اثر تراکم بوته بر عملکرد و اجزای عملکرد سه رقم سورگوم علوی‌فهای

شکوفه ساریخانی و خورشید زرمجو

چکیده

به منظور بررسی اثرات فاصله بین ردیف کاشت و قافل‌های روی ردیف کاشت بر عملکرد و اجزای عملکرد سه رقمسورگوم علوی‌فهای آزمایشی در قالب یک طرح استیل‌فرآیند سه تکرار در پهناور سال 1380 در مزارع تحقیقاتی دانشکده کشاورزی دانشگاه صنعتی اصفهان در منطقه لورک اجرا شد. کرت اصلی شامل فاصله بهالی دیده شد. کرت دیگر شامل فاصله بهالی دیده کشت (75 و 50 سانتی‌متر) و کرت‌های جریان فرعی شامل فاصله حاصل از فاکتوری سه رقمسورگوم علوی‌فهای (KFS1, IS722, IS3313) سه رقمسورگوم علوی‌فهای (KFS1, IS722, IS3313) بود. تعداد پنجه نارس و یالگ در متر مربع، تعداد برج در متر مربع، وزن خشک ساقه و برج از افزایش قافل‌های بدون قافل‌های به قافل‌های بوده روابط معنی‌داری کاشت. در اثر کاهش صفات فوق، عملکرد علوی‌های قابل معافیت فاصله بین و روی دیده به طور معنی‌دار کاهش یافت. فاصله بین ردیف ۵۵ سانتی‌متر می‌تواند عملکرد را ایجاد کرده. همچنین فاصله بوته ۶ سانتی‌متر می‌تواند عملکرد علوی‌های را به خود KFS1 پیش‌ترین عملکرد علوی‌های را به ایجاد نمود. همچنین اختصاص داد و نقطه اصلی شده IS722 علوی‌های پایین‌تری نسبت به رقم KFS1 تولید کرد. تعداد پنجه نارس و کمال در متر مربع و تعداد برج در متر مربع در هر دو چنین به صورت معنی‌دار تحت تأثیر گرم کشت نشون داد. فاصله بهالی دیده به قافل‌های بوته و رقم با فاصله بوته قرار گرفتند. وزن خشک ساقه و برج (کیلوگرم در متر مربع) در چین دوم تحت تأثیر معنی‌دار در هم کشت فاصله بهالی یافت. با رقم و قافل‌های بوته قرار گرفتند. با توجه به نتایج بدست آمده کشت با فاصله بهالی ۵۵ سانتی‌متر و فاصله بوته را به دیده ۵۵ سانتی‌متر کل ۲۰۰ متر در حداکثر عملکرد را ایجاد نمود.

واژه‌های کلیدی: فاصله بهالی، عملکرد، فاصله بوته، سورگوم، اجزای عملکرد

مقدمه

یکی از راه‌های افزایش عملکرد محصولات زراعی از طریق روش‌های به زراعی ایجاد تراکم مطلوب بوته به واحده سطح می‌باشد. فاصله بین ردیف‌های کشت و فاصله بین بوته‌ها در روابط معنی‌داری از اجزای مهم تعیین کننده عملکرد بوته در

1. دانشجوی سابق کارشناسی ارشد و استادیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

