تأثیر مدیریت کوددهی نیتروژن بر عملکرد برنج (رقم خزر) و اجزای آن در یک خاک شالیزاری استان گیلان

حمیدرضا علی عباسی، مسعود اصفهانی، بابک رعیي و مسعود کاوی

چکیده

به منظور بررسی تأثیر مقادیر و نوع بندی کود نیتروژن بر عملکرد دانه و اجزای عملکرد برنج (Oryza sativa L.) (رقم خزر) آزمایشی در سال 1382 در یک خاک شالیزاری با پیشینه کشاورزی نسبی در استان گیلان. در قالب طرح‌بندی کاملاً تصادفی با سه تکرار اجرا شد. در این آزمایش شش تیمار شامل: شاهد (بدون اضافه از کود نیتروژن)، تیمار دوم (20 کیلوگرم نیتروژن در هکتار در زمان نشکاری)، تیمار سوم (40 کیلوگرم نیتروژن در هکتار در زمان نشکاری)، تیمار چهارم (60 کیلوگرم نیتروژن در هکتار در زمان نشکاری)، تیمار پنجم و تیمار ششم (120 کیلوگرم نیتروژن در هکتار در زمان نشکاری، پنجمی و آغاز شش روزه، تیمار پنجم (120 کیلوگرم نیتروژن در هکتار در زمان نشکاری و پنجمی و تیمار ششم) 20 کیلوگرم نیتروژن در هکتار در زمان نشکاری، پنجمی و آغاز شش روزه) اجراء گردید. نتایج نشان داد که بالاترین تعداد پنج‌بازیه‌های بارور در تیمار پنجم و ششم با مصرف 20 کیلوگرم نیتروژن در هکتار و سه نویب به ترتیب 236 و 242 عدد در متر مربع بود. بالاترین سه نویب دانه در ۸۴/۸ درصد، وزن هزار دانه (۷۴/۸ گرم) و عملکرد دانه (۳۸/۴ تن در هکتار) به تیمار اولیه تعلق داشت. ولی از نظر عملکرد و وزن هزار دانه، تیمارهای چهارم و ششم بر سه نویب کوددهی اختراع مالی را گیرنده بودند. این موضوع ممکن است تأثیر مصرف نیتروژن کود بدین شکل باشد که در آغاز رشد نشکاری سطح نیتروژن برقی ۳۷/۸ و ۲۳/۸ کیلوگرم نیتروژن در هکتار شکل گرفته باشد. در بررسی پودرینگ سبزیجات ۸۴/۸۸۴۸/۸۸ درصد از تغییرات عملکرد دانه را توجیه می‌کند. در ترجمه، در این محدوده مصرف نیتروژن ۳۰ کیلوگرم نیتروژن در هکتار برای رقم برنج خزر پیشنهاد می‌شود. زیرا با این روش می‌توان به عملکرد مشابهی با مصرف ۱۲۰ کیلوگرم نیتروژن در هکتار دست یافت.

واژه‌های کلیدی: برنج، نویب بندی کود نیتروژن، عملکرد، اجزای عملکرد

مقدمه

تأثیر میزان دسترسی آنها به منابع کودی به ویژه کود نیتروژن ویژگی‌های مورفولوژیک و فیزیولوژیک گیاهان، اغلب تحت

1. بی‌تربیت دانشجوی سابق کارشناسی ارشد و استادیاران زراعت و اصلاح نباتات، دانشکده علوم کشاورزی، دانشگاه گیلان

2. استادیار پژوهش مؤسسه تحقیقات برنج کشور، رشت

۲۲۳
جدول 1: مشخصات خاک محل آزمایش

<table>
<thead>
<tr>
<th>مشخصات</th>
<th>درصد نیتروژن</th>
<th>همبستگی الکتریکی</th>
<th>تهیه آب در سال رس بسته</th>
<th>شن سیلت رس</th>
<th>درصد کربن جذب</th>
<th>جذب نیتروژن</th>
<th>پتانس تال جذب</th>
<th>دندان</th>
<th>جذب کل</th>
<th>تهیه آب در سال رس بسته</th>
<th>سطح بالکن</th>
<th>سطح پلک 1</th>
<th>سطح پلک 2</th>
<th>سطح پلک 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg.kg⁻¹</td>
<td>ds.m⁻¹</td>
<td></td>
<td></td>
<td>mg.kg⁻¹</td>
<td>ds.m⁻¹</td>
<td>mg.kg⁻¹</td>
<td></td>
<td>mg.kg⁻¹</td>
<td>ds.m⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بلک 1</td>
<td>8</td>
<td>88</td>
<td>0.00/0.00</td>
<td>100</td>
<td>11/0.00</td>
<td>0.00/0.00</td>
<td>6/0.00</td>
<td>6/0.00</td>
<td>6/0.00</td>
<td>0.00/0.00</td>
<td>3/3</td>
<td>2/2</td>
<td>1/1</td>
<td>4/4</td>
</tr>
<tr>
<td>بلک 2</td>
<td>8</td>
<td>88</td>
<td>0.00/0.00</td>
<td>100</td>
<td>11/0.00</td>
<td>0.00/0.00</td>
<td>6/0.00</td>
<td>6/0.00</td>
<td>6/0.00</td>
<td>0.00/0.00</td>
<td>3/3</td>
<td>2/2</td>
<td>1/1</td>
<td>4/4</td>
</tr>
<tr>
<td>بلک 3</td>
<td>8</td>
<td>88</td>
<td>0.00/0.00</td>
<td>100</td>
<td>11/0.00</td>
<td>0.00/0.00</td>
<td>6/0.00</td>
<td>6/0.00</td>
<td>6/0.00</td>
<td>0.00/0.00</td>
<td>3/3</td>
<td>2/2</td>
<td>1/1</td>
<td>4/4</td>
</tr>
</tbody>
</table>

