پیماری برق زدگی (Ascochyta rabiei) از یک اینشتیت بیماری‌های این گیاه می‌باشد که توسط قارچ (Ascochyta blight)کیکی از مه‌میرین بیماری‌های وارد می‌شود. آنزیم یلی (Carboxy Methyl Sepharose) کیک از عوامل مهم در بیماری‌زایی این قارچ محسوب می‌شود که با تغییر ترکیبات ساعتخانی دیوایره سلولی گیاه باعث می‌شود که ترسرح و نفوذ بی‌پرده آن نسبت به پاتوژن می‌گردد. در این تحقیق جهت بررسی صخหاتی آنزیم یلی (Carboxy Methyl Sepharose) تولید شده، توسط جهت pH گردیده. مناسب ترین pH جهت اتصال آنزیم مذکور به بستر سیستم 5/5 تغییر گرفت. پس از اتصال پروتئین، شستشوی سیستم و اعمال شب غلظت تکی NaCl مولار، نتایج نشان داد در فراکسیون‌های 81 تا 96 در ناحیه غلظت نمکی هنگام ساختار بهبود آنزیم بهبود پیدا می‌کند. فراکسیون‌های بر پایه SDS-PAGE به دست آمده. مطالعه زاویه‌گرایی این یک باند پروتئینی به حلول مولکولی حدود 27 کیلودانتر پس از رسوب دهنده به فراکسیون‌های فعال بیان می‌شود. بهبودی آنزیم از دست افتاده که پروتئین دارای فعالیت آنزیم یلی (Carboxy Methyl Sepharose) می‌باشد. مناسب برای فعالیت آنزیمی نشان داد که پروتئین خالص سیستم pH 7/5 به‌طور قابل توجه فعالیت آنزیمی را از خود نشان می‌دهد.

واژه‌های کلیدی: آنزیم یلی (Carboxy Methyl Sepharose) از مه‌میرین بیماری‌های وارد می‌شود. پیماری برق زدگی (Ascochyta rabiei) از یک اینشتیت بیماری‌های وارد می‌شود. آنزیم یلی (Carboxy Methyl Sepharose) کیک از عوامل مهم در بیماری‌زایی این قارچ محسوب می‌شود که با تغییر ترکیبات ساعتخانی دیوایره سلولی گیاه باعث می‌شود که ترسرح و نفوذ بی‌پرده آن نسبت به پاتوژن می‌گردد. در این تحقیق جهت بررسی صخหاتی آنزیم یلی (Carboxy Methyl Sepharose) تولید شده، توسط جهت pH گردیده. مناسب ترین pH جهت اتصال آنزیم مذکور به بستر سیستم 5/5 تغییر گرفت. پس از اتصال پروتئین، شستشوی سیستم و اعمال شب غلظت تکی NaCl مولار، نتایج نشان داد در فراکسیون‌های 81 تا 96 در ناحیه غلظت نمکی هنگام ساختار بهبود آنزیم بهبود پیدا می‌کند. فراکسیون‌های بر پایه SDS-PAGE به دست آمده. مطالعه زاویه‌گرایی این یک باند پروتئینی به حلول مولکولی حدود 27 کیلودانتر پس از رسوب دهنده به فراکسیون‌های فعال بیان می‌شود. بهبودی آنزیم از دست افتاده که پروتئین دارای فعالیت آنزیمی را از خود نشان می‌دهد.
مواد و روش‌ها

جداهای قارچ و محیط‌ها کش

جداهای قارچ Ascochyta rabiei (IC06) که در طول این تحقیق مورد بررسی و مطالعه قرار گرفت از منطقه ماهیشتد در استان کرمانشاه جمع آوری و خالص سازی گردیده است (36). Potato Dextrose Agar برا یونگ‌های قارچ از محیط کشت (PDA) استفاده گردید. برای فراهم نمودن شرایط مناسب جهت تولید آنزیم‌های یکنیتی استفاده از A. rabiei (Ceric Zymogram medium, PZ) تغییری پاته زایم‌گرم استفاده گردید (37). بذله منظوره ده کرم پکتین (Citrus pectin, Merck) و 2/54 گرم سولفات آمونیوم، 0/5 گرم دی‌تی‌آسید هیدروژن فسفات و 0/1 گرم سولفات منیزیم اضافه شد. pH میکرو فروق برابر 4/5 تنظیم گردید.