241
بهزانی بروته در هکنار (2004)، ۲۰۰۵، ۲۰۰۶ و ۲۰۰۷ بهزانی بروته در هکنار (2004) منجر به افزایش ارتفاع بونه و خشک ساقه در واحد سطح شاخه سطح درخت و نسبت برگ به ساقه گردد. ولی کشت میکاک به اثرات تازه سبزی و کاهش قطر ساقه و تعداد پنجه در بونه شد. چمیشی و در این مطالعه مشخص شد که حداکثر ارتفاع بونه و خشک ساقه تعداد پنجه و برگ به رم سپیدفیت (Speed feed) تعلق داشت. در صورتی که رقم شوگریز (Sugar grease) بالاترین مقدار قطر ساقه شاخه سطح درخت و نسبت برگ به ساقه را نشان داد. مطالعه خلبانی محله (۲) در خوی روی سورگوم علفی‌ای نشان داد که افزایش تراکم گیاه باعث افزایش وزن خشک برگ، ساقه و نسبت برگ به ساقه گردد. در حالی که افزایش تراکم ویژه کاشش قطر ساقه و تعداد پنجه در بونه شد. جایی (۳) در تعبیه و در مطالعه دوم سال خود روی سورگوم علفی‌ای مشاهده کرد که فاصله ریفیک کمتر در مقایسه با فاصله ریفیک بیشتر به علت فضای کافی بونه‌ها درآوری تعداد پنجه بیشتری ایست. ولی مقدار فاصله ریفیک‌های ۴، ۶، ۸، ۱۰ و ۱۵ سانتی‌متر در هکنار نشان داد که فاصله ریفیک ۴ سانتی‌متر با عملکرد ۱۳ دیگر بیشتری و فاصله ۱۰ سانتی‌متر با عملکرد ۵۰ و ۵۰ سانتی‌متر که به نسبت با ۱۱/۴ و ۱۷/۳ سانتی‌متر در هکنار ریفیک ۴۰ سانتی‌متر به عملکرد برای کمترین جای reform داشت. تعداد پنجه و خشک ساقه در هکنار بود. نتایج مطالعه برگ و کامیل (۸) در میان‌بگان امریکا روی سورگوم علفی‌ای نشان داد که افزایش تراکم گیاه باعث افزایش تعداد پنجه در واحد سطح و افزایش عملکرد علفی‌ای حاصل گردد ولی نتایج کمی در نسبت برگ به ساقه بود. در حالی که افزایش كامیل (۳) بهترین تراکم و آرایش کاشت را برای استفاده سورگوم علفی‌ای جنوب خوزستان سپری کرد. برای گزارش کردن که از نظر عملکرد علفی‌ای بیشتری مقدار خطوط کاشت (۳۰)، ۲۵ هکتار و ۱۰ سانتی‌متر بر انجام معنی‌داری وجود داشت و فاصله ۳۰ سانتی‌متر با عملکرد ۹۰/۸۱ در هکنار دارای برتری بود. بهترین ترکیب بیماری‌ها، فاصله خطوط کاشت ۳۰ و ۴۵
دسته‌بندی: اثر تراکم بوته بر عملکرد و اجزای عملکرد سه رقم سورگوم علوی‌نیان

شیوه‌های تبدیل در عمق ۳ تا ۵ سانتی‌متر خاک قرار گرفت که پس از استقرار کامل بوته‌ها در مرحله چهارگیاه یک بوته در هر محل تلقیه داده شد. بیشتر درصد کود اوره مورد نیاز (۲۰۰۰ کیلوگرم در هکتار اوره با ۴۴ درصد از خاک) به عنوان کود پایه دو روز قبل از کاشت و کود سرک در سه مرحله (۵ برگی، مرحله اول)، هفته بعد از مرحله اول و ۶ هفته بعد از مرحله اول در هر مرحله ۲۰ درصد کود اوره به صورت یک ناوت در فاصله بین ردیف‌های کاشت پخش گردید. بیشتر درصد دیگری کود بعد از چهار اول به کیاچ داده شد. اولین آبیاری با فاصله اوره بعد از کاشت صورت گرفت و آبیاری بعد از آن نماد کاملاً بدون کود بود و فاصله ۳ تا ۴ روز با عامل دمای در مهار گردیده توزیع مصرف به فاصله دو سانتی‌متر در نری ۳۰ برگی کاملاً (جدول ۵) نمونه‌برداری از کیک مریع واجدی‌های آزمایشی پس از حدف حاضری یا انجام گرفت. صفات مورد اندوزگیری شامل تعداد پنجه نارس (پیش از ۳ برگی کاملاً) و کاملاً (حدود طبیعی ۳ برگ کاملاً) در مریع، تعداد برگ در مریع، قطر ساقه در وسط بوته و در بالای اولین گره از سطح خاک، وزن خشک برگ و ساقه در چهار اول و دوم و عملکرد سه رقم سورگوم علوی‌نیان (Duncan’s Multiple Range Test) پس از چهار دوم به داده‌های حاصل توسط برنامه‌های کامپیوتری SAS و MSTATC مورد تجزیه و تحلیل آماری قرار گرفت و میانگین‌ها به وسیله آزمون چند دامنه‌ای داتنک (Duncan’s Multiple Range Test)