سطح دریای آزاد امکان می‌باشد. به‌طور کل، از اجرای آزمایش‌های چهار رو به روز می‌باشد.

در این آزمایش‌ها، می‌توان از یک عضله‌های بینی به‌طور کلی می‌باشد. در این آزمایش‌ها، می‌توان از یک عضله‌های بینی به‌طور کلی می‌باشد.

در این آزمایش‌ها، می‌توان از یک عضله‌های بینی به‌طور کلی می‌باشد. در این آزمایش‌ها، می‌توان از یک عضله‌های بینی به‌طور کلی می‌باشد.
جدول 2. تیمارهای کود تیروزون

<table>
<thead>
<tr>
<th>نیتروژن مصرفی (کیلوگرم در هکتار)</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>ابتدا</td>
<td>پایه</td>
</tr>
<tr>
<td>مطلق</td>
<td>همبستگی</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

رطوبت 14 درصد دانه محاسبه شد.

برای انجام تجربه از متغیر و مقایسه میانگین‌ها از نرم‌افزار SAS برای محاسبه ضرایب همبستگی و واریانس و رگرسیون از نرم‌افزار EXCEL و برای تجزیه و تحلیل ماتریس‌های ارائه شده و آزمون مقایسه‌های گروهی (مستقل) در سطح احتمال 0.05 بررسی شد و در صورت معنی‌دار بودن اثر عامل آزمایشی استفاده شد.

نتایج و بحث

رنگ: غلظت نیتروژن و میزان برگ در ابتدا مرحله زایشی

بر اساس نتایج حاصل از مقایسه میانگین‌ها مشخص شد که در 59 روز بعد از نشانگری کاهش در سرعت درگیری با تاثیر شاهد موجب افزایش معنی‌دار در سطح احتمال 0.05 درد و سرعت کاهش آنگی تسکیم برگ (مقدار کلروفیل) می‌باشد. نتایج نشان داد که سطح درگیری برگ و غلظت نیتروژن بر حسب سطح وزن برگ (جدول 3). مقدارهای گروهی (مستقل) نشان داد که سطح درگیری برگ و غلظت نیتروژن بر حسب وزن برگ در تیمارهای سوم و پنجم بالاتر از تیمارهای چهارم و ششم بود (جدول 3). با توجه به اینکه در اواست مرحله پنج‌شنبه (75 روز قبل از این مرحله) تیمارهای سوم و پنجم در مقایسه با تیمارهای چهارم و ششم مقادیر

کمیWARNING: The code contains Persian letters, which are not supported by the text model. It is recommended to use a code that only contains English letters and numbers.
جدول 3. تجزیه واریانس و مقایسه‌های گروهی میزان دانه برگ و مقدار کاریولیتر (Na) و وزن بالاترین برگ بونه در 69 و برای برگ پرچم در 79 روز بعد از نشکاری در تیمارهای کودکی نیتروژن (Ndw).

