشی‌های رسوتی نموده و یا در نتیجه جمع آوری مواد شناور از سطح حوضه‌ها (به‌صورت کف) از پساب جدایی می‌گردد (۱۷ و ۱۸).

مقدار فسفر موجود در فاضلاب خام، پساب تصفیه شده و آب چاه کاربردی

مدیریت مصرف اکثر فسفر و دسته‌بندی (بر حسب PO₄-P) موجود در فاضلاب خام، پساب تصفیه شده و آب چاه کاربردی در مدت اجرای آزمایش‌ها و دامنه تغییرات این نموده از آن‌ها بر حسب نوع آب آب‌پزشکی در جدول ۴ قابل مشاهده است. از بررسی این مقدار موجود در متن جدول ۴ می‌توان چنین نتایج و بحث}

مقدار فسفر موجود در فاضلاب خام، پساب تصفیه شده و آب چاه کاربردی

مدیریت مصرف اکثر فسفر و دسته‌بندی (بر حسب PO₄-P) موجود در فاضلاب خام، پساب تصفیه شده و آب چاه کاربردی در مدت اجرای آزمایش‌ها و دامنه تغییرات این نموده از آن‌ها بر حسب نوع آب آب‌پزشکی در جدول ۴ قابل مشاهده است. از بررسی این مقدار موجود در متن جدول ۴ می‌توان چنین

صدام (FAO)

جدول 4: دانه تغییرات فسفر کل و فسفات موجود در فاضلاب خام و پساب تصفیه تانوهی شرکت اکیان و آب چاه مورد استفاده طی سالهای اخیر

<table>
<thead>
<tr>
<th>نوع فسفر</th>
<th>فاضلاب خام (mg/L)</th>
<th>پساب تصفیه شده (mg/L)</th>
<th>دامنه تغییرات</th>
<th>متوسط</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 فسفر فسفاتی (PO₄³⁻)</td>
<td>2/82-8/08</td>
<td>2/52-4/38</td>
<td>3/20</td>
<td>4/88</td>
</tr>
<tr>
<td>2 فسفر کل (Total P)</td>
<td>5/61-2/87</td>
<td>7/91</td>
<td>12/23</td>
<td>8/55</td>
</tr>
</tbody>
</table>

مقدار نیز در لاپیسمترها تحت آب‌یاری با آب چاه اتفاق افتاد. فسفر اکینه‌کردن‌کننده‌ای در سال نخست آگاهی آزمایش‌رسان نزدیک به همت و مستقل از نوع آب آب‌یاری بود که دلالت در حضور مقدار یکسانی از فسفاط قابل انخلا در خام تمامی لاپیسمترهای داشت که در ابتدا تحقیق و به همراه زیرآ شاخ‌های آنها خارج می‌شد. هرگونه در اولین نمونه برداری از اینجا فسل و برای بحث، اختصاصی فسفر موجود در فاضلاب و پساب را در خود نگه داشته و مانع از فشرده در باعث شود، ولی جون برای زیرفصول لاپیسمترها از خاک زراعی استفاده شده که خود دارای مقادیر فسفر قابل انخلا می‌باشد، بنابراین برای حفظ آب در تمبرخ خاک، این بخش از فسفر (بخصوص از اکینه فصل و برخی نمونه‌برداری‌ها) به همراه آب آب‌یاری تا زیادی لاپیسمترها و در محیط زیست زهک‌شاخ از اکینه آب‌یاری و در تمامی لاپیسمترها اتفاق افتاد. البته بقیه شرایطی در هیچ یک از نمونه‌برداری‌ها بعدی از زیرآ لاپیسمترها تکرار نشد.

بررسی مزان تراپور فسفر به عمق خاک

نتایج حاصل از تجربه‌های آب‌یاری و آب‌پز در ساعت نخست‌ترین آزمایش‌های گروه از میان ۴ آب‌یاری که در میان ۵۷۰ مایلی کریم بر اهمیت تغییرات اکینه اشاره نموده است، لیکن برای فسفر گروهی از آرائه نموده‌ای (۲) و (۷) ضریب این که استاندارد ایران مقدار را در این چهار مدل سرشاره، همان گونه که ملاحظه کرده مقدار متوسط فسفات بسیار خروجی از تصمیم‌گیری شهروند اکیان یک کمتر از هم مجذ اکینه که همگام با مانده و استفاده ۱۰۰ میلی‌گرم در این چهار مدل سرشاره دارد (۰/۲۷).

بررسی میزان فسفر به عمق خاک

نتایج حاصل از تجربه‌های آب‌یاری و آب‌پز جمع آوری شده از نظر میزان فسفر کل، مربوط به سال‌های آغازین آزمایش در جدول ۵ و ۳ آب‌یاری که است. این جدول مشخص می‌کند که بر میزان تراپور به عمق کشت اکینه‌کردن یک سهمیه در هر نوع اکینه آب‌یاری، بهتر یا به میزان سه‌گانه و درصد انتقال فسفر به عمق توزیع ریشه‌ها را در مقایسه با آب‌یاری اولیه ورودی به خاک ملاحظه نمود.