اندازه‌گیری فعالیت آنزیم پلی‌گالاکتوراناز

فعالیت آنزیم پلی‌گالاکتوراناز با استفاده از روش کالر (8) همراه با تغییرات، به شرح زیر اندوزه‌گیری گردید. 40 میکرولیتر از محلول آنزیمی با 210 میکرولیتر محلول ذخیره از 24 گدگر نگهداری بارویان کش در ایران توسط زالیگر گزارش گردیده (35) و تاکنون این بیماری در مناطق مختلفی از ایران، مانند استان‌های آذربایجان، اردبیل و خوزستان، خراسان، ایلام، همدان و کرمانشاه مشاهده شده است (1 و 33).

ماهیت مخرب قارچ A. rabiei یک پاتوپژنیکی اصلی محور کننده تولید نخود و آنزیم‌های مهم‌ترین عامل بیماری نخود معرفی نموده است (37).

جعت و رودی پاتوپژنیکی از محیط خارج به داخل گیاه و همچنین نفوذ در باتلاق‌های مختلف، برخی از آنها قادرند آنزیم‌های تولید نمایند که تکثبات دیواره سلولی گیاه را تخریب نموده است احتمال آن را کلام دهند (3). دیواره‌های سلولی گیاهی با استحکام قوی دارند که به علت اولین سد فیزیولوژیک در برابر حمله پاتوپژنیکی می‌کنند و نفوذ در این سطح آلوده سبد گیاه توسط پاتوپژنیک از لحاظ استمرار است. هر گونه آسیب به تغییر آب و دیواره سلولی مخصوصاً در باتلاق‌های سطحی، می‌تواند منجر به این رفتار اتصالات بین سلول‌های ش Wohnung که در نهایت زنده نه‌روت بیشتر را در باتلاق‌های عمیق تفریح می‌آورند. این گونه آسیب‌ها در بیماری‌های مانند بزمرددی (Damping-off، بررسی‌گردید) و خشک شدن ریشه‌ها (Soft and dry root rot، ضایعات برگ و ساقه، Leaf and stem lesions) وکی از اوکان و بافت‌های ملکولی بین پاتوپژنیک و بیماری‌ها.

آننیم‌های تولید شده توسط پاتوپژنیکی دیواره سلولی میزبان می‌باشد. در این فرآیند بلی ساکاریدهای دیواره سلولی (بخصوص پکتین) توسط اننیم‌ها تخریب می‌گردد (10). آننیم‌های معمولاً ترشح بوده و دارای ویژگی‌های نمک‌پذیر و پارادیزین نسبتاً بالاتر هستند. آنزیم‌های مذکور با استرآزمیت‌های مختلفی تولید می‌شوند که از نظر اندازه، بر اثرکتیکی، پایداری و توانایی برای تخریب دیواره سلولی مختلفی هستند (10). آننیم‌های مهم‌ترین عامل بیماری بیماری نخود معرفی نموده است (37).

