اثر کادمیم اضافه شده و زمان خواباندن بر شکل‌های شیمیایی کادمیم در
دو گروه بانی خاک

مجید رجایی و نجفی‌نیا کریمیان

چکیده

در میان فازات سنگین آلوده کننده خاک، کادمیم از اهمیت ویژه‌ای برخوردار است. زیرا به راحتی به وسیله ریشه گیاه جذب می‌شود و سبب می‌کند تا ۲۰ برابر بیشتر از سایر فازات سنگین است. بنابراین درک عوامل مؤثر بر قابلیت استفاده این فاز و تغییر و تبدیل آن در خاک از اهمیت قرارگیری برخوردار است. گرچه در سال‌های اخیر عصاره‌گیری خواباندن با عناوین مختلف متعدد تاثیر گذاری شیمیایی و قابلیت استفاده بالقوه فازات در خاک‌های ایران با کار رفته است، اما تحقیق این اجزاء مختلف خاک برای نگهداری کادمیم و تغییر و تبدیل شکل‌های شیمیایی آن با زمان کمتر مورد توجه قرار گرفته است. در این پژوهش به منظور بررسی تغییرات زمانی شکل‌های شیمیایی کادمیم و تغییرات فضای اجزای مختلف خاک برای نگهداری این فاز به یک خاک لوم رسمی آهنگی، Fine, mixed (calcareous), mesic Typic Calcixerpts روش انجام شد. خاصیت کوارتزی افزوده شده با یافته لوم شیمیایی حاصل به‌همراه کامی اولیه با مقدار ۰.۵، ۰.۵، ۰.۵ و ۰.۵ میلی‌گرم کادمیم در کیلوگرم خاک، ۵۴.۸٪ بیشتر در مقایسه با یافته رسمی به شکل‌های محلول و تکلیف کربناتی و آلی در می‌آید. در یافته لوم شیمیایی مقدار کیفی و کمی این فاز از کادمیم به کار رفته در مقایسه با یافته لوم شیمیایی به شکل محلول + تکلیف و کربناتی در آمد. برای سایر شکل‌های این فاز به جز شکل‌های کیفی‌تر از کادمیم به کار رفته در مقایسه با یافته لوم شیمیایی به شکل محلول + تکلیف و کربناتی در آمد. برای سایر شکل‌های این فاز به جز شکل‌های کیفی‌تر از کادمیم به کار رفته در مقایسه با یافته لوم شیمیایی به شکل محلول + تکلیف و کربناتی در آمد. برای سایر شکل‌های این فاز به جز شکل‌های کیفی‌تر از کادمیم به کار رفته در مقایسه با یافته لوم شیمیایی به شکل محلول + تکلیف و کربناتی در آمد. برای سایر شکل‌های این فاز به جز شکل‌های کیفی‌تر از کادمیم به کار رفته در مقایسه با یافته لوم شیمیایی به شکل محلول + تکلیف و کربناتی در آمد. برای سایر شکل‌های این فاز به جز شکل‌های کیفی‌تر از کادمیم به کار رفته در مقایسه با یافته لوم شیمیایی به شکل محلول + تکلیف و کربناتی در آمد.

واژه‌های کلیدی: شکل‌های شیمیایی کادمیم، عصاره‌گیری دنباله‌ای، خواباندن

1. به ترتیب دانشجوی دکتری و استاد خاکشناسی، دانشگاه کشاورزی، دانشگاه شیراز
مقدمه

امروزه آلودگی محیط زیست و از جمله خاک به عنوان یکی از مباحث سیاسی مهم در زندگی بشر مطرح است. این بیانه‌نامه تحقیق بررسی طبیعی درمان دانلی انجام گرفته و در نتیجه ایجاد محصولات بیشتر برای ساختن زمین محیطی، فلزات سنگین از جمله مشابه آلودگی خاک به‌عنوان یکی از صورت تجمع در خاک و جذب به وسیله گیاه به‌عنوان گذاری وارد می‌شوند و در دسته‌بندی‌های خاک گیاهان و افراد تغذیه‌کننده از آنها ایجاد می‌کنند (1، 2، 3، 4، 5، 8، 6، 7، 8، 9، 10، 11، 12، و 13). با این حال، مطالعات رهاسازی و تغییر در تبدیل ان فلزات محیطی و تأثیری که بر رشد گیاهان و سایر جانداران دارند، از اهمیت خاصی برخوردار است.