از بررسی مقدار به استاندارد آماده چنین نتیجه‌گیری‌هایی می‌شود که بیشترین میزان فسفر انتقال یافته به عمق به حد زنجابی اکینه‌ها در ورودی به آب لاپیسمترهای تحت آب‌یاری با فاضلاب خام و کمترین
| جدول ۱: تاثیر کاهش ذخیره پلاستیک و تراکم کاهش گذاری سوزنگر در ناحیه‌های مختلف آبرسانی و تولید شاخص‌های نزدیکی
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>انرژی (E)</td>
<td>جریان (Q)</td>
<td>فشار (P)</td>
<td>سطح (Z)</td>
</tr>
<tr>
<td></td>
<td>(kJ/m²)</td>
<td>(m³/s)</td>
<td>(MPa)</td>
<td>(m)</td>
</tr>
<tr>
<td>ناحیه ۱</td>
<td>120</td>
<td>0.05</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>ناحیه ۲</td>
<td>100</td>
<td>0.03</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>ناحیه ۳</td>
<td>80</td>
<td>0.02</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

* ذخیره پلاستیک = ۲٪
* سوزنگر = ۱٪
* شاخص‌های نزدیکی = ۱۰٪
بیک و دوهدان به سال ۱۹۷۲ نیز از آن‌هایی بین‌بسته در افکار سیاسی و اجتماعی، شخصیتی از آن‌ها تائید می‌شود که با تغییرات در عناصر جامعه، به‌دست آورده بوده است.

سیاسی از اقتصادی و اجتماعی، شخصیتی از آن‌ها تائید می‌شود که با تغییرات در عناصر جامعه، به‌دست آورده بوده است.

به‌طور متوسط برای ۹۷ درصد، نشان‌دهنده اینکه به دست آورده بوده است.

فکر اثر سال
میان‌گین سفر اندازه‌گیری‌های شده در زمان حاصل از فضای‌سازهای خاص و اجتماعی، شخصیتی از آن‌ها تائید می‌شود که با تغییرات در عناصر جامعه، به‌دست آورده بوده است.

الف) اثر سال
میان‌گین سفر اندازه‌گیری‌های شده در زمان حاصل از فضای‌سازهای خاص و اجتماعی، شخصیتی از آن‌ها تائید می‌شود که با تغییرات در عناصر جامعه، به‌دست آورده بوده است.

چهار نکته برای ۹۸ و ۱۸ هزار به سبب وجود اینکه به دست آورده بوده است.

فقه و فنون کشاورزی و منابع طبیعی / سال دهم / شماره چهارم (الف) / زمستان ۱۳۸۵
جدول 7 نتایج تجزیه و تحلیل آماری داده‌های فسفر در مدت دورال اجرای تحقیق

<table>
<thead>
<tr>
<th>میانگین مرتعات (MS)</th>
<th>مجموع مرتعات (SS)</th>
<th>درجه آزادی</th>
<th>مقدار تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/104 *</td>
<td>0/104</td>
<td>1</td>
<td>0/01</td>
</tr>
<tr>
<td>0/109 **</td>
<td>0/18</td>
<td>2</td>
<td>0/01</td>
</tr>
<tr>
<td>0/167 **</td>
<td>0/25</td>
<td>2</td>
<td>0/01</td>
</tr>
<tr>
<td>0/11 **</td>
<td>0/21</td>
<td>2</td>
<td>0/01</td>
</tr>
</tbody>
</table>

* : اختلال در سطح پنج درصد معنی دار بوده است ; ** : اختلال در سطح یک درصد معنی دار بوده است.

جدول 8 نتایج آزمون دانکن (میانگین‌ها) مربوط به داده‌های فسفر در مدت دورال اجرای تحقیق

<table>
<thead>
<tr>
<th>سال اجرای</th>
<th>نوع آب آبیاری</th>
<th>نوع گیاه</th>
<th>گروهندی</th>
<th>گروهندی</th>
<th>حالت</th>
<th>دانکن</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Ca.</td>
<td>0/93</td>
<td>0/94</td>
<td>0/95</td>
<td>0/133</td>
<td>R</td>
</tr>
<tr>
<td>2012</td>
<td>To.</td>
<td>0/94</td>
<td>0/86</td>
<td>0/95</td>
<td>0/080</td>
<td>T</td>
</tr>
<tr>
<td>2011</td>
<td>Pa.</td>
<td>0/103</td>
<td>-</td>
<td>-</td>
<td>0/021</td>
<td>N</td>
</tr>
</tbody>
</table>

نوع گیاه : A = Ca. ، B = To. ، C = Pa.