نتایج و بحث

الف) تعداد پنجه (نارس و کاملاً) در مریع

اثر فاصله ردیف و فاصله بوته بر تعداد پنجه (نارس و کاملاً) در مریع در چهار اول و دوم در سطح احتمال یک درصد معنی‌دار بود (جدول ۱ و ۲). مقایسه میانگین‌های فاصله ردیف و فاصله بوته در چهار اول و دوم نشان داد که با افزایش فاصله ردیف و فاصله بوته، تعداد پنجه نارس و کاملاً در مریع به تعداد پنجه بین ردیف‌های فاصله ردیف کاهش یافت (جدول ۱). با افزایش فاصله ردیف از ۴۵ به ۷۵ سانتی‌متر، تعداد پنجه روی زمین می‌باشد که کاهش یافته است (۵).
جدول 1. تجزیه آماری اثر عوامل آزمایشی و اثرات متقابل آنها بر صفات مورد مطالعه در جین اول در سوره‌گر علف‌های

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>درجه آزادی</th>
<th>متغیرهای</th>
<th>تعداد پنجه</th>
<th>فطر ساقه بالای اولین</th>
<th>وزن خشک</th>
<th>تعداد پنجه</th>
<th>فطر ساقه بالای اولین</th>
<th>وزن خشک</th>
</tr>
</thead>
<tbody>
<tr>
<td>چین اول</td>
<td></td>
<td>بلک</td>
<td>1228</td>
<td>2966</td>
<td>0/143</td>
<td>2022</td>
<td>0/300</td>
<td>0/143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>فاصله رده‌ی</td>
<td>0/070</td>
<td>0/599</td>
<td>0/0189</td>
<td>0/0433</td>
<td>2016</td>
<td>0/0433</td>
</tr>
<tr>
<td></td>
<td></td>
<td>خطا</td>
<td>0/0809</td>
<td>68/11</td>
<td>0/029</td>
<td>0/011</td>
<td>0/029</td>
<td>0/011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>رقم</td>
<td>0/2611</td>
<td>0/6595</td>
<td>0/1849</td>
<td>0/6595</td>
<td>0/1849</td>
<td>0/6595</td>
</tr>
<tr>
<td></td>
<td></td>
<td>فاصله بوته</td>
<td>0/769</td>
<td>0/350</td>
<td>0/050</td>
<td>0/350</td>
<td>0/050</td>
<td>0/350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>فاصله رده‌ی×رقم</td>
<td>0/0480</td>
<td>0/051</td>
<td>0/015</td>
<td>0/051</td>
<td>0/015</td>
<td>0/051</td>
</tr>
<tr>
<td></td>
<td></td>
<td>فاصله رده‌ی×فاصله بوته</td>
<td>0/0805</td>
<td>0/0311</td>
<td>0/0173</td>
<td>0/0311</td>
<td>0/0173</td>
<td>0/0311</td>
</tr>
<tr>
<td></td>
<td></td>
<td>رقم×فاصله بوته</td>
<td>0/0595</td>
<td>0/101</td>
<td>0/019</td>
<td>0/101</td>
<td>0/019</td>
<td>0/101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>رقم×ردیف×فاصله بوته</td>
<td>0/0780</td>
<td>0/263</td>
<td>0/0295</td>
<td>0/263</td>
<td>0/0295</td>
<td>0/263</td>
</tr>
<tr>
<td></td>
<td></td>
<td>رقم×ردیف</td>
<td>0/0585</td>
<td>25/19</td>
<td>0/004</td>
<td>25/19</td>
<td>0/004</td>
<td>25/19</td>
</tr>
</tbody>
</table>

* و ** به ترتیب نشان دهنده معنی‌دار بودن ارتباط عوامل آزمایشی در سطح احتمال 0.05 و 0.1 درصد است.
جدول ۴. تجزیه آماری اثر عوامل آزمایشی و اثرات متقابل آنها بر صفات مورد مطالعه در چین دوم در سوره‌ای علوفه‌ای