در گذشته فلزات سنگین، به کادمیم توجه ویژه‌ای شده است. این محتوای فلزی شامل زیرا به راحتی به سیستم ریشه گیاه جذب می‌شود و سپس آن را به‌طور جزئی از سایر فلزات سنگین (2) قرار می‌دهد. زیستی بالایی کادمیم و احتمال ورود آن به زنجیره غذایی، حتی در سطوح پایین آلودگی خاک به این طرف سبب شده است که تا بسیاری نسبت به عدم عوامل رمز و حمایت استفاده باید فلزات تغییر و تبدیل آن در خاک احساس شود. به‌طور کلی قابلیت استفاده کادمیم تحت تأثیر مقدار مناسب کادمیم، pH مقدار ماده آلی، مقدار و نوع رس، ظرفیت تبدیل کاتیونی، و رایق‌بندی عنصر ویژه رونده در بستر خاک می‌باشد (1، 2، 3، 4، 5، 8، 6، 7، 8، 9، 10، 11، 12، 13، 16، 17، 18، 19، 20 و 21).

در رابطه با تغییر و تبدیل فلزات در خاک و از جمله کادمیم، گفته می‌شود که اکثر فلزات در زمین‌های متحرک، محیط زیستی و محیط زیستی در ایجاد آلودگی به خاک، دارای ویژگی‌های خاصی هستند که با گذشت زمان و ایجاد تکثیر، بین خاک و خاک اثر واکنش‌های هموگنز جذب محیطی، تبدیل‌کننده، رسوب، اکسید و احیا و اکتشاف به‌اکتشاف و تبدیل‌کننده آهون و منگنز و ورود به شکلی که قادر به استفاده فلزات می‌باشد و فلزات از شکل‌هایی به حالت‌های مکمل‌های کم‌جز غالباً تبدیل می‌شوند (1، 2، 3، 4، 5، 8، 6، 7، 8، 9، 10، 11، 12، 13، 16، 17، 18، 19، 20 و 21).
میزان ای ۱۰ به‌کار می‌انجامد که با گروه بیاپتی، لوم شگنی به‌شمار می‌رود. نمونه‌هایی از این خاک به‌صورت متنقل و بعضی از
ویژگی‌های این خاک‌ها همچون بافت به‌روش هیدرومتر (۱۱) ب‌ه‌اش در خنثی‌سازی، کامپرسیون مقدار، به‌روش خنثی
سازی با استفاده کلید دکتریک (۰۷)، طولین‌ها، نیاز کامپرسیونی به‌روش
جاگرینی کامپرسیونی با استفاده کامپرسیون (۱۳)، و در امکان به‌روش
واکی بلاک (۱۶) اندازه‌گیری شد (جدول ۲).

به منظور بررسی تغییرات زمانی شکل‌های شیمیایی کادمیم، آزمایش فاکتوریل در قالب طرح کاملاً نامطلوب انجام شد.
فاکتور شامل دو گروه بیاپتی، تن به شکل کادمیم (۰۰، ۷۵، ۰۳ و
۰۵ میلی‌گرم خاک در کیلوگرم خاک به‌صورت سولفات کادمیم) و
تنوع کامپرسیون (۱:۰، ۴:۲، ۶:۸ و ۱۶:۲) بود. مقدار
گرانی که در سال‌های آخر، در خاک‌های ایران از عصاره‌گیری
دی‌نیاتریت به‌عنوان شکل‌های شیمیایی، قابلیت از جمله
کادمیم استفاده شده است (۱، ۵، ۵ و ۲۳). اما طرفی انجای
اختلاف بین خاک‌ها برای ژن در نگهداری، تغییر و
تبدیل شکل‌های شیمیایی این ذرت به‌گذشت زمان کمتر‌تر
توجه قرار گرفته است. بنابراین در تحقیق حاضر سعی شد تا با
استفاده از عصاره‌گیری دینیاتریت و طرح بالایی کادمیم مقدار
تغییر و تبدیل کادمیم در طول زمان و طرفی خاک برای تغییر
این فاز در یک آزمایش خواندن بررسی شود. هم‌چنین تأثیر
بافت خاک بر سرنوشت کادمیم به کار رفته از نظر فرضی به
یک بافت لوم رسی و تبدیل آن به بافت لوم شگنی مطالعه
قرار گرفت.