(۹) نوع آب آبیاری : R = فاضلاب خام ، T = پساب تصفیه شده.

(۱۰) نوبت اخیر : G = گیاه علفی ، H = هیوی.

زه آب حاصل از پساب تصفیه نشده، که در ناحیه قرار داشته و هر دو این موارد نیز دارای میانگینی بیشتر از میانگین موجود در زه آب حاصل از لاپیسترهای تحت آبیاری با آب چاه بود و تفاوت میانگین مقدار فسفر اندازه قابل معنی دارد.

لازم به ذکر است که در مورد فسفر در فاضلاب خام در مقایسه با پساب تصفیه شده و وضعیت این دو در مقایسه با آب چاه، مقدار فسفر قابل اندازه‌گیری است.

فسفر در خاک در نتیجه افزایش ذخیره فسفر به وقوع پیوسته باشد. اضافه شدن مداوم فسفر به خاک در آب آبیاری با فاضلاب و پساب و تجربیات باقیمانده گیاهی در خاک و آزاد شدن فسفر آنها می‌تواند در نهایت به کاهش قدرت ذخیره و افزایش انتقال فسفر به عمق تبدیل شود.

(۱۱) نوع گیاه

میانگین فسفر افزایش گیاه شده در زه آب لاپیسترهای تحت کشت گیاه هریج، بالاتر از میانگین فسفر در زه آب حاصل از لاپیسترهای دارد کشت گیاه فریگ و هر دو آنها در میانبره...
بر اساس این گزارش قرار گرفته و تفاوت معنی‌داری را بین سه نوع گیاه از نظر اقلات میزان فسفر به عمق خاک از خود نشان داد. فیزیولوژی گیاهی و میزان دمای رشد و نیاز گیاه به فسفر می‌تواند در این امر مؤثر باشد.

(3) آزمایش نمونه برداری

میانگین فسفر موجود در آب زکشی شده به ترتیب روند نزولی، از نمونه برداری دوم به سوم و پس اول می‌باشد. میانگین فسفر معمولاً در نمونه برداری دوم، به‌طور معنی‌داری از مابقی نمونه‌ها بالاتر بود. ویل میزان آن در نمونه‌برداری‌های اول و سوم، ناوارد معنی‌داری را یکدیگری از خود نشان نمی‌داد. نبات‌های در اواست یافتن فصل و با آفتابی میزان آب کاربردی جهت آب‌داری، مقایسه بیشتری از فسفر به عمق سطح خاک منتقل می‌گردد.

هلان جرمی فسفر در لایه‌های آن می‌تواند بایستد در برگردانده فراخیاب این مقایسه‌های بین مقایسه فسفر اندوزه حیطه شده در واحد حجم آب‌های آب‌های و آب‌های زکشی شده بو (مقایسه غلظت‌های). لیکن توجه به این نکته این ضروری است که حجم آب خروجی از زکش‌ها لاییمیترا به‌صورت کمتر از حجم آب ورودی به آنها در تیم عملیات آب‌داری است. بنابراین حجم آب خروجی از زکش‌ها به حجم آب مورد استفاده جهت آب‌داری لاییمیترا بین 50 تا 100 (نیم بسته) می‌تواند، که نتیجه‌گیری بایستد چرا باید گفته شود.

بدین منظور میانگین فسفر ورودی توسط هر یک از انواع آب‌های آب‌های و نیز متوسط فسفر خروجی از زکش‌ها در طول فصل کشت (بدون منظر داشتن نوع گیاه) محسوب گردید و با داشتن حجم آب مورد استفاده در هر نوع آب‌های آب‌داری، حجم آب زکش‌ها از لاییمیترا، متوسط جرم ماده ورودی و خروجی به که لاییمیترا در حاصل ضریب غلظت فسفر در حجم آب به‌دست آمد. نتایج حاصله در جدول 1 ارائه شده است. از
جدول ۹: متوسط مقدار نهایی جرم فسفر ورودی و خروجی در لاپیمرها