<table>
<thead>
<tr>
<th>میزان معیار</th>
<th>Ndw 79</th>
<th>Na 79</th>
<th>SPAD 79</th>
<th>Ndw 59</th>
<th>Na 59</th>
<th>SPAD 59</th>
<th>Na 79</th>
<th>SPAD 79</th>
<th>Ndw 59</th>
<th>Na 59</th>
<th>SPAD 59</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان برگ</td>
<td>7.59 cm<sup>2</sup></td>
<td>11.8 cm<sup>2</sup></td>
<td>13.8 cm<sup>2</sup></td>
<td>7.59 cm<sup>2</sup></td>
<td>11.8 cm<sup>2</sup></td>
<td>13.8 cm<sup>2</sup></td>
<td>7.59 cm<sup>2</sup></td>
<td>11.8 cm<sup>2</sup></td>
<td>13.8 cm<sup>2</sup></td>
<td>7.59 cm<sup>2</sup></td>
<td>11.8 cm<sup>2</sup></td>
</tr>
<tr>
<td>مقدار کاریولیتر</td>
<td>5.96 cm<sup>2</sup></td>
<td>8.3 cm<sup>2</sup></td>
<td>8.6 cm<sup>2</sup></td>
<td>5.96 cm<sup>2</sup></td>
<td>8.3 cm<sup>2</sup></td>
<td>8.6 cm<sup>2</sup></td>
<td>5.96 cm<sup>2</sup></td>
<td>8.3 cm<sup>2</sup></td>
<td>8.6 cm<sup>2</sup></td>
<td>5.96 cm<sup>2</sup></td>
<td>8.3 cm<sup>2</sup></td>
</tr>
<tr>
<td>وزن بالاترین برگ</td>
<td>0.59 kg</td>
<td>0.8 kg</td>
<td>0.8 kg</td>
<td>0.59 kg</td>
<td>0.8 kg</td>
<td>0.8 kg</td>
<td>0.59 kg</td>
<td>0.8 kg</td>
<td>0.8 kg</td>
<td>0.59 kg</td>
<td>0.8 kg</td>
</tr>
</tbody>
</table>

میزان‌های دارای دو پرچم در 69 و برای برگ پرچم در 79 روز بعد از نشکاری در تیمارهای کودکی نیتروژن (Ndw)

<table>
<thead>
<tr>
<th>میزان برگ (Cm<sup>2</sup>)</th>
<th>Ndw 79 (g/kg)</th>
<th>Na 79 (g/m<sup>2</sup>)</th>
<th>SPAD 79 (بندون واحد)</th>
<th>Ndw 59 (g/kg)</th>
<th>Na 59 (g/m<sup>2</sup>)</th>
<th>SPAD 59 (بندون واحد)</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>26/346<sup>a</sup></td>
<td>9/56<sup>b</sup></td>
<td>3/56<sup>c</sup></td>
<td>1/15<sup>c</sup></td>
<td>3/73<sup>a</sup></td>
<td>1/10<sup>b</sup></td>
<td>1/12<sup>c</sup></td>
<td>شاهد</td>
</tr>
<tr>
<td>27/367<sup>b</sup></td>
<td>12/49<sup>b</sup></td>
<td>3/37<sup>c</sup></td>
<td>1/10<sup>a</sup></td>
<td>2/56<sup>a</sup></td>
<td>1/10<sup>b</sup></td>
<td>2/24<sup>c</sup></td>
<td>رد</td>
</tr>
<tr>
<td>32/388<sup>c</sup></td>
<td>14/73<sup>b</sup></td>
<td>3/36<sup>c</sup></td>
<td>1/13<sup>c</sup></td>
<td>2/36<sup>a</sup></td>
<td>1/12<sup>b</sup></td>
<td>2/37<sup>c</sup></td>
<td>سکه</td>
</tr>
<tr>
<td>30/41<sup>a</sup></td>
<td>13/49<sup>c</sup></td>
<td>3/29<sup>b</sup></td>
<td>1/15<sup>c</sup></td>
<td>7/29<sup>a</sup></td>
<td>1/14<sup>c</sup></td>
<td>7/33<sup>b</sup></td>
<td>چهار</td>
</tr>
<tr>
<td>38/42<sup>b</sup></td>
<td>23/12<sup>c</sup></td>
<td>3/49<sup>c</sup></td>
<td>1/15<sup>c</sup></td>
<td>6/11<sup>a</sup></td>
<td>1/13<sup>c</sup></td>
<td>6/12<sup>b</sup></td>
<td>شش</td>
</tr>
<tr>
<td>35/44<sup>c</sup></td>
<td>30/74<sup>c</sup></td>
<td>3/9<sup>c</sup></td>
<td>1/16<sup>c</sup></td>
<td>3/14<sup>a</sup></td>
<td>1/13<sup>c</sup></td>
<td>3/14<sup>b</sup></td>
<td>بیکار</td>
</tr>
</tbody>
</table>

* و ** به ترتیب در سطح احتمال 5% و 1% به عنوان معنادار محسوس شده است.

1. مقایسه تیمارهای 0/800 و 1/2000 نیتروژن در سطح مصرف نیتروژن
2. مقایسه تیمارهای 0/800 و 1/2000 نیتروژن در سطح مصرف نیتروژن
3. مقایسه تیمارهای 0/800 و 1/2000 نیتروژن در سطح مصرف نیتروژن
4. مقایسه اثر مصرف نیتروژن در سطح مصرف نیتروژن 0/800 و 1/2000

میزان دانه برگ، مقدار کاریولیتر و وزن بالاترین برگ (Ndw) در پایان آزمون نشکاری محسوب شد و نشان داد که در تیمارهای با تغییرات مختلف، اثرات مختلفی روی ویژگی‌های آنها حاکم بودند.

