آزمون خاک فسفر: 1- ارزیابی چند عصاره‌گیر جهت تعیین فسفر قابل استفاده در گیاه بونجه

علاوه‌اً حسن پور و حسن شریعتمداری

چکیده

استان همدان از اعماق تربین مناطق تولید بونجه در سطح کشور است. با این وجود مطالعات اندکی در مورد وضعیت فسفر خاکهای این منطقه صورت گرفته و تاکنون عصاره‌گیر مانی‌بر استخراج فسفر قابل استفاده این خاک‌های منطقه ثبت نگردیده است. بنابراین این پژوهش با هدف ارزیابی 9 روش عصاره‌گیری به منظور تعیین عصاره‌گیری‌های مناسب جهت تعیین فسفر قابل استفاده در تندیسی از خاک‌های استان همدان اجرا شده. این پژوهش در قالب بلک‌های کامل تصادفی و به صورت فاکتوریال شامل 5 نمونه خاک و 200 میلی‌گرم فسفر در کلی‌گرم خاک انجام و گیاهان بونجه در سه بهترین برداده شدند. نتایج این پژوهش نشان داد که مقادیر فسفر عصاره‌گیری شده، توسط روش‌های استفاده شده به ترتیب زیر بود: کلرید کلسیم 0/700 مولار، اسید کلرید کلسیم 0/700 مولار، کلرید کلسیم 0/700 مولار، کلرید کلسیم 0/700 مولار. مقادیر فسفر استخراج شده با کلیه روش‌ها به جز کلرید کلسیم 0/700 مولار هم‌بستگی معنی‌داری داشتند. نتایج مطالعات هم‌بستگی نشان داد که در چهار اول روش کالول، در چهار دوم روش‌های گرینات‌آمیزی‌های دو-تیپی، کالول، بی‌ری و مهلیج نیاز بیشتری به مقادیر فسفری‌های بهتری دارد. نتایج محققان به منظور ارزیابی فسفر قابل استفاده در خاک از عصاره‌گیری‌های مختلفی استفاده کرده‌اند (1، 2، 3، 4، 5، 6، 7، 8، 9). به عنوان...

مقدمه

فسفر قابل استفاده گیاه وارد محفظه خصوصیات خاک و گیاه تعیین می‌شود. استخراج و اندازه‌گیری دیق مقادیر فسفری که گیاه جذب می‌کند امکان‌پذیر نیست، اما می‌توان به روش‌های...

1. دانشیار خاکشناسی دانشگاه شیراز، دانشکده کشاورزی، دانشگاه شیراز، مهدیان

2. استاد دانشگاه شیراز، کاه‌شناسی شیمیایی، دانشگاه شیراز، دانشگاه شیراز، مهدیان

107
نمونه در مطالعه انجام شده به وسیله مالاریوتو (17) فسفر استخراج شده به روش اولسن، با فسفر عصاره‌گیری شده به روش های بری 1 و مهلیج 2 هم بستگی معنی‌داری داشت، ولی با فسفر عصاره‌گیری شده به آب هم بستگی معنی‌داری نداشت.

در مطالعه انجام شده به وسیله سیمیونیس و سیاتو (24) هم بستگی معنی‌داری بین فسفر عصاره‌گیری شده به روش اولسن و فسفر عصاره‌گیری شده به روش کارلیس کامل وجود داشت.

در مطالعه انجام شده به وسیله نسی و همکاران (17) فسفر عصاره‌گیری شده به روش اولسن با فسفر عصاره‌گیری شده به روش پیا اهیستگی معنی‌داری داشت، ولی با فسفر عصاره‌گیری شده به آب بری 1 هیچ‌یک معنی‌داری نداشت.

در مورد ارتباط فسفر استخراج شده به وسیله

عصاره‌گیری مختلف و انتخاب‌های گیاهی مطالعاتی انجام شده است (17, 22, 23 و 24). به علاوه نمونه در مطالعه انجام شده در ایران قنیری و همکاران (17) هم بستگی بالایی بین فسفر عصاره‌گیری شده به روش کارلیس و عصاره‌گیری برای شده به دست آورده که در مطالعه انجام شده به وسیله سیمیونیس و سیاتو (24) فسفر عصاره‌گیری شده به روش های اولسن، کلاسیم و آب مخلوط با فسفر جدید شده توسط یولاف هم بستگی معنی‌داری وجود داشت. در مطالعه انجام شده به وسیله نسی و همکاران (17) هم بستگی معنی‌داری به فسفر عصاره‌گیری شده به آب مخلوط و روش اولسن داشت.