<table>
<thead>
<tr>
<th>منبع تغییرات</th>
<th>درجه آزادی</th>
<th>تعداد پنجه</th>
<th>اولین گره</th>
<th>ساقه</th>
<th>وسط بوته</th>
<th>ساقه بالایی</th>
<th>قطر ساقه در وزن خشک</th>
<th>وزن خشک</th>
<th>عامل کرد کل علوفه</th>
<th>عسل دوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>نارس</td>
<td>۲</td>
<td>۳۰۲/۴</td>
<td>۱۱۷/۲</td>
<td>۸۰۰/۹</td>
<td>۸۰۰/۹</td>
<td>۸۰۰/۹</td>
<td>۸۰۰/۹</td>
<td>۸۰۰/۹</td>
<td>۸۰۰/۹</td>
<td>۵۱۳/۳</td>
</tr>
<tr>
<td>خطا</td>
<td>۴</td>
<td>۱۹۱/۲/۱۳۲/۲</td>
<td>۱۹۱/۲/۱۳۲/۲</td>
<td>۱۰۹۵/۲/۴</td>
<td>۱۰۹۵/۲/۴</td>
<td>۱۰۹۵/۲/۴</td>
<td>۱۰۹۵/۲/۴</td>
<td>۱۰۹۵/۲/۴</td>
<td>۱۰۹۵/۲/۴</td>
<td>۴۰۹/۵</td>
</tr>
<tr>
<td>رقم</td>
<td>۲</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
</tr>
<tr>
<td>اولین بوته</td>
<td>۲</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
</tr>
<tr>
<td>رقم اولین بوته</td>
<td>۴</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
</tr>
<tr>
<td>نقطه اولین بوته</td>
<td>۴</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
</tr>
<tr>
<td>نقطه رقم اولین بوته</td>
<td>۴</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
</tr>
<tr>
<td>نقطه رقم نقطه اولین بوته</td>
<td>۴</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
</tr>
<tr>
<td>نقطه نقطه رقم نقطه اولین بوته</td>
<td>۴</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
<td>۲/۶۸/۱</td>
</tr>
</tbody>
</table>

* به ترتیب نشان دهنده معنادار بودن اثر عوامل آزمایشی در سطح احتمال ۵ و ۱ درصد است.
تغريير تناز.

إثر مقابل فاصله رديف و فاصله بوة بر تعداد بنجه نارس و كامل در مترين بور. في قداد بير (جدول 1 و 2). مقياس باطقين ناري و فاصله رديف و فاصله بوة بر تعداد بنجه نارس و كامل في مترين بور. في قداد بير (جدول 3). ايو و همكاران مه.

چین تبیه (پا افراشی میوز) رادر مشاهده کردن (7).

ب) ساقه

1. قطر ساقه

اثر فاصله رديف و فاصله بوة بر قطر ساقه در باراولوین گره و در وسط بونه در چین اول و گره در سطح احتمال یک درصد معنی دار بود (جدول 3). در چین اول با برداشت ساقه اصلی صخیثی غلیبت انتهای ساقه اصلی از بین رفت و فرصت برای رشد و ظهور بنجه برای گرسنگیدن. با افراشی فاصله بونه، تعداد بنجه های تولید شده در بونه بیشترمی شود (5) و این پنجهای جدید با ایجاد یک کانوپی
جدول ۳. مقایسه میانگین‌های اثر عوامل آزمایشی بر صفت‌های مورد مطالعه

<table>
<thead>
<tr>
<th>عامل‌های کل</th>
<th>چنین دوم</th>
<th>چنین اول</th>
<th>عوامل آزمایشی</th>
<th>فاصله بین رزید (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن خشک (kg/m²)</td>
<td>وزن خشک (kg/m²)</td>
<td>قطر سطح بالایی (cm)</td>
<td>پوشه (cm)</td>
<td>قطر سطح بالایی (cm)</td>
</tr>
<tr>
<td>۲/۹۹ a</td>
<td>۱/۸۸ a</td>
<td>۱/۸۳ c</td>
<td>۰/۷۲ c</td>
<td>۱/۸۶ c</td>
</tr>
<tr>
<td>۲/۹۳ b</td>
<td>۱/۸۸ b</td>
<td>۰/۷۷ b</td>
<td>۹/۸۴ b</td>
<td>۱/۸۳ b</td>
</tr>
<tr>
<td>۲/۴۹ c</td>
<td>۰/۸۰ c</td>
<td>۰/۰۹ c</td>
<td>۱/۸۸ a</td>
<td>۰/۱۵ a</td>
</tr>
<tr>
<td>۲/۴۷ c</td>
<td>۱/۱۶ b</td>
<td>۱/۰۶ b</td>
<td>۰/۴۹ c</td>
<td>۰/۸۴ c</td>
</tr>
<tr>
<td>۲/۷۸ b</td>
<td>۱/۳۰ a</td>
<td>۱/۱۲ a</td>
<td>۰/۷۸ b</td>
<td>۰/۸۵ b</td>
</tr>
<tr>
<td>۲/۸۳ a</td>
<td>۱/۳۰ a</td>
<td>۱/۲۵ a</td>
<td>۰/۸۰ a</td>
<td>۱/۴۰ a</td>
</tr>
<tr>
<td>۲/۸۵ a</td>
<td>۱/۵۱ a</td>
<td>۰/۸۱ a</td>
<td>۱/۰۷ a</td>
<td>۳/۳۸ a</td>
</tr>
<tr>
<td>۲/۷۹ b</td>
<td>۱/۲۱ b</td>
<td>۰/۸۲ a</td>
<td>۱/۰۶ b</td>
<td>۰/۹۶ b</td>
</tr>
<tr>
<td>۲/۳۸ c</td>
<td>۰/۸۰ c</td>
<td>۰/۸۲ c</td>
<td>۱/۰۷ a</td>
<td>۱/۴۸ c</td>
</tr>
</tbody>
</table>