میزان دانه برگ و وزن بالاترین برگ در تیمارهای مختلف نیتروژن و با تغییرات مختلفی در سطح مصرف نیتروژن، اثرات مختلفی روی ویژگی‌های آنها حاکم بودند.

شدا (جدول 4): اما بعد از مصرف کردن نیتروژن، شدا در سطح احتمال 5% و 1% به عنوان معنادار محسوس شد. در سطح مصرف کردن نیتروژن را در 79 روز بعد از نشکاری در تیمارهای مختلف 0/800 و 1/2000 نیتروژن، اثرات مختلفی روی ویژگی‌های آنها حاکم بودند. در سطح احتمال 5% و 1% به عنوان معنادار محسوس شد. در سطح مصرف کردن نیتروژن را در 79 روز بعد از نشکاری در تیمارهای مختلف 0/800 و 1/2000 نیتروژن، اثرات مختلفی روی ویژگی‌های آنها حاکم بودند. در سطح احتمال 5% و 1% به عنوان معنادار محسوس شد. در سطح مصرف کردن نیتروژن را در 79 روز بعد از نشکاری در تیمارهای مختلف 0/800 و 1/2000 نیتروژن، اثرات مختلفی روی ویژگی‌های آنها حاکم بودند.

با توجه به نتایج، مصرف نیتروژن در سطح مصرف نیتروژن برای تولید وزن بالاترین برگ و دانه برگ و بهبود کاریولیتر و سطح برگ قابل توجهی در سطح احتمال 5% و 1% به عنوان معنادار محسوس شد.
رگنگ، غلظت نیتروژن بنگ و مساحت بنگ پرچم در 5 روز بعد از مرحله گل‌دهی

بر اساس نتایج به دست آمده از تجزیه واریانس داده‌های مشخص شد که نوبت بندی مصرف کود نیتروژن در هکتار در سطح احتمال یک درصد تأثیر معنی‌داری را بر سبیلیکی رنگ بنگ کرک. غلظت نیتروژن بر حسب سطح و وزن بنگ در 79 روز بعد از نشکاری داشت (جدول 3). مقایسه میانگین‌ها نشان داد که سبیلیکی رنگ بنگ، غلظت نیتروژن بر حسب وزن و سطح بنگ در تیمارهای چهارهم و یکسوم با سبیلیکی کود نیتروژن بالاتر از تیمارهای سوم و یکسوم با دو نوبت کوددهی بوده. جدول‌های ۳ و ۴ که به احتمال زیاد این موضوع به علت مصرف کود سرک دوم در تیمارهای چهارهم و یکسوم می‌باشد. مقایسه گروهی میانگین‌ها نشان داد که نوبت بندی کود نیتروژن در سه مرحله و افزایش مصرف آن مساحت بنگ پرچم را به طور معنی‌داری در سطح احتمال یک درصد افزایش داد (جدول 3). با این که مساحت بنگ پرچم در تیمارها ۸۰ کیلوگرم بود و در بالاترین مساحت بنگ پرچم در تیمار ششم و چهارهم با سبیلیکی کود نیتروژن مساحت ماده‌های شاد که به طور معنی‌داری در سطح احتمال یک درصد) بالاتر از تیمارهای سوم و یکسوم، با دو نوبت کوددهی و تیمارهای شاهد و دوم بوده (جدول 3). پایین‌ترین مساحت بنگ پرچم نیز در تیمار شاهد ماده‌های شاد بود (جدول 4).

شکل 2. تغییرات مقدار کلروفیل ترم پس از نشکاری در تیمارهای کود نیتروژن

شکل 1. تغییرات غلظت نیتروژن بنگ بر حسب سطح بنگ پس از نشکاری در تیمارهای کود نیتروژن