فاضل مختلف جوهرهای گیاهی در خاک‌های مشابه به آزمون

خاک فسفر مشاهده شده است. بنابراین یک روش آزمون‌های

مکان است قادی به پیشگیری از خاص و نیاز کودی

برای تمام خاک‌ها و محصولات باشد. استان همدان از

تولیدکنندگان عمدی بینه در ایران می‌باشد، ولی این وجود

مطالعه‌های در مورد ارتباط فسفر معنی‌داری جدی در خاک‌های

کشت بینه‌هم انجام شده است. هدف این تحقیق بر آوردن

قابل استفاده به کمک روش عصاره‌گیری مهم‌اندیش مخال

فسفر در دو سطح صفر و 200 میلو گرم فسفر در کیلوگرم
از آموز خاک فسفر: 1- ارزیابی چند عصاره‌گیر چه تینی فسفر قابل استفاده در گیاه بونجه

نتایج و بحث

نتایج تجزیه‌های فیزیکی و شیمیایی خاک‌ها در جدول 1 نشان داده شده است. بر اساس نتایج آراشده در pH 6-8، تغییرات هدایت الکتریک می‌تواند در بین pH 3-27 و pH 3-37 در دامنه تغییرات گنجشی با توانایی 1/3-0.5 درصد و دامنه تغییرات میزان رسانی و انتقال میان 0.5 و 3-5/0-7/8 درصد بوده و در 23 μg/ml در کیلوگرم به خاک به‌طور مداوم اندازه‌گیری شده شده. مقدار مداوم سکوسترین به مقدار 5 میلی‌گرم در کیلوگرم به خاک به‌طور مداوم اندازه‌گیری شده شده. مقدار مداوم سکوسترین به مقدار 5 میلی‌گرم در کیلوگرم به خاک به‌طور مداوم اندازه‌گیری شده شده.

بعضی و در به‌طور مداوم و بین افزایش گیاهان. عملکرد خشک فسر در کیلوگرم به خاک به روش خاکستر خشک عصاره‌گیر (6) و غلظت فسفر عصاره‌ها به روش رنگ سنجل نیز تعیین گردید.

(15)
جدول 1. خصوصیات فیزیکی و شیمیایی خاک‌های مطالعه شده

<table>
<thead>
<tr>
<th>شماره ب-هاش</th>
<th>کاتیون‌های تبادل</th>
<th>کاتیون‌های محلول</th>
<th>کربن آلی</th>
<th>کربنات کلسیم</th>
<th>رس</th>
<th>سیلت (%)</th>
<th>قابلیت هیدات</th>
<th>خاک کریئیکی</th>
<th>dS-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>کلسیم + مئیزیم</td>
<td>پتاسیم</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>حذف</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cmol kg⁻¹</td>
<td>cmol kg⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8/7</td>
<td>2/0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/6</td>
<td>0/7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1/3</td>
<td>1/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1/4</td>
<td>1/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1/5</td>
<td>1/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1/6</td>
<td>1/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1/7</td>
<td>1/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1/8</td>
<td>1/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1/9</td>
<td>1/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1/10</td>
<td>1/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1/11</td>
<td>1/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1/12</td>
<td>1/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1/13</td>
<td>1/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1/14</td>
<td>1/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1/15</td>
<td>1/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8</td>
<td>0/9</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۲. مقادیر فسفر استخراج شده با روش‌های مختلف عصاره‌گیری (میلی‌گرم در کیلوگرم)