پروتوپلاست را نیز از بین ببرد.
کرومانتوگرافی تعویض پیوند بین روي بستر

(CM-Sepharose Fast Flow)

جته خالص کردن آزم آزم آزم آزم آزم کرومانتوگرافی به ابعاد ۲۳۵ سانتی‌متر (ارتفاع × قطر) انجام گردید. مقدار ۱۰۰ میلی‌لیتر از بستر CM-Sepharose Fast Flow به صورت تجاری و به فرم سوسپنسیون سی‌پی اسید درون نتیجه بر روی آن با فشرده انجام داده شد. نتیجه بسته به معیار متفاوت افزایش یافته گردید. پس از چند بار تعویض بسته به معیار متفاوت افزایش یافته گردید. پس از چند بار

بررسی الگوی پروتئینی

جته بررسی الگوی پروتئینی تعیین می‌شود. در روش این پروتئینی تعیین می‌شود: این سطح بین کردن در میان این سطح بین کردن در کردن در میان این سطح بین کردن در

سویسترا حاوی ۳۲ درصد (w/v) نتیجه اندورف مخلوط شده و برای ۲۰ دقیقه در دما ۵ درجه سانتی‌گراد فیلدرای مایه‌سازه‌شده کردن. میکروفلور مورد بررسی در میکروفلور مورد بررسی در میکروفلور مورد بررسی در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

دو میکروفلور مورد بررسی در میکروفلور مورد بررسی در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در

در میکروفلور مورد بررسی در میکروفلور مورد بررسی در
روش رسوب‌دهی با استفاده از استین محصول حاوی پروتئین
ترشحی از بالایی پایین آماده‌گیری شده مربوط به هنگام گردیده به آرامی مخلوط گردید و حدود 12 ساعت در دما 20 درجه سانتی‌گراد قرار داده شد. سپس مخلوط فوک با سرعت 14000 rpm
خلاف در کانالین حجم آب مفطر دو بار تغییر حرکت شده و در
دما 20 درجه سانتی‌گراد نگهداری گردید. در روش رسوب
دهی با تمکن‌های معمول سیستم آموزی 70 استفاده
گردید. در این روش مقدار 70 سیستم‌های معمول در
میلی لتر محصول حاوی پروتئین ترشحی به آرامی حلال
گردید. محصول اشکال حلال حداکثر 12 ساعت در دما 25 درجه
سانتی‌گراد قرار داده شد. انگاه صفحه 30 دقیقه سانسور
پس از دهان چابک‌شویی با
استفاده Bovine Serum Albinin
برای مشخص کردن خلوفات پروتئین از
استفاده گردید. (28) الکتروفورز در سیستم یابوسن tale (Resolving) (Stacking)
(4) از ایلاتها با استفاده از رنگ‌های آمیزه قرار
(4 انجام گردید. (28)
برای تخمین وزن مولکولی از مارک‌های وزن مولکولی
استفاده ساخت شرکت Pharmacia و برنامه نرم افزاری
UVIDoc استفاده گردید.

Activity staining

جفت‌هایی از فعالیت آنزیم بالایی گالکتونیاز در فراکسیون‌های
جمع آوری شده از نمونه‌های حاصل از کروماتوگرافی، از
به روش زمانی و همکاران (37) استفاده
کنیکی شد.

Test plate

به منظور تشخیص وجود فعالیت آنزیم‌های یکپتینی از روی
استفاده گردید. برای تشخیص فعالیت آنزیم بالایی گالکتونیاز با 0.01 میلی لتر از محلول A (بانر یک مولار
استات پتاسیم با pH 9/45) 0.5 میلی لتر از محلول
B (100 میلی مولار با pH 9/45 مولی لیتر آب
مقرط اضافه گردید. 0.5 میلی گرم بالایی گالکتونورتیکاسید و
30 گرم آگارز به ان افزوده شد. سپس محلول گوشی ساخ شده
و پس از حل شدن کامل ماده بین پلی‌ها تقسیم گردید.
مقدار 0.5 میلی لتر هر تخمین روبی پلی‌دهم قاری و به مدت یک
و نیم ساعت در دما 37 درجه سانتی‌گراد نگهداری گردید.
(Ruthenium red) (50 گرم درصد) رنگ آمیزی شدند. پس از استنشاق، نمونه‌های
دارای فعالیت آنزیمی به صورت لکه‌هایی روشن بر روی پلی‌دهم
مشااهده شدند.