مواد و روش‌ها

در تحقیق حاضر از دو گروه بانفی استفاده شد. برای گروه بانفی
اول، نمونه‌هایی از خاک‌های لودوم رسی‌های آهکی [Fine, mixed (calcareous), mesic Typic Calciorthods]
ایجاد شد که نتایج دانشکده شناسی از شیراز از عمق
۲۰ سانتی‌متر می‌برد. این جامعه برای مطالعه
در هوا و خاک در کلیه مراکز در آزمایشگاه به کار رفت.

چهار روش به‌کار می‌آمد که هر روشی به‌همنهایی به
خاک بانفی مانند از مراحل قبل اضافه شد. نمونه‌ها به
مدت ۲۰ میلی‌گرم کادمیم در کیلوگرم (به شکل
سولفات کادمیم) در راه با گروه گدره داده شد. جداسازی شکل‌های شیمیایی کادمیم به وسیله
do روش عصاره‌گیری دینیاتریت در طول دوره خواندن
رو به‌کار رفته از تجهیزات مصرف کادمیم سبب افزایش تعداد شکل‌های
شیمیایی کادمیم از همان اندازه‌های آزمایش شد و در فاصله
سوم متری تغییر و تبدیل شکل‌های شیمیایی کادمیم به شکل‌های
سخت‌تری و پایین‌تری. این چهار روش در سه سطح
می‌پذیرند. می‌باشد.

گرچه در سال‌های اخیر در خاک‌های آبیاری از عصاره‌گیری

جدول 1. خلاصه‌ای از روش عصاره‌گیری دنباله‌ای ارائه‌شده به وسیله سینگ و همکاران (1988) برای تعیین شکل‌های شیمیایی فلزات در خاک‌های آهکی

<table>
<thead>
<tr>
<th>شکل شیمیایی کادمیم</th>
<th>ترکیب عصاره‌گیر</th>
<th>مدت تکان دادن (ساعت)</th>
<th>علامت</th>
<th>ترکیب محلول + تبادل</th>
</tr>
</thead>
<tbody>
<tr>
<td>5(\times)</td>
<td>1M Mg(NO(_3))(_2)</td>
<td>0(\times)</td>
<td>Ex+Sol</td>
<td>محصول محلول + تبادل</td>
</tr>
<tr>
<td>5(\times)</td>
<td>1M NaOAc (pH=5 CH(_2)COOH)</td>
<td>5(\times)</td>
<td>Car</td>
<td></td>
</tr>
<tr>
<td>5(\times)</td>
<td>0.7M NaOCl (pH=8.5)</td>
<td>0.5(\times)</td>
<td>Om *</td>
<td></td>
</tr>
<tr>
<td>0.5(\times)</td>
<td>0.1M NH(_2)OH.HCl (pH=2 HNO(_3))</td>
<td>0.5(\times)</td>
<td>MnO(_x)</td>
<td></td>
</tr>
<tr>
<td>0.5(\times)</td>
<td>0.25M NH(_2)OH.HCl + 0.25M HCl</td>
<td>0.5(\times)</td>
<td>AFeO(_x)</td>
<td></td>
</tr>
<tr>
<td>0.5(\times)</td>
<td>0.2M (NH(_2)(_2))(_2)C(_2)O(_4) + 0.2M H(_2)(_2)C(_2)O(_4) + 0.1 MC(_6)H(_8)O(_6)</td>
<td>0.5(\times)</td>
<td>CF(_2)O(_x)</td>
<td></td>
</tr>
</tbody>
</table>