<table>
<thead>
<tr>
<th>عصاره‌گیری</th>
<th>بری ۱</th>
<th>بری ۲</th>
<th>مهله</th>
<th>کالری کلسیم</th>
<th>پیکربند آمونیوم- دی اولسین</th>
<th>اسید کلسیم_ وبای</th>
<th>نرخ انرژی</th>
<th>نرخ کالری‌درک</th>
<th>شماره خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>مهله ۱</td>
<td>مهله ۲</td>
<td>۱/۰۰ میلی‌گرم</td>
<td>۱/۰۰ میلی‌گرم</td>
<td>۱/۰۰ میلی‌گرم</td>
<td>۱/۰۰ میلی‌گرم</td>
<td>۱/۰۰ میلی‌گرم</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>۱/۱۰</td>
<td>۱۲/۱</td>
<td>۸/۳</td>
<td>۱۳/۳</td>
<td>۸/۷</td>
<td>۱۲/۷</td>
<td>۱۷/۷</td>
<td>۸/۴</td>
<td>۷/۴</td>
<td></td>
</tr>
<tr>
<td>۱/۹</td>
<td>۸/۹</td>
<td>۸/۹</td>
<td>۱۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td></td>
</tr>
<tr>
<td>۱/۸</td>
<td>۱۳/۱</td>
<td>۸/۹</td>
<td>۱۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td></td>
</tr>
<tr>
<td>۱/۱/۱</td>
<td>۸/۹</td>
<td>۸/۹</td>
<td>۱۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td></td>
</tr>
<tr>
<td>۱/۸</td>
<td>۱۳/۱</td>
<td>۸/۹</td>
<td>۱۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td></td>
</tr>
<tr>
<td>۱/۱/۱</td>
<td>۸/۹</td>
<td>۸/۹</td>
<td>۱۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td></td>
</tr>
<tr>
<td>۱/۸</td>
<td>۱۳/۱</td>
<td>۸/۹</td>
<td>۱۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td></td>
</tr>
<tr>
<td>۱/۱/۱</td>
<td>۸/۹</td>
<td>۸/۹</td>
<td>۱۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td>۵/۹</td>
<td></td>
</tr>
</tbody>
</table>
روش‌های مختلف با استفاده از همیستگی ساده مورد مطالعه قرار گرفت که نتایج آن در جدول ۳ نشان داده شده است.
روش عصاره‌گیری فسفر توسط محلول استیدل کاربردیک یک درصد در کیلوگرم محلول می‌باشد.

1/4 میلی‌گرم مشابه در یک بیمار مورد اطمینان گذاشته شده است.

۱۴۳۲-۱۹۸۳ و ۱۵۰۳-۱۹۸۵ در کیلوگرم محلول می‌باشد.

۴ فسفات مؤثر تاخیر خاذگر در یک بیمار مورد مطالعه گزارش شده است.

۱۵ میلی‌گرم شده است.

۱۹۸۱ در کیلوگرم محلول می‌باشد.

۱۲۰ میلی‌گرم محلول می‌باشد.

۱۳ میلی‌گرم برای درصد یک بیمار مورد استفاده گذاشته شده است.

۱۴ میلی‌گرم محلول می‌باشد.

۱۶ میلی‌گرم محلول می‌باشد.

۱۷ میلی‌گرم محلول می‌باشد.

۱۸ میلی‌گرم محلول می‌باشد.

۱۹ میلی‌گرم محلول می‌باشد.

۲۰ میلی‌گرم محلول می‌باشد.

۲۱ میلی‌گرم محلول می‌باشد.

۲۲ میلی‌گرم محلول می‌باشد.

۲۳ میلی‌گرم محلول می‌باشد.

۲۴ میلی‌گرم محلول می‌باشد.

۲۵ میلی‌گرم محلول می‌باشد.

۲۶ میلی‌گرم محلول می‌باشد.

۲۷ میلی‌گرم محلول می‌باشد.

۲۸ میلی‌گرم محلول می‌باشد.

۲۹ میلی‌گرم محلول می‌باشد.

۳۰ میلی‌گرم محلول می‌باشد.

۳۱ میلی‌گرم محلول می‌باشد.

۳۲ میلی‌گرم محلول می‌باشد.

۳۳ میلی‌گرم محلول می‌باشد.

۳۴ میلی‌گرم محلول می‌باشد.

۳۵ میلی‌گرم محلول می‌باشد.

۳۶ میلی‌گرم محلول می‌باشد.

۳۷ میلی‌گرم محلول می‌باشد.

۳۸ میلی‌گرم محلول می‌باشد.

۳۹ میلی‌گرم محلول می‌باشد.

۴۰ میلی‌گرم محلول می‌باشد.

۴۱ میلی‌گرم محلول می‌باشد.

۴۲ میلی‌گرم محلول می‌باشد.