pH تعیین مناسب برای اتصال پروتئین به پستر و فعالیت آنزیمی

به منظور تعیین pH مناسب برای اتصال پروتئین‌های موجود در
محیط کشت به استنی، دامنه pH 4 تا 8/5 با فاصله 0.5 در
نظر گرفته شد. به هر لیزر یک میلی لیتر از استین مورد نظر همراه

384
خالص سازی آنزیم پلی گالاکتوزان جدایی (IKO6) فارق (Ascochyta rabiei)

شکل ۱: میزان فعالیت آنزیم و مقدار پروتئین (OD۲۸۰) محلول روی بستر مورد استفاده در سسون کروماتوگرافی تعویض بونی در های pH مختلف. کمترین میزان جذب به بستر در pH برابر ۵/۵ مشاهده می‌شود.

نتایج
با توجه به اینکه اولین واکنش مکلولی بین پاتوژن از جمله فاصله مشاهده‌ی از آنزیم‌های تخریب کننده دیوار سلولی از جمله آنزیم پلی گالاکتوزان روز سلول‌های میزان می‌باشد، نتایج این می‌باشد. بدست‌آمده به فرم کثیف این آنزیم برای بررسی و مطالعه خصوصیات مکلولی ایان. در این تحقیق اقدام به خالص سازی آنزیم پلی گالاکتوزان فارق

شکل ۲: مقدار پروتئین و میزان فعالیت آنزیم فراکسیون‌های مختلف جمع آوری شده از سسون کروماتوگرافی CM-Sepharose

از آنجا که قابل انجام خالص سازی لازم است شرایط مناسب برای اتصال آنزیم به بستر سسون مورد استفاده، مورد مطالعه قرار گرفت. در این تحقیق ابتدا تأثیر pH های مختلف بین ۳/۵ تا ۸ با فاصله‌های ۰/۵ در اتصال آنزیم به بستر مورد بررسی قرار گرفت. نتایج بررسی میزان آنزیم پلی گالاکتوزان متصل نشده به سسون نشان داد که مناسب‌ترین pH جهت انجام خالص سازی توسط کروماتوگرافی تعویض بونی ۵/۵ می‌باشد (شکل ۱).

نحوه کار
آنزیم پلی گالاکتوزان به‌دست آمده از جدایی IKO6 که در
فرآکسیون‌های شماره ۲ تا ۲۵ حاوی پروتئین بوده در حالت که فعالیت آنزیمی فقط در فراکسیون‌های ۱۸ تا ۲۰ مشاهده می‌گردد (شکل ۳). جهت تشخیص حضور آنزیم پلیگالاکتوئوناز در فراکسیون‌های مختلف از روش تست پلیت استفاده شد (شکل ۳).

برای جدا کردن پروتئین‌های منشأ شده به سمت از فراکسیون NaCl به بعد، از شیب فلز نمکی صفر یا بک مولار استفاده گردید. اندمازگیری مقدار پروتئین، فعالیت آنزیمی و فعالیت ویژه آنزیمی هر یک از فراکسیون‌های شماره ۵۵ تا ۱۳۵ کشت داده شده بود پس از رسوب دهی با پز می‌باشد. سولفات آمونیوم و انجم دیالز جهت خالص سازی مورد استفاده قرار گرفت. ابتدا ستون با استفاده از بافر استاندارد به نسبت میلی‌لیتر از محلول نمونه پروتئین به سمت اضافه گردید. در این مرحله ستون با بافر اولیه نمک مساله فراکسیون‌های ۲ تا ۵۵ به مقدار ۵ میلی‌لیتر جمع آوری گردید. اندمازگیری مقدار پروتئین این فراکسیون‌ها نشان داد که