* دوبار عصاره‌گیری

جدول 2. بعضی از ویژگی‌های فیزیکی و شیمیایی خاک‌های مورد آزمایش

<table>
<thead>
<tr>
<th>خاک</th>
<th>ویژگی</th>
<th>باتش لوم رشته</th>
<th>باتش سیک لوم شنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>شن (درصد)</td>
<td>27</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>سبلت (درصد)</td>
<td>39</td>
<td>34</td>
<td>22</td>
</tr>
<tr>
<td>رس (درصد)</td>
<td>1</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>کادمیم کل (میلی گرم در کیلوگرم خاک)</td>
<td>0/62</td>
<td>0/81</td>
<td>0/58</td>
</tr>
<tr>
<td>کادمیم آه (درصد)</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
<tr>
<td>کریت کلسیم معادل (درصد)</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>ب- هاش (خمیر اشباع)</td>
<td>7/57</td>
<td>7/57</td>
<td>7/57</td>
</tr>
<tr>
<td>ظرفیت تبادل کاتیونی (سانتی مول بر در کیلوگرم خاک)</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

تنها داده شده و پس از سانتریفیوز و صاف کردن جهت انداره‌گیری کادمیم به کار رفته. قبیل از قرائت نمونه‌ها توسط دستگاه جذب انتی محلول‌های استاندارد برای هر پیک از شکل‌های کادمیم در عصاره‌گیری مربوط به آن شکل ساخته شد. تأثیر ماده زمینه به حداقل بررس. خلاصه مراحل عصاره‌گیری کامپیوتری Mstac انجام و با استفاده از آزمون F مورد تجزیه کامپوتروی

...
تایپ و بحث

نتایج مروبتو به تجربه فیزیکی و شیمیایی بافت‌های مورد استفاده در جدول ۲ ارائه شده است. خاک لوم رسي خاک غیر آلوه‌ها بافت سنگین، ماده آلی متوسط، کربنات کلسیم بالا و پ‌هاش قلبی با پنداش. افزودن سن کوارتز سبب شدن بات فاکس و کاهش در کادمیم کل، ماده آلی و کربنات کلسیم این خاک شد و در مقایسه‌ب‌هاش گیاهی ایجاد شد.
نتایج مروبتو به اثر بافت شکل‌های شیمیایی کادمیم در جدول ۳ ارائه شده است. تأثیر بافت بر این شکل‌ها در سطح ۵ درصد معنی‌دار بود. میانگین‌داده‌ها نشان داده که شکل‌های شیمیایی آلی، اکسیده‌های منگنز، اکسیده‌های آهن بی شکل و تنمه در بافت لوم‌رسی بیشتر از بافت لوم شی و به ترتیب ۰/۶۸ و ۱/۶۳ می‌باشد. در مقایسه با بافت لوم شی، میانگین کمتر شکل‌های آلی، اکسیده‌های منگنز، اکسیده‌های آهن روی کشور غیر در بافت لوم شی و به ترتیب ۰/۷۷ و ۱۵/۳۱ در بر اشکال زیستی در کادمیم بیشتر است. استخراج کادمیم به طور ملیکایی برای بافت لوم شی و لوم شی را می‌توان به رقیق شدن این اجزای بزرگ اثر افزودن شن...
جهت تهیه گروه بافتی سبد نشست داد. لازم به ذکر است که در هر دو دان و برابر هر بیماره غلظت کادمیم متصل به اکسیدهای آهن متولور (کربناتی) ناشی و کمتر از حد تشخیص دستگاه جدید انس (۵۰/۰ میلی‌گرم در کیلوگرم) بود.

این امر حاکی از این است که کادمیم برای ورود به قسمت‌های نشانه‌دار در خاک و در شرایط آزمایش حاضر بود.

داده‌های مربوط به بیمارانی که می‌خواستند و سطح کادمیم در دو باته مورد آزمایش در حدود ۴۰ و ۵ نشان داده شده است. در هر دو باته و در زمان‌نامه‌ها با افزایش میزان کادمیم در کیلوگرم، کاهش نسبی شیمیایی کادمیم به طور معنی‌داری افزایش یافته است. افزایش نسبی شیمیایی کادمیم در همان ابتدا آزمایش بیانگر دسترسی سبب تجلیل در روابط کادمیم به شکل فازهای مختلف می‌باشد. این امر قطعی زیاد خاک که مورد طلا لغه است به تاخیر و تغییر کادمیم نشان می‌دهد. در پژوهشی که توسط رنالد و همکاران در انجام گرفت، جدا سازی شکل‌های شیمیایی کادمیم در یک آزمایش خواندن ۶۰۰ روژه نشان داد که در همان ابتدا آزمایش روزول (رزول) کاربرد مقداری ۳ و ۱۵ میلی‌گرم کادمیم در کیلوگرم خاک (به شکل سلولی کادمیم) سبب توزیع طرفین با شروع در حکایات این فلز در بین اجزای مختلف خاک شد. در زمان مکثر کاربرد ۵۰ میلی‌گرم کادمیم در کیلوگرم خاک سبب روابط کادمیم و نشانه گزینه معدنی شد که این امر با افزایش در شکل‌های مختلف همکار بود.