۴۳ میلی‌گرم محلول می‌باشد.

۴۴ میلی‌گرم محلول می‌باشد.

۴۵ میلی‌گرم محلول می‌باشد.

۴۶ میلی‌گرم محلول می‌باشد.

۴۷ میلی‌گرم محلول می‌باشد.

۴۸ میلی‌گرم محلول می‌باشد.

۴۹ میلی‌گرم محلول می‌باشد.

۵۰ میلی‌گرم محلول می‌باشد.

۵۱ میلی‌گرم محلول می‌باشد.

۵۲ میلی‌گرم محلول می‌باشد.

۵۳ میلی‌گرم محلول می‌باشد.

۵۴ میلی‌گرم محلول می‌باشد.

۵۵ میلی‌گرم محلول می‌باشد.

۵۶ میلی‌گرم محلول می‌باشد.

۵۷ میلی‌گرم محلول می‌باشد.

۵۸ میلی‌گرم محلول می‌باشد.

۵۹ میلی‌گرم محلول می‌باشد.

۶۰ میلی‌گرم محلول می‌باشد.

۶۱ میلی‌گرم محلول می‌باشد.

۶۲ میلی‌گرم محلول می‌باشد.

۶۳ میلی‌گرم محلول می‌باشد.

۶۴ میلی‌گرم محلول می‌باشد.

۶۵ میلی‌گرم محلول می‌باشد.

۶۶ میلی‌گرم محلول می‌باشد.

۶۷ میلی‌گرم محلول می‌باشد.

۶۸ میلی‌گرم محلول می‌باشد.

۶۹ میلی‌گرم محلول می‌باشد.

۷۰ میلی‌گرم محلول می‌باشد.

۷۱ میلی‌گرم محلول می‌باشد.

۷۲ میلی‌گرم محلول می‌باشد.

۷۳ میلی‌گرم محلول می‌باشد.

۷۴ میلی‌گرم محلول می‌باشد.

۷۵ میلی‌گرم محلول می‌باشد.

۷۶ میلی‌گرم محلول می‌باشد.

۷۷ میلی‌گرم محلول می‌باشد.

۷۸ میلی‌گرم محلول می‌باشد.

۷۹ میلی‌گرم محلول می‌باشد.

۸۰ میلی‌گرم محلول می‌باشد.

۸۱ میلی‌گرم محلول می‌باشد.

۸۲ میلی‌گرم محلول می‌باشد.

۸۳ میلی‌گرم محلول می‌باشد.

۸۴ میلی‌گرم محلول می‌باشد.

۸۵ میلی‌گرم محلول می‌باشد.

۸۶ میلی‌گرم محلول می‌باشد.

۸۷ میلی‌گرم محلول می‌باشد.

۸۸ میلی‌گرم محلول می‌باشد.

۸۹ میلی‌گرم محلول می‌باشد.

۹۰ میلی‌گرم محلول می‌باشد.

۹۱ میلی‌گرم محلول می‌باشد.

۹۲ میلی‌گرم محلول می‌باشد.

۹۳ میلی‌گرم محلول می‌باشد.

۹۴ میلی‌گرم محلول می‌باشد.

۹۵ میلی‌گرم محلول می‌باشد.

۹۶ میلی‌گرم محلول می‌باشد.

۹۷ میلی‌گرم محلول می‌باشد.

۹۸ میلی‌گرم محلول می‌باشد.

۹۹ میلی‌گرم محلول می‌باشد.

۱۰۰ میلی‌گرم محلول می‌باشد.

۱۰۱ میلی‌گرم محلول می‌باشد.

۱۰۲ میلی‌گرم محلول می‌باشد.

۱۰۳ میلی‌گرم محلول می‌باشد.

۱۰۴ میلی‌گرم محلول می‌باشد.

۱۰۵ میلی‌گرم محلول می‌باشد.

۱۰۶ میلی‌گرم محلول می‌باشد.

۱۰۷ میلی‌گرم محلول می‌باشد.

۱۰۸ میلی‌گرم محلول می‌باشد.

۱۰۹ میلی‌گرم محلول می‌باشد.

۱۱۰ میلی‌گرم محلول می‌باشد.

۱۱۱ میلی‌گرم محلول می‌باشد.