شکل 1. تغییرات غلظت نیتروژن بنگ و مساحت بنگ پرچم در 5 روز بعد از مرحله گل‌دهی

باینگ و همکاران (2) گزارش کرده‌اند که مصرف مقدار بالاتر نیتروژن و جذب بیشتر آن و همچنین افزایش منابع‌بندی، جذب و ساخت کربن و نیتروژن در بیمار موجب افزایش و تولید سطح برگ شده و همکاران (17) نیز نشان دادند که شاخه سطح برگ زیر تأثیر تغییرات میزان جذب نیتروژن (ناشی از نوبت بندی نیتروژن) قرار می‌گیرد و ارتباط نزدیکی بین این دو متغیر وجود دارد. صدرداده (1) گزارش کرده که در بین نوبت‌های مختلف مصرف کود نیتروژن در مرحله نشکاری موجب افزایش مساحت بنگ پرچم می‌شود. وی بین کرده که بالاترین مساحت بنگ پرچم در تیمار ۱۲ کیلوگرم در هکتار نیتروژن (۷/۴) سانتی‌متر مربع و بالاترین آن در تیمار شاهد (۹/۴) سانتی‌متر مربع می‌باشد. نتایج این مطالعه نشان داد که در نوبت بندی کود نیتروژن به طور معنی‌داری در سطح احتمال یک درصد تأثیر معنی‌داری را بیان کرده که بالاترین سطح تیمارهای با سبیلیکی کود نیتروژن پس از نوبت کوددهی (جدول 3). با این که مساحت بنگ پرچم در تیمارها ۸۰ کیلوگرم بود و در بالاترین مساحت بنگ پرچم در تیمار ششم و چهارهم با سبیلیکی کود نیتروژن مساحت ماده‌های شاد که به طور معنی‌داری در سطح احتمال یک درصد (جدول 3) بالاتر از تیمار شاهد و دوم بوده (جدول 3). پایین‌ترین مساحت بنگ پرچم نیز در تیمار شاهد ماده‌های شاد بود (جدول 4).
تأثیر مدیریت کوده‌های نیتروژن بر عملکرد بذر (رقم خر) و اجزای آن در یک خاک...

نقشه ۳: رابطه رگرسیونی بین ساحت و غلظت نیتروژن بذر پرچم در ۵ روز بعد از گل‌دهی

یکه بهار در واحد سطح شد (جدول ۶)، مقايسه گروهی میانگین‌ها نشان داد که مصرف سه نوتی نیتروژن در مقایسه با مصرف دو نوتی در سطح احتمال پنج درصد تعداد پنج بهار در وارد نیتروژن داد. ولی بین بزرگترین تعداد پنج بهار در مصرف دو نوتی در پنج تعداد به در نیتروژن مقدار بالاتر نیتروژن (۱۲۰ کیلوگرم در هکتار در دو هفته (۱۲) کیلوگرم در هکتار در دو هفته نیتروژن ۳۰ کیلوگرم نیتروژن در هکتار در دو هفته نیتروژن که به در نیتروژن کاهش در مصرف سه نوتی استفاده می‌شود. در سطح احتمال پنج درصد بستگی به طوری معنی‌داری بالاتر از سایر میزان‌ها بود (جدول ۶). همچنین مصرف سه نوتی فرق تیمارها نسبت به تیمارهای نیتروژن و سوم با دو نویست کوده‌هی شد (جدول ۷). ولی اختلاف معنی‌داری را را تیمارهای اول و دوم نشان داد. پایین‌ترین درصد پنج بهار در تیمار سوم میانگین تنها که اختلاف معنی‌داری را را تیمار پنججم نداشت (جدول ۷).

کاهش درصد پنج بهار در تیمارهای با دو نویست مصرف نیتروژن می‌تواند به علت مصرف کود سرک اول در اواست مرحله نیتروژن زنی باشد. زیرا مصرف کود نیتروژن (به ویژه در مصرف زیاد) آن در این مرحله عالیه بر روی کاذب ار بر تعداد پنج بهاری بارو، می‌تواند موجب تکثیر
جدول ۵. هیستگی پنج‌های برگ با سانسور بالاترین برگ در بوته (La) (N kg/ha). مقایسه کلروفیل‌متر (SPAD). نتایج نشان می‌دهد که تعداد پنج‌های برگ برای (Ndw) و نسبت ظرفیت (Na) به ترتیب در ۲۹ و ۲۹ روز بعد از نشاکاری

<table>
<thead>
<tr>
<th>Nd (g/kg)</th>
<th>Na (g/m²)</th>
<th>SPAD (Cm²)</th>
<th>La (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>٠/٨٩٦</td>
<td>٠/٩٠٠٠</td>
<td>٠/٧٩٩</td>
<td>٠/٩١١</td>
</tr>
<tr>
<td>٠/٨٩٠</td>
<td>٠/٧٩٩</td>
<td>٠/٨٤٨</td>
<td>٠/٨٧٩</td>
</tr>
</tbody>
</table>

تعداد پنج‌های برگ

جدول ۶. تجزیه واریانس و مقایسه‌های گروهی تعداد پنج‌های برگ. تعداد پنج‌های ناباور، تعداد پنج‌های برگ در گروه‌های مختلف

<table>
<thead>
<tr>
<th>میانگین مربوط به</th>
<th>تعداد کل</th>
<th>تعداد پنج‌های برگ</th>
<th>تعداد پنج‌های ناباور</th>
<th>متغیرات</th>
<th>جریه</th>
<th>منع</th>
<th>درجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن هزار دانه</td>
</tr>
<tr>
<td>درصد کل</td>
<td>درصد پنج‌های برگ</td>
<td>درصد پنج‌های ناباور</td>
<td>درصد پنج‌های برگ</td>
<td>درصد پنج‌های ناباور</td>
<td>درصد پنج‌های برگ</td>
<td>درصد پنج‌های ناباور</td>
<td>درصد پنج‌های برگ</td>
</tr>
<tr>
<td>خطا</td>
<td>cv. %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۷. مقایسه میانگین تعداد پنج‌های برگ و ناباور. تعداد پنج‌های ناباور، تعداد پنج‌های برگ در گروه‌های مختلف