بر همکشی بافت و سطح کادمیم نیز این شکل‌ها معنی دارد. به عنوان مثال در زمان ۱۶ هفته و در بافت لوم بسیار افزایش سطح کادمیم از صفر به ۶۰ میلی‌گرم در کیلوگرم خاک شکل محول + تبلیغ از کمتر از ۵/۰ (حدود خطای دستگاه جذب انس) به ۱۲/۶ و در بافت لوم شیاه از کمتر از ۵/۰ به ۱۸۷/۰ میلی‌گرم در کیلوگرم خاک رسید که او افزایش بیشتری را در بافت لوم نشان داده. به‌عبارتی دیگر با افزایش سطح کادمیم در بافت لوم شیاه مقدار بیشتری از کادمیم در شکل محول + تبلیغ بافت لوم شیاه می‌باشد.
جدول 4: تأثیر زمان و سطح کادمیم بر شکل‌های شیمیایی این فلز (میلی‌گرم در کیلوگرم خاک) در باتلاق لوم رسر

<table>
<thead>
<tr>
<th>شیمیایی درون‌رخ سطح (میلی‌گرم در کیلوگرم)</th>
<th>زمان (فته)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرحله + تابشی</td>
<td>0</td>
</tr>
<tr>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>+0/15 D</td>
<td>+0/19 k</td>
</tr>
<tr>
<td>+0/34 C</td>
<td>+0/48 k</td>
</tr>
<tr>
<td>+0/68 B</td>
<td>+0/56 k</td>
</tr>
<tr>
<td>+1/2 A</td>
<td>+1/34 c</td>
</tr>
<tr>
<td>+1/49 d</td>
<td>+1/49 d</td>
</tr>
<tr>
<td>+0/13 E</td>
<td>+0/15 k</td>
</tr>
<tr>
<td>+2/57 D</td>
<td>+2/57 d</td>
</tr>
<tr>
<td>+1/8 E</td>
<td>+1/8 c</td>
</tr>
<tr>
<td>+1/97 B</td>
<td>+1/97 b</td>
</tr>
<tr>
<td>+1/98 A</td>
<td>+1/98 b</td>
</tr>
</tbody>
</table>

کربناتی

مانگین	0	1	2
nd	nd	nd	nd
+0/12 D	+0/15 k	+0/15 k	+0/15 k
+0/44 C	+0/44 k	+0/44 k	+0/44 k
+0/86 B	+0/86 k	+0/86 k	+0/86 k
+1/4 A	+1/4 c	+1/4 c	+1/4 c
+1/81 c	+1/81 c	+1/81 c	+1/81 c

آلی

مانگین	0	1	2
nd	nd	nd	nd
+0/17 E	+0/17 k	+0/17 k	+0/17 k
+0/34 D	+0/34 k	+0/34 k	+0/34 k
+0/57 C	+0/57 k	+0/57 k	+0/57 k
+0/81 B	+0/81 k	+0/81 k	+0/81 k
+1/44 A	+1/44 c	+1/44 c	+1/44 c
+1/87 c	+1/87 c	+1/87 c	+1/87 c

متصل به آکیده‌های مکن

مانگین	0	1	2
nd	nd	nd	nd
+0/45 E	+0/45 k	+0/45 k	+0/45 k
+0/37 D	+0/37 k	+0/37 k	+0/37 k
+0/65 C	+0/65 k	+0/65 k	+0/65 k
+0/96 B	+0/96 k	+0/96 k	+0/96 k
+1/27 A	+1/27 c	+1/27 c	+1/27 c
+1/76 c	+1/76 c	+1/76 c	+1/76 c