۱. میانگین‌های هر یک از عوامل آزمایشی در هر ستون که حداکثر در یک حرف مشترک هستند، فاقد تفاوت اماری بر اساس آزمون دانک در سطح احتمال ۵ درصد می‌باشند.
جدول ۴. مقایسه میانگین‌های اثر مقابل فاصله بین ریف کاشت و رقم برای صفات مورد مطالعه در چین اول و دوم.

<table>
<thead>
<tr>
<th>رقم کاشت</th>
<th>چین دوم</th>
<th>چین اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن خشک (kg/m³)</td>
<td>تعداد پنجه نارس در متر مربع</td>
<td>تعداد پنجه نارس در متر مربع</td>
</tr>
<tr>
<td>۱/۳۲۹ b</td>
<td>۹۸۸/۶ b</td>
<td>۱۱۳/۷ b</td>
</tr>
<tr>
<td>۱/۴۸۰ a</td>
<td>۱۳۶/۳ a</td>
<td>۱۶۳/۹ a</td>
</tr>
<tr>
<td>۱/۵۷۲ a</td>
<td>۵۳/۴ d</td>
<td>۴۳/۴ d</td>
</tr>
<tr>
<td>۰/۸۹۸ d</td>
<td>۷۶/۶ c</td>
<td>۷۹/۶ c</td>
</tr>
<tr>
<td>۱/۰۵ c</td>
<td>۱۷۶/۷ b</td>
<td>۱۷۶/۷ b</td>
</tr>
<tr>
<td>۱/۱۰۱ c</td>
<td>۴۹/۴ c</td>
<td>۴۹/۴ c</td>
</tr>
<tr>
<td>۰/۸۱ e</td>
<td>۶۵/۳ d</td>
<td>۶۴/۸ d</td>
</tr>
<tr>
<td>۰/۷۹ d</td>
<td>۹۸/۹ e</td>
<td>۹۸/۹ e</td>
</tr>
<tr>
<td>۰/۹۱ d</td>
<td>۲۹/۰ d</td>
<td>۲۹/۰ d</td>
</tr>
</tbody>
</table>

1. میانگین‌های هر ستون که حداکثر در یک حرف مشترک باشند، فاقد تفاوت آماری بر اساس آزمون دانکن در سطح احتمال ۵ درصد می‌باشند.
جدول 5: مقایسه میانگین‌های اثر مقابل قاصله بین ردیف کاشت و فاصله بین رنگ کاشت برای صفات مورد مطالعه در چین اول و دوم

<table>
<thead>
<tr>
<th>چین دوم</th>
<th>چین اول</th>
<th>فاصله بین رنگ کاشت (cm)</th>
<th>تعداد پنجه نارس در متر مربع</th>
<th>تعداد پنجه کامل در متر مربع</th>
<th>تعداد پنجه نارس در متر مربع</th>
<th>تعداد پنجه کامل در متر مربع</th>
</tr>
</thead>
<tbody>
<tr>
<td>1388/7</td>
<td>451/5</td>
<td>157/9</td>
<td>612/9</td>
<td>375/4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1072/16</td>
<td>337/9</td>
<td>101/6</td>
<td>508/6</td>
<td>23/3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>70/5</td>
<td>76/5</td>
<td>8</td>
<td>383/9</td>
<td>29/2</td>
<td>19/1</td>
<td></td>
</tr>
</tbody>
</table>