۱۱۲ میلی‌گرم محلول می‌باشد.
جدول 3 ضرایب هم بستگی بین مقدار فسفر استخراجی به روش‌های مختلف

<table>
<thead>
<tr>
<th>عصاره‌گیری</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- اسید کلریدریک 1/4 میلار</td>
<td>0.91</td>
<td>0.87</td>
<td>0.92</td>
<td>0.86</td>
<td>0.91</td>
<td>0.88</td>
<td>0.92</td>
<td>0.91</td>
<td>0.89</td>
<td>0.88</td>
</tr>
<tr>
<td>2- مهلیج 1</td>
<td>0.72</td>
<td>0.69</td>
<td>0.73</td>
<td>0.70</td>
<td>0.73</td>
<td>0.70</td>
<td>0.73</td>
<td>0.72</td>
<td>0.70</td>
<td>0.69</td>
</tr>
<tr>
<td>3- بیگیت‌های آمونیوم-دی-تی‌پی‌ای</td>
<td>0.89</td>
<td>0.87</td>
<td>0.88</td>
<td>0.87</td>
<td>0.89</td>
<td>0.87</td>
<td>0.88</td>
<td>0.89</td>
<td>0.87</td>
<td>0.88</td>
</tr>
<tr>
<td>4- اولسین</td>
<td>0.83</td>
<td>0.82</td>
<td>0.84</td>
<td>0.83</td>
<td>0.83</td>
<td>0.82</td>
<td>0.84</td>
<td>0.83</td>
<td>0.82</td>
<td>0.83</td>
</tr>
<tr>
<td>5- کلرید کلسیم 1/4 میلار</td>
<td>0.93</td>
<td>0.91</td>
<td>0.93</td>
<td>0.91</td>
<td>0.93</td>
<td>0.91</td>
<td>0.93</td>
<td>0.92</td>
<td>0.90</td>
<td>0.89</td>
</tr>
<tr>
<td>6- کالکول</td>
<td>0.84</td>
<td>0.83</td>
<td>0.85</td>
<td>0.84</td>
<td>0.84</td>
<td>0.83</td>
<td>0.85</td>
<td>0.84</td>
<td>0.83</td>
<td>0.84</td>
</tr>
<tr>
<td>7- بری 1</td>
<td>0.78</td>
<td>0.75</td>
<td>0.78</td>
<td>0.76</td>
<td>0.78</td>
<td>0.76</td>
<td>0.78</td>
<td>0.77</td>
<td>0.75</td>
<td>0.76</td>
</tr>
<tr>
<td>8- بری 2</td>
<td>0.79</td>
<td>0.76</td>
<td>0.79</td>
<td>0.77</td>
<td>0.79</td>
<td>0.77</td>
<td>0.79</td>
<td>0.78</td>
<td>0.76</td>
<td>0.77</td>
</tr>
<tr>
<td>9- مهلیج 2</td>
<td>0.80</td>
<td>0.77</td>
<td>0.80</td>
<td>0.78</td>
<td>0.80</td>
<td>0.78</td>
<td>0.80</td>
<td>0.79</td>
<td>0.77</td>
<td>0.78</td>
</tr>
</tbody>
</table>

* میدان‌های پر رنگ به ترتیب در سطر 1 و 5 درصد معنی‌دار می‌باشند.

کلرید کلسیم 1/4 میلار هم بستگی معنی‌داری نداشت. کلرید کلسیم از جمله عصاره‌گیری‌های است که امروزه به عنوان یک عصاره‌گیری جدید منظوره استفاده می‌شود و بخش فسفر محلول را استخراج می‌کند. فسفر عصاره کلرید کلسیم را می‌گیرد. فسفر عصاره کلرید کلسیم در 100 میلار معنی‌داری به فسفر استخراج شده به روش کلرید کلسیم می‌باشد.

فسفر عصاره‌گیری کلرید کلسیم 1/4 نرمال، مهلیج 1 به کرتان آمونیوم-دی-پلی‌پی‌ای اولسین، بری 1 و بری 2 و مهلیج 2 دارد. فسفر استخراج شده به روش هم‌بستگی معنی‌داری به فسفر استخراج شده به روش کلرید کلسیم می‌باشد.