<table>
<thead>
<tr>
<th>میانگین (Nd)</th>
<th>تعداد دانه</th>
<th>برگ (g)</th>
<th>تعداد دانه</th>
<th>برگ (m²)</th>
<th>تعداد دانه</th>
<th>برگ (m³)</th>
<th>تعداد دانه</th>
<th>برگ (m³)</th>
<th>تعداد دانه</th>
<th>برگ (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳/۵/۰٥</td>
<td>٢٢/١٠</td>
<td>٧٥/۱٠</td>
<td>١۵١١۵٠</td>
<td>٨٤/۵۰</td>
<td>٣٠/۵۰</td>
<td>١٦٣/۵۰</td>
<td>٧٠/۴۰</td>
<td>١١/۵۰</td>
<td>٧/۵۰</td>
<td></td>
</tr>
<tr>
<td>٣/۳/٥</td>
<td>١٥/٩٠</td>
<td>٧٣/٦٠</td>
<td>١٥١٩۶٠</td>
<td>۸٢/۵٠</td>
<td>١٥/٣٠</td>
<td>١٥/٣٠</td>
<td>١٥/٣٠</td>
<td>١٧/٤٠</td>
<td>١٥/٣٠</td>
<td></td>
</tr>
<tr>
<td>٤/۱/٩</td>
<td>٢٢/٨٠</td>
<td>٧٨/۵٠</td>
<td>١٠٩٩۶٠</td>
<td>٧١/٣٠</td>
<td>١٧/٤٠</td>
<td>١٧/٤٠</td>
<td>١٧/٤٠</td>
<td>١٧/٤٠</td>
<td>١٧/٤٠</td>
<td></td>
</tr>
<tr>
<td>٣/٨/١٥</td>
<td>٢٥/٧٠</td>
<td>٧٣/٨٠</td>
<td>١٦٩٩٨٠</td>
<td>٧٤/١٠</td>
<td>١٣/٧٠</td>
<td>١٣/٧٠</td>
<td>١٣/٧٠</td>
<td>١٣/٧٠</td>
<td>١٣/٧٠</td>
<td></td>
</tr>
<tr>
<td>٢/۳/٢٥</td>
<td>١٨/۵٠</td>
<td>٧٤/۵٠</td>
<td>٢٠٩٩٧٠</td>
<td>٧٥/٠٠</td>
<td>١٧/٤٠</td>
<td>٢٠/٢٠</td>
<td>١٧/٤٠</td>
<td>٢٠/٢٠</td>
<td>٢٠/٢٠</td>
<td></td>
</tr>
<tr>
<td>٤/١/٩</td>
<td>١٩/٨٠</td>
<td>٧٤/٨٠</td>
<td>١٦١٧٩٠</td>
<td>٧٥/٠٠</td>
<td>١٧/٤٠</td>
<td>٦٠/٠٠</td>
<td>٦٠/٠٠</td>
<td>٦٠/٠٠</td>
<td>٦٠/٠٠</td>
<td></td>
</tr>
</tbody>
</table>

میانگین‌های دارای حروف مشترک در هر ستون از نظر آماری براساس آزمون دانکن در سطح احتمال پنج درصد اختلاف معنی‌دار ندارند.
تأثیر مدیریت کوده‌های نیتروژن بر عملکرد بذر (رقم خزر) و اجزای آن در یک خاک ...

(1) از برین رقم خزر هپسپتکی رگ بزرگ و مساحت بزرگ پرچم را یک باد خوش‌چش می‌شود. به منظور گزارش کرد. اکتا (4) گزارش کرد که هم‌سپتکی بالایی بین
غلظت نیتروژن زایش دو مرحله زایش و تعداد عضویت‌چه در
واحد سطح و جدول دارند. و تحلیل عضویت‌چه در زایش از
نخستین رشد روزیت و تعداد پنجه زنده را افزایش می‌دهد. و در مزار تغذیه‌های خشخاش به ملت ناکامی
بودن تشعشع خورشیدی و موارد غذایی در پنجه‌های دید
گاهی تعداد خشخاش و درصد پنجه‌های بارور به طور معمول داری کاهش می‌یابد. در حالی که کصور کود سرک نیتروژن در واژه
رضو زایشی که تنوز به حافظ درصد بالاتری از پنجه‌های بارور
منجر شود (21).