شکل ۳. پرسی فعالیت آنزیم پلیگالاکتوئوناز به روش

شماره‌های ۱ از ۲۵ شماره فراکسیون‌های جمع آوری شده از ستون می‌باشد. فراکسیون‌هایی که دارای فعالیت آنزیمی بودند توسط هاله‌های شفاف مشخص می‌باشد. C= نمونه قبل از خالص سازی (شاهد).
نظام داده‌ی فراکسیون‌های ۸۱ تا ۱۲۰ حاوی مقادیر مختلف پروتئینی بوده و خالی‌کردن می‌شان که فراکسیون‌های شماره‌ی ۸۱ تا ۹۶ فعالیت آنزیم گلی‌گالاکتوئونازی از خود نشان دادند (شکل ۱). این فراکسیون‌ها (۸۱ تا ۹۶) در ناحیه‌ی غلظت قرنیزین بین ۰.۳ تا ۰.۴/۵ میلی‌مولار از منیوم خارج شده‌اند. بررسی فعالیت ویژه آنزیم فراکسیون‌های مختلف نشان داد که فراکسیون‌های U/mg ۱۸ تا ۴۱ (مرحله‌ی شستشو) دارای فعالیت ویژه‌ای پراکسیمون ۲۰/۶۵ تا ۷۲/۰۵ U/mg شیب نمکی دارای فعالیت ویژه‌ای P برابر می‌باشد. فراکسیون‌های ۹۶ تا ۱۴۲ دارای فعالیت ویژه آنزیمی قابل ملاحظه‌ای نبودند (شکل ۲).

برای مشاهده میزان خلوص آنزیمی از استفاده SDS-PAGE گردید. به این منظور فراکسیون‌های شماره‌ی ۸۱ تا ۸۸ که دارای بیشترین مقادیر فعالیت ویژه‌ای بودند با یکدیگر مخلوط و پروتئین‌های موجود در نمونه‌های مخلوط شده پس از رسوب‌دهی با استن سرد مورد تیار مطابق فشار گرفته‌اند. الگوی پروتئینی به‌دست آمده نشان داد که یک باند پروتئینی با ون
کشت‌های قرار می‌گیرد. لیزر و همکاران (۱۷) با چرم ملکولی PG (۱۷) کیلو دالتون را از چاره Botrytis cinerea ملکولی ۲۷ کیلو دالتون را از چاره Neurospora crassa گزارش نمودند. همچنین پلی گالاکتورونانزایی با وزن ملکولی ۲۳ و ۳۷ کیلو دالتون از چاره Rhizoctonia solani و ۲۳ و ۳۷ کیلو دالتون از چاره Rhizoctonia fragariae و ۲۳ و ۴۲ کیلو دالتون از چاره Fusarium oxysporum می‌باشد.

بحث
نواحی پاتوژن‌های گیاهی برای تولید آنزیم‌های تجزیه کننده چاره‌ها و سلولی گیاهان احتمالاً اولین مرحله در فراورده‌های بیماری زایی می‌باشد (۱۷) و ۲۳. گزارش‌های موجود نشان می‌دهد که آنزیم‌های تجزیه کننده یکی از دیواره سلولی گیاهان از جمله آنزیم پلی گالاکتوروناز معمولاً در بخش‌های (۱۲) و (۱۴). چرم ملکولی فرم‌های مختلف آنزیم پلی گالاکتوروناز قارچ‌ها و باکتری‌ها در دامنه

شکل ۵. پانه پروتئین خالص شده آنزیم پلی گالاکتوروناز (فراکسیون‌های ۸۸–۸۱)

از جدایی PK06 قارچ A. rabiei ۲۳ و ۳۷ کیلو دالتون از چاره POTATO sample مارکر پروتئینی، نمونه خاص شده سازی شده

شکل ۶. نشان دهنده میزان فعالیت آنزیم پلی گالاکتوروناز خالص شده در pH های مختلف
به کار رفته است. در این تحقیق جهت خالص سازی آنزیم پلی سلروتینیک، کالاکتوروناز از یک کریپتیک غربال کاری مورد استفاده قرار گرفت. گربه‌آم از Carboxy Methyl Sepharose صورت یک فلوجه مشخص استخراج و وزن مکلولی آن به کمک حدود 27 کیلو دالرون تغییر گردید.