فسفر استخراج شده به روش بری 1 هم‌بستگی معنی‌داری با فسفر استخراج شده به روش‌های اسید کلریدریک 1/4 نرمال، مهلیج 1 به کرتان آمونیوم-دی-پلی‌پی‌ای اولسین، کالکول، بری 1 و مهلیج 2 دارد. فسفر استخراج شده به روش هم‌بستگی 1 میلار معنی‌داری نداشت.

فسفر استخراج شده به روش هم‌بستگی 2 معنی‌داری دارد با فسفر استخراج شده به روش‌های اسید کلریدریک 1/4 نرمال، مهلیج 1 به کرتان آمونیوم-دی-پلی‌پی‌ای اولسین، کالکول، بری 1 و بری 2 دارد. فسفر استخراج شده به روش مهلیج 2 هم‌بستگی معنی‌داری با فسفر استخراج شده به روش‌های اسید کلریدریک 1/4 نرمال، مهلیج 1 به کرتان آمونیوم-دی-پلی‌پی‌ای اولسین، کالکول، بری 1 و بری 2 دارد. فسفر استخراج شده با این روش با فسفر استخراج شده به روش هم‌بستگی معنی‌داری نداشت.

فسفر استخراج شده به روش‌های اسید کلریدریک 1/4 نرمال، مهلیج 1 به کرتان آمونیوم-دی-پلی‌پی‌ای اولسین، بری 1 و بری 2 و مهلیج 2 دارد. فسفر استخراج شده به روش هم‌بستگی معنی‌داری با فسفر استخراج شده به روش کلرید کلسیم 1/4 میلار معنی‌داری نداشت.

فسفر عصاره‌گیری کلرید کلسیم 1/4 نرمال، مهلیج 1 به کرتان آمونیوم-دی-پلی‌پی‌ای اولسین، بری 1 و بری 2 و مهلیج 2 دارد. فسفر استخراج شده به روش هم‌بستگی معنی‌داری با فسفر استخراج شده به روش کلرید کلسیم 1/4 میلار معنی‌داری نداشت.
جدول ۲: ضرایب هم‌ستگی بین فسفر استخراجی شده به روش‌های مختلف با شاخه‌های گیاهی در چهار اول

<table>
<thead>
<tr>
<th>شاخه‌های گیاهی</th>
<th>عصاره‌گیر</th>
<th>عملکرد نسبی</th>
<th>جذب</th>
<th>غلظت</th>
<th>عملکرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>اسید کلریدریک ۱/۰ مولار</td>
<td>۰/۰۴۲</td>
<td>۰/۰۴۱</td>
<td>۰/۰۴۷</td>
<td>۰/۰۵۳</td>
<td>۰/۰۲۲</td>
</tr>
<tr>
<td>مهیلیج ۱</td>
<td>۰/۰۳۷</td>
<td>۰/۰۲۴</td>
<td>۰/۰۲۰</td>
<td>۰/۰۲۹</td>
<td>۰/۰۱۰</td>
</tr>
<tr>
<td>بی‌کربنات آمونیوم - دی‌تی‌پی‌ای</td>
<td>۰/۰۲۹</td>
<td>۰/۰۲۹</td>
<td>۰/۰۲۹</td>
<td>۰/۰۲۹</td>
<td>۰/۰۱۱</td>
</tr>
<tr>
<td>هواگردان</td>
<td>۰/۰۶۵</td>
<td>۰/۰۵۹</td>
<td>۰/۰۵۹</td>
<td>۰/۰۵۹</td>
<td>۰/۰۲۰</td>
</tr>
<tr>
<td>کلرید کلسیم ۰/۰۱ مولار</td>
<td>۰/۰۳۲</td>
<td>۰/۰۲۶</td>
<td>۰/۰۲۶</td>
<td>۰/۰۲۶</td>
<td>۰/۰۱۷</td>
</tr>
<tr>
<td>کالرول</td>
<td>۰/۰۴۷</td>
<td>۰/۰۲۸</td>
<td>۰/۰۲۸</td>
<td>۰/۰۲۸</td>
<td>۰/۰۱۹</td>
</tr>
<tr>
<td>بری ۲</td>
<td>۰/۰۳۷</td>
<td>۰/۰۲۱</td>
<td>۰/۰۲۱</td>
<td>۰/۰۲۱</td>
<td>۰/۰۱۳</td>
</tr>
<tr>
<td>مهیلیج ۲</td>
<td>۰/۰۵۵</td>
<td>۰/۰۳۷</td>
<td>۰/۰۳۷</td>
<td>۰/۰۳۷</td>
<td>۰/۰۱۹</td>
</tr>
</tbody>
</table>