متصل به آکیده‌های آلی به شکل

مانگین	0	1	2
nd	nd	nd	nd
+0/15 E	+0/15 k	+0/15 k	+0/15 k
+0/33 D	+0/33 k	+0/33 k	+0/33 k
+0/57 C	+0/57 k	+0/57 k	+0/57 k
+0/81 B	+0/81 k	+0/81 k	+0/81 k
+1/27 A	+1/27 c	+1/27 c	+1/27 c
+1/76 c	+1/76 c	+1/76 c	+1/76 c

کربناتی

مانگین	0	1	2
nd	nd	nd	nd
+0/15 E	+0/15 k	+0/15 k	+0/15 k
+0/33 D	+0/33 k	+0/33 k	+0/33 k
+0/57 C	+0/57 k	+0/57 k	+0/57 k
+0/81 B	+0/81 k	+0/81 k	+0/81 k
+1/27 A	+1/27 c	+1/27 c	+1/27 c
+1/76 c	+1/76 c	+1/76 c	+1/76 c

کربناتی

مانگین	0	1	2
nd	nd	nd	nd
+0/15 E	+0/15 k	+0/15 k	+0/15 k
+0/33 D	+0/33 k	+0/33 k	+0/33 k
+0/57 C	+0/57 k	+0/57 k	+0/57 k
+0/81 B	+0/81 k	+0/81 k	+0/81 k
+1/27 A	+1/27 c	+1/27 c	+1/27 c
+1/76 c	+1/76 c	+1/76 c	+1/76 c

کربناتی

مانگین	0	1	2
nd	nd	nd	nd
+0/15 E	+0/15 k	+0/15 k	+0/15 k
+0/33 D	+0/33 k	+0/33 k	+0/33 k
+0/57 C	+0/57 k	+0/57 k	+0/57 k
+0/81 B	+0/81 k	+0/81 k	+0/81 k
+1/27 A	+1/27 c	+1/27 c	+1/27 c
+1/76 c	+1/76 c	+1/76 c	+1/76 c
جدول 5: تأثیر زمان و سطح کادمی بر شکل‌های شیمیایی این فلز (میلی‌گرم در کیلوگرم خاک) در بافت لوم شنی

<table>
<thead>
<tr>
<th>مدت زمان (فته)</th>
<th>سطح (میلی‌گرم در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>میانگین</th>
<th>کربناتی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
</tbody>
</table>

جدول 6: تأثیر اکسیدهای مکرر بر شکل‌های کربناتی

<table>
<thead>
<tr>
<th>مدت زمان (فته)</th>
<th>سطح (میلی‌گرم در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>میانگین</th>
<th>کربناتی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
</tbody>
</table>

جدول 7: تأثیر اکسیدهای آهن بر شکل‌های کربناتی

<table>
<thead>
<tr>
<th>مدت زمان (فته)</th>
<th>سطح (میلی‌گرم در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>میانگین</th>
<th>کربناتی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
</tbody>
</table>

جدول 8: تأثیر اکسیدهای آهن بر شکل‌های کربناتی

<table>
<thead>
<tr>
<th>مدت زمان (فته)</th>
<th>سطح (میلی‌گرم در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>میانگین</th>
<th>کربناتی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
</tbody>
</table>

جدول 9: تأثیر اکسیدهای آهن بر شکل‌های کربناتی

<table>
<thead>
<tr>
<th>مدت زمان (فته)</th>
<th>سطح (میلی‌گرم در کیلوگرم خاک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>میانگین</th>
<th>کربناتی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
</tr>
</tbody>
</table>
برزشی شکل‌های شیمیایی کادمیم با گذشت زمان نشان دهنده تغییرات معنی‌داری بوده، اینها که گذشت زمان به‌عوامل شکل‌ها روند ثابتی را به طور معنی‌داری را نشان می‌دهند. و بعضی دیگر دارای نوسانات بودند. به طور مثال در هر دو بافت و در تمام سطوح پس از گذشت 16 هفته شکل محلول + تبادلی به طور معنی‌داری کاهش یافت و به ترتیب برای بافت‌های لوم رسی و لوم شنی از میانگین 70/4% در 100/4% و 61/0% میلی‌گرم در کیلوگرم خاک رسید. در مقابل، در هر دو بافت، غلظت کادمیم متوسط به اکسیدهای منکسر با گذشت زمان کاهش یافت. غلظت سایر شکل‌های شیمیایی کادمیم با گذشت زمان نوسانات داشت و به‌کمی کاهش و با کمی افزایش همراه بود (جدول‌های 4 و 5). کاهش غلظت‌شکل محلول + تبادلی و افزایش غلظت کادمیم متوسط به اکسیدهای منکسر امکان‌پذیر از انتظار بود. زیرا تغییر شکل‌های محلول فراوان با گذشت زمان و تبدیل آنها به شکل‌های با حلالیت کمتر نزدیک به‌طور متوسط بروزگردها برگردد. نیز گزارش شده است (10.15.19.20.21 و 27). هر چند برای نوسان غلظت سایر