1034/7	328/8	108/4	508/6	25/3	4
920/7	334/0	66/0	508/6	23/3	4
880/4	86/9	19/0	366/0	20/3	8

910/9	250/3	68/5	385/0	29/0	4
81/4	217/4	74/7	237/1	13/4	6
230/1	183/1	106/8	203/1	17/4	8

1. میانگین‌های هر ستون چه حداقل در یک حرف مشترک هستند، فاقد تفاوت آماری بر اساس آزمون دانتیک در سطح احتمال 5 درصد می‌باشند.
مناسب مانع از نفوذ پیشرفت نور و دما داخل بوقت ساختمان و در نتیجه روند افزایش قتر ساقه
با افزایش فاصله بوقت صورت تغییرت.

چکام از آثار متقابل در کاهش قتر ساقه به بالای اولین
گره و در وسط بوقت در چهار اول و دوم معنی دار نبود
(جدول 1 و 2).

۲. وزن خشک ساقه در متر مربع

اثر فعلی ریف و فاصله بوقت بر وزن خشک ساقه در چهار اول
و دوم در سطح احتمال یک درصد معنی دار (جدول ۱ و ۲).

مقابلیت میانگین‌های فاصله ریف و فاصله بوقت در چهار اول و
دوم نشان داد که با افزایش فاصله ریف و فاصله بوقت، وزن
خشک ساقه در متر مربع کاهش یافت (جدول ۳). کاهش
فاصله ریف و فاصله بوقت از طرف باعث افزایش میانگین
تعداد بوقت در متر مربع و از طرف دیگر موجب افزایش تعداد
بنجه کامل در متر مربع می‌شود و در نتیجه وزن خشک ساقه در
مترا در متر مربع افزایش می‌یابد. اگر افزایش تعداد بوقت در واحده
سطح باعث تبدیل گیاهی به کسب منابع محیطی شده و
وزن خشک ساقه بیش از وزن خشک ساقه در متر مربع نماید.

اثر متقابل فاصله ریف و فاصله بوقت بر وزن خشک ساقه
در متر مربع در چهار اول و دوم معنی دار نبود.

چ) برگ

۱. تعداد برگ در متر مربع

اثر فاصله ریف و فاصله بوقت روی ریف برق و تعداد برگ در متر
مریب در چهار اول و دوم در سطح احتمال یک درصد معنی دار
برد (جدول ۱ و ۲). مقایسه میانگین‌های فاصله ریف و فاصله
بوقت در چهار اول و دوم نشان داد که با افزایش فاصله ریف و
فاصله بوقت تعداد برگ در متر مربع از ۴۰ به ۲۴ برد و با
افراش فاصله بوقت از ۴ به ۸ سناریو میانگین تعداد برگ در
مزیب به ۴ به ۲۲ برگ کاهش یافت. به دنبال کاهش تعداد بوقت در متر
مریب، تعداد برگ در متر مربع (جدول ۴) و تعداد بینجه در متر
مریب (جدول ۴ که یک برک اگر برق افزایش فاصله ریف
و فاصله بوقت باعث افزایش تعداد برگ در بیشتر و ریف
افراش بیان اشکالی به دنبال بوقت تا کاهش تعداد بوقت در متر مربع نشان
از افزایش فاصله بین ریف و جبران نماید. مطالعه رشدی و
سانتی متر معنی‌دار گردید. در هر دو چنین بیشترین تعداد برگ در متر مربع در فاصله رتیف 25 سانتی متر با فاصله بیشتر 2 /سانتی متر (باین‌باین 55 سانتی متر به متر مربع) هدست آمد. کمترین تعداد برگ در متر مربع در فاصله رتیف 75 سانتی متر با فاصله بیشتر 8 سانتی متر (باین‌باین 17 سانتی متر به متر مربع) داشتند (جدول 5). تعداد برگ در متر مربع با تعداد نهایی کامل در چین اول همبستگی بالایی نشان داد (جدول 7).