اصداره‌گیر استفاده شده به‌این ترتیب از ضرایب هم‌ستگی می‌باشد:

- **1** مهیلیج
- **2** اسید کلریدریک
- **3** بی‌کربنات آمونیوم
- **4** هواگردان

بعضی از فسفر عصاره‌گیری شده به روش‌های مختلف با ضرایب هم‌ستگی متفاوت بوده و در پایان به‌اینها بیان می‌شود.

هم‌ستگی فسفر استخراجی به وسیله عصاره‌گیرها با شاخه‌های گیاهی در چهار اول

نتایج اربیت فسفر عصاره‌گیری شده به وسیله عصاره‌گیرهای مختلف و شاخه‌های گیاهی درچهار اول (جدول ۲) نشان می‌دهد که ضرایب هم‌ستگی با فسفر عصاره‌گیری شده به روش‌های مختلف عصاره‌گیری هم‌ستگی معنی‌داری دارند.

- فسفر عصاره‌گیری شده به روش استایل کلریدریک ۰/۰۱ مولار، معنی‌داری دارد.
- فسفر عصاره‌گیری شده به روش کالرول، معنی‌داری دارد.
- فسفر عصاره‌گیری شده به روش بری ۲، معنی‌داری دارد.
- فسفر عصاره‌گیری شده به روش کالرول، معنی‌داری دارد.
- فسفر عصاره‌گیری شده به روش کالرول، معنی‌داری دارد.
- فسفر عصاره‌گیری شده به روش کالرول، معنی‌داری دارد.
- فسفر عصاره‌گیری شده به روش کالرول، معنی‌داری دارد.
- فسفر عصاره‌گیری شده به روش کالرول، معنی‌داری دارد.

(۱۱۲)
جدول 5: ضرایب هم بستگی بین فسفر استخراج شده به روش‌های مختلف با شاخص‌های گیاهی در چین‌دوم

<table>
<thead>
<tr>
<th>شاخص‌های گیاهی</th>
<th>عملکرد</th>
<th>جداب</th>
<th>غلظت</th>
<th>عملکرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>بهترین</td>
<td>0.50</td>
<td>0.42</td>
<td>0.1</td>
<td>0.32</td>
</tr>
<tr>
<td>متوسط</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>بدترین</td>
<td>0.13</td>
<td>0.12</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

عنوان: عصاره‌گیر گی می‌تواند برای استخراج فسفر قابل استفاده باشد.

هم بستگی فسفر استخراجی به وسیله عصاره‌گیری‌ها

شاخص‌های گیاهی در چین‌دوم

نتایج ارتباط فسفر عصاره‌گیری شده به وسیله عصاره‌گیری‌ها

مختلف و شاخص‌های گیاهی در چین‌دوم در جدول 5 نشان داده شده است. بر اساس این نتایج شاخص عملکرد با فسفر عصاره‌گیری شده به روش‌های مختلف عصاره‌گیری هم بستگی معنی‌داری دارد.

شاخص غلظت با فسفر عصاره‌گیری شده به روش‌های بی‌کربناتسازی - دی‌تی‌بی‌ای، اولسن و کالول، یک و مهیل 2 هم بستگی معنی‌داری دارد. هم‌چنین این شاخص با فسفر عصاره‌گیری شده به روش‌های اسید کلرید‌بری 0/1 نرمال، مهیل 1، کاریکل 0/1 مولار و بری 2 هم بستگی معنی‌داری دارد.