تعداد کل خشخاش در واحد سطح
بر اساس نتایج حاصل از تجزیه واریانس، مقدار نیتروژن
مصرف تأثیر معنی‌دار را (در سطح اختلال یک درصد) بر تعداد کل خشخاش در واحد سطح در(جدول 6) متقابل
ماتینگهی(جدول 7) نشان داد که هم‌سپتکی مصرف 80 و 120
کیلوگرم نیتروژن در هکتار در تیمارهای سوم یا شست به طور معمول نتایج تعداد کل خشخاش در واحد سطح در مقایسه با تیمار شاهد. ولی اخراج معنی‌داری بین تیمارهای سوم، چهار، پنج و ششم دیده نشد(جدول 7).

از انجایی که رابطه خصی و ملیتی بین غلظت نیتروژن،
کلروفیل، محلای و میزان فتوسنتز برگ و جذور دارد (28).
اختلاف غیر معنی‌دار غلظت نیتروژن بر حسب سطح برگ
(شکل 1) و سنگینگی رنگ برگ (شکل 2) و همچنین اختلاف
کم میزان برگ و غلظت نیتروژن بر حسب وزن برگ در
تیمارهای سوم نا شست در ابتدا مرحله رشد
زاپی (جدول 7)، می‌تواند موجب دسترسی به مقایسه
تقریباً یکسانی از افرادهای در مرحله بزرگ
خشخاش در اختلاف غیر معنی‌دار تشکیل تعداد عضویت‌چه در
این تیمارهای مقایسه ابست. در این مورد کیسیس (27) گزارش کرد
که کصور کود سرک دوم نیتروژن کمی قبل از شروع رشد
زاپی به تشکیل حداکثر تعداد خشخاش منجر می‌شود. صدر

301
اختلاف معنی داری را با ویران هزار دانه تیمار دوم نشان نداد.

ولی به طور محدودی پاییز تیمارها بوده که موجب افزایش گل‌آوری و نتیجه‌گیری در سطح احتمال پیک درصد تأثیر معنی‌داری را عامل محدود داشت (جدول 4). بیشترین عملکرد دانه در تیمار شمش درصد دومی و درصد نیتروژن و درصد دومی در تیمار شمش و درصد دومی در تیمار چهارم (جدول 4) به گونه‌ای که با درصد دومی و درصد دومی در تیمار چهارم (جدول 4) به گونه‌ای که با گزارش کردن که با کاهش فرآوری فتوسنتزی نشان داده‌های پر کاهش و فاقد برگ خودشان به این نتیجه با کاهش فرآوری فتوسنتزی نشان داده‌های پر کاهش و فاقد برگ خودشان به این نتیجه با کاهش فرآوری فتوسنتزی نشان داده‌های پر کاهش و فاقد برگ خودشان به این نتیجه با کاهش فرآوری فتوسنتزی نشان داده‌های پر کاهش و فاقد برگ خودشان به این نتیجه با کاهش فرآوری فتوسنتزی نشان داده‌های پر کاهش و فاقد برگ خودشان به این نتیجه با کاهش فرآوری فتوسنتزی نشان داده‌های پر کاهش و فاقد برگ خودشان به این نتیجه با کاهش فرآوری فتوسنتزی نشان داده‌ای پایین تر از 80 درصد است به نظر می‌رسد که در این تیمارها معنی‌داری دارد.

عملکرد دانه تایپی‌های مختلفی را از جهت ازاری‌سازی، نسبت به مصرف نیتروژن از 80 به 120 کیلوگرم/هکتار طی سه نوبت تبدیل به سه نوبت و نیتروژن دانه در سطح احتمال پیک درصد معنی‌داری داشت (جدول 4). بنا به این که افزایش مصرف نیتروژن از 80 به 120 کیلوگرم/هکتار طی سه نوبت تبدیل به سه نوبت و نیتروژن دانه در سطح احتمال پیک درصد معنی‌داری داشت (جدول 4). بنا به این که افزایش مصرف نیتروژن از 80 به 120 کیلوگرم/هکتار طی سه نوبت تبدیل به سه نوبت و نیتروژن دانه در سطح احتمال پیک درصد معنی‌داری داشت (جدول 4). بنا به این که افزایش مصرف نیتروژن از 80 به 120 کیلوگرم/هکتار طی سه نوبت تبدیل به سه نوبت و نیتروژن دانه در سطح احتمال پیک درصد معنی‌داری داشت (جدول 4). بنا به این که افزایش مصرف نیتروژن از 80 به 120 کیلوگرم/هکتار طی سه نوبت تبدیل به سه نوبت و نیتروژن دانه در سطح احتمال پیک درصد معنی‌داری داشت (جدول 4). بنا به این که افزایش مصرف نیتروژن از 80 به 120 کیلوگرم/هکتار طی سه نوبت تبدیل به سه نوبت و نیتروژن دانه در سطح احتمال پیک درصد معنی‌داری داشت (جدول 4).
تأثیر مدیریت کوده‌های نیتروژن بر عملکرد برنج (رقم خور) و اجزائی آن در یک خاک …

شکل 5 رابطه رگرسیونی بین مقدار کلروفیل متر و غلظت نیتروژن برگ پرچم در 15 روز بعد از گل‌دهی

شکل 4 رابطه رگرسیونی بین مقدار کلروفیل متر و غلظت نیتروژن برگ پرچم در 5 روز بعد از گل‌دهی

تیمارهای چهارم و ششم با سه نویس مصرف نیتروژن بود (جدول 4). کمترین عملکرد دانه در تیمار شاهد مشاهده شد (جدول 7).