SDS-PAGE برای بررسی فعالیت آنزیمی باند پروتئین خالص شده ایجاد گردید. با توجه به داده‌ها و نشانه‌ها کالاکتوروناز در شرایط in vitro شرایط مغناطیس مبتنی در گیاهان (Polygalacturonase inhibiting protein, PGIP) مقام به عمل بیماری‌ها قرار گرفت. با توجه به داده‌های مربوط به پروتئین بیماری‌ها قرار گرفت

از فقره‌های 1 و 21 (Sclerotinia sclerotiorum) 66 و 115 کیلو دالرون از Bacillus (26) Botrytis cinerea (16) گزارش شده است. آنزیم‌های پلی کالاکتورونازی از اولین آنزیم‌های بیماری که در مراحل اولیه ایجاد بیماری توسع بیماری از قرار گرفته در زمینه فعالیت Ascochyta rabiei از جمله فصل 136 (42) می‌شود (24 و 23).

شماره سازی و تعبین خصوصیات آنزیم‌های پلی کالاکتورونازی می‌تواند جهت بررسی دقیق تر عملکرد آنها در بافت و پروتئین مهار در آنها در گیاهان (Polygalacturonase inhibiting protein, PGIP) مقام به عمل بیماری. مورد استفاده قرار گیرد. با توجه به داده‌های مربوط به پروتئین بیماری‌ها قرار گرفت.

از فقره‌های 1 و 21 (Sclerotinia sclerotiorum) 66 و 115 کیلو دالرون از Bacillus (26) Botrytis cinerea (16) گزارش شده است. آنزیم‌های پلی کالاکتورونازی از اولین آنزیم‌های بیماری که در مراحل اولیه ایجاد بیماری توسع بیماری از قرار گرفته در زمینه فعالیت Ascochyta rabiei از جمله فصل 136 (42) می‌شود (24 و 23).

شماره سازی و تعبین خصوصیات آنزیم‌های پلی کالاکتورونازی می‌تواند جهت بررسی دقیق تر عملکرد آنها در بافت و پروتئین مهار در آنها در گیاهان (Polygalacturonase inhibiting protein, PGIP) مقام به عمل بیماری. مورد استفاده قرار گیرد. با توجه به داده‌های مربوط به پروتئین بیماری‌ها قرار گرفت.

از فقره‌های 1 و 21 (Sclerotinia sclerotiorum) 66 و 115 کیلو دالرون از Bacillus (26) Botrytis cinerea (16) گزارش شده است. آنزیم‌های پلی کالاکتورونازی از اولین آنزیم‌های بیماری که در مراحل اولیه ایجاد بیماری توسع بیماری از قرار گرفته در زمینه فعالیت Ascochyta rabiei از جمله فصل 136 (42) می‌شود (24 و 23).

شماره سازی و تعبین خصوصیات آنزیم‌های پلی کالاکتورونازی می‌تواند جهت بررسی دقیق تر عملکرد آنها در بافت و پروتئین مهار در آنها در گیاهان (Polygalacturonase inhibiting protein, PGIP) مقام به عمل بیماری. مورد استفاده قرار گیرد. با توجه به داده‌های مربوط به پروتئین بیماری‌ها قرار گرفت.

از فقره‌های 1 و 21 (Sclerotinia sclerotiorum) 66 و 115 کیلو دالرون از Bacillus (26) Botrytis cinerea (16) گزارش شده است. آنزیم‌های پلی کالاکتورونازی از اولین آنزیم‌های بیماری که در مراحل اولیه ایجاد بیماری توسع بیماری از قرار گرفته در زمینه فعالیت Ascochyta rabiei از جمله فصل 136 (42) می‌شود (24 و 23).