2. وزن خشک برگ در متر مربع

از فاصله رتیف و فاصله بیشتر برون خشک برگ در چین اول و دوم در سطح احتمال یک درصد معنی‌دار بود (جدول 1 و 2). مقایسه میانگین‌های فاصله رتیف و فاصله بیشتر در چین اول و دوم نشان داد که با افزایش فاصله رتیف و فاصله بیشتر، وزن خشک برگ در متر مربع کاهش می‌یابد (جدول 3). کاهش فاصله رتیف و فاصله بیشتر از طرف باعث افزایش میانگین تعداد برگ در متر مربع بشت و از طرف دیگر موجب افزایش تعداد نهایی در چین اول و دوم می‌گردد (جدول 3). اگرچه افزایش تعداد برگ در متر مربع در فاصله رتیف و فاصله بیشتر باعث یک شده، اما افزایش تعادل برون و همچنین تعداد نهایی برگ در متر مربع نتوانست کاهش وزن خشک برگ را جبران کند. خیلی محله (2) نیز در مطالعه خود بر روی سورگوم علوفه‌ای افزایش وزن خشک برگ در متر مربع با افزایش تراکم گیاه‌گزاری کرد.

بعنوان ارقام از نظر وزن خشک برگ در متر مربع در چین اول و دوم دیافرسی معنی‌داری در سطح احتمال یک درصد وجود داشت (جدول 1 و 2). با اساس جدول 2 در هر دو چنین با افزایش وزن خشک برگ در متر مربع تعداد برگ به رقم KFSI بین بزرگ‌تر و ضخیم و کمترین وزن خشک سالانه در متر مربع معنی‌دار بود (IS3313 یا افزایش نتایج برگ و پنجه در متر مربع در فاصله بیشتر 25 سانتی متر نسبت به فاصله بیشتر 8 سانتی متر).
جدول ۶. مقایسه میانگین‌های اثر متقابل رقم و فاصله بوته روز فاصله کاشت از سطح مورد مطالعه در چین اول و دوم.

<table>
<thead>
<tr>
<th>رقم ردیف کاشت (cm)</th>
<th>فاصله بوته روز</th>
<th>تعداد پنجه نارس در متر مربع</th>
<th>تعداد پنجه کامل در متر مربع</th>
<th>وزن خشک برگ (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>چین اول</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>چین دوم</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS3313</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/19 d</td>
<td>957/6 b</td>
<td>359/8 b</td>
<td>110/0/5 b</td>
<td></td>
</tr>
<tr>
<td>1/02 c</td>
<td>844/0 c</td>
<td>77/86 c</td>
<td>80/4 d</td>
<td></td>
</tr>
<tr>
<td>0/87 f</td>
<td>749/1 d</td>
<td>68/0 c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS722</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59 b</td>
<td>1237/9 a</td>
<td>435/6 a</td>
<td>181/1 a</td>
<td></td>
</tr>
<tr>
<td>1/39 c</td>
<td>970/7 b</td>
<td>368/0 b</td>
<td>137/9 b</td>
<td></td>
</tr>
<tr>
<td>1/18 d</td>
<td>80/5/7 c</td>
<td>288/0 a</td>
<td>100/5 c</td>
<td></td>
</tr>
<tr>
<td>KFS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/85 a</td>
<td>560/0 e</td>
<td>245/9 e</td>
<td>59/8 e</td>
<td></td>
</tr>
<tr>
<td>1/70 b</td>
<td>549/1 c</td>
<td>221/1 e</td>
<td>48/7 f</td>
<td></td>
</tr>
<tr>
<td>1/42 f</td>
<td>540/0 c</td>
<td>210/5 e</td>
<td>45/0 f</td>
<td></td>
</tr>
</tbody>
</table>

1. میانگین‌های هر ستون که حداکثر در یک حرف مشترک باشند، فاقد تفاوت آماری بر اساس آزمون دانکن در سطح احتمال ۵ درصد می‌باشند.
جدول ۷: جدول ضرایب همبستگی صفات مورد ارزیابی در دو چین مختلف

<table>
<thead>
<tr>
<th>عملکرد علوفه نارس</th>
<th>عملکرد علوفه بالغ</th>
<th>قطر علوفه در متر مربع</th>
<th>وزن خشک بیکر در متر مربع</th>
<th>تعداد پنجه در بوته</th>
<th>وزن خشک بیکر در بوته</th>
<th>تعداد پنجه در بوته</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۰۶۲۸</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۹۱۲</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۹۱۲</td>
</tr>
<tr>
<td>۱/۰۳۵۵</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۹۱۲</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۹۱۲</td>
</tr>
<tr>
<td>۱/۰۲۸۱</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۹۱۲</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۹۱۲</td>
</tr>
<tr>
<td>۱/۰۲۸۱</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۹۱۲</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۹۱۲</td>
</tr>
<tr>
<td>۱/۰۲۸۱</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۹۱۲</td>
<td>۰/۰۷۳۱</td>
<td>۰/۰۹۱۲</td>
</tr>
</tbody>
</table>