با توجه به نتایج بدست‌آمده می‌توان نتیجه گرفت که در چین‌دوم جوده‌بندی عصاره‌گیری‌ها به کربنات‌آمیون - دی‌تی‌بی‌ای کالول، بری 1 و

مهیلی 2 هم بستگی معنی‌داری دارد.
جدول ۶: ضرایب هم‌بستگی بین فسر استخراج شده به روش‌های مختلف با شاخص‌های گیاهی در چین سوم

عصاره‌گیر	شاخص‌های گیاهی	عملکرد مطلق	جذب	پاسخ گیاهی	عملکرد نسبی	پیکربندی عمده
اسید کلرید‌ریک/۱ مولار	۰/۱۲	۰/۳۶	۰/۴۷	۰/۵۰	۰/۶۰	مهیلیج ۱
مهیلیج ۱	۰/۰۴	۰/۰۷	۰/۱۰	۰/۱۳	۰/۱۶	مهیلیج ۱
پیکربندی آمیز - دی تی پی ای	۰/۰۶	۰/۱۰	۰/۱۴	۰/۱۷	۰/۲۰	مهیلیج ۱
اولسن	۰/۰۸	۰/۱۱	۰/۱۵	۰/۱۸	۰/۲۱	مهیلیج ۱
کلرید کلسیم/۱ مولار	۰/۱۰	۰/۱۳	۰/۱۶	۰/۱۹	۰/۲۲	مهیلیج ۱
کالرول	۰/۰۶	۰/۰۹	۰/۱۲	۰/۱۵	۰/۱۸	مهیلیج ۱
بی‌هی	۰/۰۸	۰/۱۰	۰/۱۳	۰/۱۶	۰/۱۹	مهیلیج ۱
پی‌هی	۰/۱۰	۰/۱۲	۰/۱۵	۰/۱۸	۰/۲۰	مهیلیج ۱
همه‌گیر استخراجی به وسیله عصاره‌گیرها با چهار شاخص‌های گیاهی در چین سوم						

نتایج ارتباط فسفر عصاره‌گیری شده به وسیله عصاره‌گیرها

منطقه و شاخص‌های گیاهی در چین سوم در جدول ۶ نشان داده شده است. نتایج نشان داده که شاخص عملکرد در این چین پیونج تیپ مشابه دو چین اول دوم با فسفر عصاره‌گیری شده به روش‌های مختلف عصاره‌گیرهای هم‌پیوستگی معنی‌داری تند دارد.

ارتباط شاخص پاسخ محصول با فسفر عصاره‌گیری شده به روش‌های مختلف مشابه شاخص عملکرد نسبی می‌باشد. شاخص پاسخ محصول با فسفر عصاره‌گیری شده به روش‌های

پیکربندی آمیز - دی تی پی ای، اولسن، کالرول، بری ۱ و مهیلیج ۲ هم‌پیوستگی معنی‌داری دارد. همچنین شاخص با فسفر عصاره‌گیری شده به روش‌های اسید کلرید‌ریک، مهیلیج ۱ و کلرید کلسیم/۱ مولار، هم‌پیوستگی معنی‌داری ندارد.

شناسه غلفت با فسفر عصاره‌گیری شده به روش‌های

مهیلیج ۱، پیکربندی آمیز - دی تی پی ای، اولسن، کالرول، بری ۱ و مهیلیج ۲ هم‌پیوستگی معنی‌داری دارد. همچنین شاخص با فسفر عصاره‌گیری شده به روش‌های اسید کلرید‌ریک، مهیلیج ۱ و کلرید کلسیم/۱ مولار، هم‌پیوستگی معنی‌داری ندارد.

شاخص جذب با فسفر عصاره‌گیری شده به روش‌های

115
آزمون شاک فسفر: 1- ارزیابی چند عصاره‌گیر جهت تعیین فسفر قابل استفاده در گیاه بونجه

همیشه گیر می‌تواند منجری ندارد.

با توجه به نتایج بدست آمده می‌توان تنها گیری گرده که در این سو، بونجه عصاره‌گیری یا بی‌آزمایی آمونیوم - دی تی پی ای، بونجه کالرول، بری 1 و مهیلی 2 می‌تواند به عنوان یکی از عصاره‌گیر جهت برآورد فسفر قابل استفاده گیاه بونجه به کار رود.

نتیجه‌گیری

در شرایط این زیر استخوان فسفر قابل استفاده گیاه بونجه، روش‌های کالرول، بی‌آزمایی آمونیوم - دی تی پی ای، متن مورد استفاده

1. فنیکی، م. و. ن. کریمیان. 1378. ارزیابی گلخانه‌ای و آزمایشگاهی چند عصاره‌گیر جهت تعیین فسفر قابل استفاده در بونجه از خاک‌های آهوی استان فارس. علوم و فنون کشاورزی و منابع طبیعی 3: 77-92.