<table>
<thead>
<tr>
<th>جرمی</th>
<th>حذف جرمی</th>
<th>نسبت</th>
<th>آب ورودی به لاپیمرها</th>
<th>آب ورودی به لاپیمرها</th>
<th>سال</th>
<th>نوبت</th>
<th>آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/91</td>
<td>0/009</td>
<td>0/071</td>
<td>0/071</td>
<td>0/071</td>
<td>1</td>
<td>R</td>
<td>1378</td>
</tr>
<tr>
<td>9/9</td>
<td>0/009</td>
<td>0/071</td>
<td>0/071</td>
<td>0/071</td>
<td>2</td>
<td>T</td>
<td>1378</td>
</tr>
<tr>
<td>9/9</td>
<td>0/009</td>
<td>0/071</td>
<td>0/071</td>
<td>0/071</td>
<td>3</td>
<td>N</td>
<td>1378</td>
</tr>
<tr>
<td>9/1</td>
<td>0/001</td>
<td>0/071</td>
<td>0/071</td>
<td>0/071</td>
<td>4</td>
<td>R</td>
<td>1379</td>
</tr>
<tr>
<td>9/9</td>
<td>0/009</td>
<td>0/071</td>
<td>0/071</td>
<td>0/071</td>
<td>5</td>
<td>T</td>
<td>1379</td>
</tr>
<tr>
<td>9/9</td>
<td>0/009</td>
<td>0/071</td>
<td>0/071</td>
<td>0/071</td>
<td>6</td>
<td>N</td>
<td>1379</td>
</tr>
</tbody>
</table>

(۱) نوع آب آبیاری کاربردی: R = فاضلاب خام، T = صبای تصفیه شده، N = آب جهت (معمولی)
(۲) نسبت حریم عبارت است از نسبت جرم تجمع خروجی به جرم تجمع ورودی به لاپیمر
(۳) متوسط فسفر تقریباً برابر گرمی از آب ورودی به لاپیمرها از آن بلندی است

پژوهش‌های علمی کشور و همکاری مؤسسه تحقیقات فنی و مهندسی کشاورزی، گروه آبیاری دانشکده آب و خاک دانشگاه تهران (پردازی کشاورزی کرج) معاوضه عملیات و بهره‌برداری شرکت فاضلاب استان تهران و تصفیه گذاران فاضلاب شهرک اکباتان میسر گردیده که بدلین وسیله‌مندی‌های تحقیقاتی و فرداناپ انجام گردید.

سیاست‌گذاری

اجرای تحقیق حاضر با مساعدت مالی کمیسیون آب شورای پژوهش‌های علمی کشور و همکاری مؤسسه تحقیقات فنی و مهندسی کشاورزی، گروه آبیاری دانشکده آب و خاک دانشگاه تهران

منابع مورد استفاده

۱. پوستن، غ. سبک‌کاری. چاب دوم، انتشارات نشر علوم کشاورزی، گرگان.
۲. توتکل، م. و م. طبیعت‌پژوهی. ۱۳۸۷، آبیاری با فاضلاب تصفیه شده. مجموعه مقالات همایش ریزهای زیست‌محیطی استفاده از بسیاره از آبیاری و زراعت تیره، کمیته ملی آبیاری و زراعت ایران، ۱۱ آذر ماه ۱۳۷۸، تهران. صفحات ۱ تا ۳۰.
۳. حسین‌افلانی، ع. ۱۳۸۷، استفاده از فاضلاب‌های خاکی و صبای تصفیه‌خانه از آبیاری محقق‌ها کشاورزی. گروه پژوهشی نهایی طرح تحقیقات مصوب، مؤسسه تحقیقات فنی و مهندسی کشاورزی، شماره ثبت ۳۸/۳۸۳۱۲۳۷۱ صفحه.
۴. حسین‌افلانی، ع. لیاقت، م. مرداد زاده، م. و رفیعی و. ۱۳۸۲، بررسی اثرات آبیاری با فاضلاب‌های خاکی بر انتقال مواد به خاک و کاهش آب‌های خروجی از لاپیمرها. مجموعه مقالات یازدهم همایش کمیته ملی آبیاری و زراعت ایران، چاب دوم ۱۳۸۲، صفحات ۱۷۲ تا ۱۷۷ تهران.
۵. روزنامه همشهری. ۱۳۸۱، ارایه کشاورزی استاد دهم شماره ۱۵۸۵۱ صفحه ۱۸۴ تا ۱۸۵. ۱۳۸۱
۶. شریعتی، م. ۱۳۷۵، ارایه کیفیت شیمیایی فاضلاب و استفاده از آن در آبیاری، از و خاک و محیط زیست ۱۰: ۵۱-۵۵.
7. علیرزاقه، ا. 1374. استفاده از پساب تصفیه شده خانگی در آبیاری سبزیجات که بهصورت خام مصرف می‌شوند. معاونت امور آب و فاضلاب شهری، گزارش‌های طرح پژوهشی، شرکت مهندسی آب و فاضلاب شهری، تهران.
9. ملکوتی، م. ج. و. م. همایی. 1373. حاصلخیزی خاک‌های مناطق حاشیه (مشکلات و راه حل‌ها). انتشارات دانشگاه تربیت مدرس، تهران.
10. ملکوتی، م. ج. و. م. نفیسی. 1373. مصرف کود در اراضی زراعی. فارابی و دیم (ترجمه). انتشارات دانشگاه تربیت مدرس، تهران.