پایین قطر ضرایب همبستگی در چین او و بالای قطر ضرایب همبستگی در چین دوم اورد شده است. ** ضرایب همبستگی قوی و معنی دار

*** ضرایب همبستگی غیر معنی دار

سایر ضرایب همبستگی ضعیف و غیر معنی دار هستند.
تیپ نهایی

نتایج این مطالعه نشان داد که عملکرد عضله سردهم و عضله دانه دار تحت تأثیر فاصله ریوی و فاصله بیوتوه روز و ریوی قرار می‌گیرد و فاصله ریوی ۲۵ سانتی‌متر و فاصله بیوتوه روز درد ۴ ساعتی متر بهترین تراکم کاشت را در افراد می‌سازد. با توجه به این که مورد عملکرد عضله سردرم اثرات متخلل قسم کاسه و فاصله بیوتوه روز درد مبینی دار شدند، این آرایش کاشت سرا Sorghum برای ارکان بررسی شده قابل توصیه است.

همسانی عملکرد عضله دانه بر زود و ساقه محلی و معلول دانه در بود و این دو صفت در انتخاب ارکان بر عملکرد بالا می‌توانند استفاده شوند. در میان ارکام مورد مطالعه به ترتیب، ریوی بهتر از سایر ارقام باشد. در این موضوع پانسل ریوی جمعاً عملکرد عضله را تراکم می‌دهند. این رقیب برای شرایط آب و هوا، اصلی توصیه می‌گردد.

３. عملکرد کل عضله خشک

اثر فاصله ریوی و فاصله بیوتوه بر عملکرد کل عضله خشک در سطح ارکام یکی درد از بیوتوه مشاهده می‌شود که به ترتیب ارکام بیوتوه نشان داد که با افزایش فاصله بیوتوه از ۲۵ سانتی‌متر، عملکرد کلی عضله خشک در متر مربع کاهش یافت (جدول ۳). کاهش عملکرد عضله در متر مربع در چین اول و سپس درد چین دور با استفاده از فاصله ریوی و فاصله بیوتوه بیشتر در حیطه، انرژی و زود و ساقه محلی می‌تواند کاهش عملکرد کلی عضله خشک در متر مربع
منابع مورد استفاده

1. خدایی، ن. 1371. غلات. انتشارات دانشگاه تهران.
2. خلیلی محله، ج. 1381. بررسی تأثیر تراکم کاشت بر صفات مورفولوژیکی، عملکرد کمی و کیفی هیبریدهای سرخورم علف‌های در شرایط کشت دوم در منطقه خوی. چکیده مقالات هفتمین کنگره زراعت و اصلاح نباتات ایران. مؤسسه تحقیقات اصلاح و تهیه نهال و بذر کرخ.
3. دهقان، ا. 1379. بررسی و تعمیق تراکم بونه و آراشی مناسب سرخورم علف‌های رقم اسپیدفید در جنوب خوزستان. چکیده مقالات ششمین کنگره زراعت و اصلاح نباتات ایران، دانشگاه مازندران، یزد.
4. رشدي‌پور، م. س. و س. رضوی‌پور. 1381. اثرات تراکم بونه بر خصوصیات کمی و کیفی ارقام سرخورم علف‌های در کشت دوم. چکیده مقالات هفتمین کنگره زراعت و اصلاح نباتات ایران، مؤسسه تحقیقات اصلاح و تهیه نهال و بذر کرخ.
5. ساری‌خانی خرمی، ش. 1381. بررسی اثر فاصله بین رذف کاشت و فاصله بونه روی رذف کاشت بر عملکرد و اجزای عملکرد سرخورم علف‌های در شرایط آب و هوای اصفهان. بایان نامه کارشناسی ارشد زراعت، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
6. صابری، م. ح. 1370. بررسی اثر تراکم بذر و فاصله خطوط کاشت بر روی عملکرد سرخورم علف‌های. بایان نامه کارشناسی ارشد زراعت، دانشگاه کشاورزی، دانشگاه تبریز.