آسیف و همکاران (4) گزارش کردند که مصرف کود نیتروژن در سه نویس (یک سوم در مرحله نشاکاری، یک سوم در اندیشه پنج‌نشری و یک سوم باقی مانده در مرحله تشكل خوشه) موجب بهبود عملکرد دانه و افزایش آن (تعداد خوشه) در متر مربع و وزن هزار دانه شد. همچنین نویسندگان گزارش کردند که نیتروژن در سه مرحله عملکرد دانه، تعداد خوشه را در متر مربع، تعداد خوشه‌چه در خوشه، تعداد پنج‌نشریها واحد سطح، تعداد دانه‌های بی و وزن هزار دانه را به طور معنی‌داری افزایش داد و در حالی که در مورد نیتروژن در 5 روز بعد از گل‌دهی به دست آمده، تأثیر نیتروژن با توجه به شدت زیر تأثیر تغییرات غلظت نیتروژن برگ پرچم در 5 روز بعد از گل‌دهی قرار گرفت (شکل 3).

کوالتروس و نانوس (15) بیان کردند که افزایش غلظت نیتروژن در اندیشه‌های هوابی در مرحله گاز‌افشانی بر فراکسیون تنگای‌گذار به‌طور خیلی قابل ملاحظه است. به طوری که با افزایش غلظت نیتروژن در میزان کلروفیل ساخت در کسبیکریون به طور خیلی افزایش می‌یابد. زهم و همکاران (20) گزارش کردند که مصرف نیتروژن در مرحله آبستنی و پر شدن دانه‌ها، موجب نمی‌شود داشتن میزان کلروفیل برگ پرچم و تأثیر این در پری بیک می‌شود، در نتیجه مقدار موارد تجارب‌های چهارم و ششم با سه نویس مصرف نیتروژن بود (جدول 4). کمترین عملکرد دانه در تیمار شاهد مشاهده شد (جدول 7).
بنابراین، با نظربندی، نمودار یک خطی در دامنه‌ای به همچنین کاربرد و هم‌سانی مصرف سه تیتر و نسبت نرخ موجب شدن در مرحله خشکی در طول دوره شرط و افزایش غلظت نیتروژن، مساحت و کاربرد با سبزیجات برگ و برگچه در مرحله رشد زایشی شده است (جدول 7) که این موضوع به احتمال زیاد موجب افزایش میزان فتوسنتز جاری و حجم مواد انتقال و فوم‌دار دانه و درصد دانه‌های برگ و در نهایت عملکرد بالای دانه در این بررسی‌ها شده است. در نتیجه با توجه به نتایج حاصل از این تحقیق مصرف 80 کیلوگرم نیتروژن در هر هکتار برای متراژ خر، هم‌سانی می‌شود زیرا با مصرف این مقدار در سه تیتر به عملکردی مشابه با مصرف 120 کیلوگرم نیتروژن در هر هکتار دست یافت.

نتیجه گیری

نتایج حاصل از این تحقیق نشان داد که عملکرد و اثرات مکاتبه غلظت نیتروژن برگ با سبزیجات و مساحت برگ پرچم ارتباط معنی‌داری نیز بین عملکرد دانه و غلظت نیتروژن، مساحت و سبزیجات برگ پرچم وجود دارد (شکل‌های 1 و 2).
عند واقعیت، بهرام زارعی، حسین راسخ، مهدی حاج حسینی و حسین تحریری به پاس کمک‌هایی ارائه شده در انجام این تحقیق تشکر و قدردانی می‌کنند.

مباحث مورد استفاده
1. صدرزاده، س. م. 1381. بررسی اثر کود ازت و پتاسیم بر عملکرد، اجزای عملکرد و شاخص رشد برنج رقم خزر. پایان‌نامه کارشناسی ارشد زراعت، دانشکده علوم کشاورزی، دانشگاه گیلان.
2. صدیق، م. و. م. باوان. 1379. تاثیر کودهای بهره‌برداری گیاهان در زراعت. انتشارات جهاد دانشگاهی مشهد.
4. مؤدب شیستری، م. و. م. 1369. فیزیولوژی گیاهان زراعی (ترجمه). انتشارات مرکز نشر دانشگاهی، تهران.