شکل‌های دیلی قاعده کننده وجود نداشت اما شااهد بیان

نتایج

شکل 1. مقدار نسبی شکل‌های شیمیایی کادمیم با گذشت زمان

شکل 2. مقدار نسبی شکل‌های شیمیایی کادمیم با گذشت زمان

بررسی شکل‌های شیمیایی کادمیم با گذشت زمان نشان داد. به‌عبارتی دیگر تغییر و تجزیه کمیکس‌ها مواد آلمی با فاز می‌تواند در ترکیب و با راه‌سازی فلزات در خاک مؤثر باشد و به نوبه خود بر مقدار نسبی سایر شکل‌ها اثر بگذارد. از طرفی تنکه بسیار قابل توجه در مورد تغییر شکل‌های شیمیایی کادمیم با گذشت زمان این بود که قابل از شروع آزمایش اندازه‌گیری که پس از افزودن کادمیم به خاک مقدار قابل توجهی از این فاز وارد شکل محلول و تبادل جدا شده و بعد به تدریج این شکل‌ها جدا شده و وارد سایر اشکال شد، اما بر خلاف انتظار نباید این فاز وارد جز کربناتی و آلمی شد. به طوری که در اکثر تیمارها و در تمام زمان‌ها به طور متوسط بیش از 80 درصد از کادمیم افزوده شده به خاک وارد شکل‌های کربناتی و آلمی شد و تغییر را پایان آزمایش نسبت خود را فلج کرد. به‌عبارتی دیگر، شکل‌های سایر شکل‌ها با گذشت زمان تغییر کردند و این تغییرات با نظر گرفتن یک نشانه از کادمیم که وارد شکل کربناتی و آلم شده نیز بود. به عنوان مثال شکل‌های 3 و 4 درصد شکل‌های شیمیایی کادمیم و تغییرات آنها را با زمان

0% 20% 40% 60% 80% 100%

0 5 15 30 60

0% 20% 40% 60% 80% 100%

0 5 15 30 60

Sol+Ex Car Om MnOx AFeOx Res

Sol+Ex Car Om MnOx AFeOx Res

سطوح کادمیم (میلی‌گرم در کیلوگرم) (خاک)

سطوح کادمیم (میلی‌گرم در کیلوگرم) (خاک)

Downloaded from iutjournals.iut.ac.ir at 12:40 IRDT on Tuesday August 3rd 2021
نتایج گیری

نتایج این پژوهش نشان داد که طرفیت کربنات کلسیم برای نگه داری کادمیم در خاک های مورد مطالعه بالاست و این خاک‌های قادرون به مقادیر زیاد این فلز را به سرعت تثبیت کرده و به شکل کربندی تبدیل کند. در هر حال تبدیل بخش عمده کادمیم کاربردی به شکل‌های شیمیایی که توسط عصاره‌گیرهای نسبتاً ضعیف عصاره‌گیری می‌شوند و عدم تغییر این شکل‌ها در

منابع مورد استفاده

1. حسینی، س. م. چ. و. ش. حاج رسولی‌ها، 1374. تعبیه فرم‌های شیمیایی غلبه عناصر سنگین در خاک اطراف کارخانه‌های ذوب اهن اسفناج و رسوبات نیکری به روش عصاره‌گیری متواج. خلاصه مقالات چهارمین کنگره علوم خاک ایران، دانشگاه صنعتی اصفهان، صفحه 168–169.

