تعیین سطح شالیزارهای حاشیه زاینده رود در منطقه اصفهان با داده‌های رقیمی سنجش‌های IRS

ماهواره IRS

سید جمالالدین خواجه‌الدین و سعید بورنامیف

چکیده

برای تعیین سطح زیر کشت شالیزارهای منطقه اصفهان، از داده‌های رقیمی ماهواره IRS-1D (سنجش‌های IRS و سری LiSS III و PAN) استفاده شد. تصویب‌های مختلف شاسی‌شناسی، انسانی، رادیومتریک و نوریگرافی بر روی تصاویر مربوط به سال‌های 2001-2004 اعمال گردید. در این مطالعه پیش‌دارشای‌های زیرک و نوریگرام‌های مختلف از جمله انالیز‌های تکیه‌گاهی مربوط به تصاویر سری، شاسی‌شناسی و هم‌چنین نمونه‌برداری‌های میدانی برای سال‌های 2003 و 2004 صورت گرفت. با انتخاب نواحی تغییرمناسب در تصاویر مختلف، اقدام به طبقه‌بندی نظارت شده، نمودار نمایش داده شد. از یک مادون ترکیبی مواد کشاورزی و شاخص آب‌های متداول و ارزیابی مورفولوژیک علاوه بر شالیزارها، اراضی NDWI (Normalized Difference Water Index) کشاورزی نیز شناخته شدند. نتایج درصد معنی‌داری درصد صفر، که به طبقه‌بندی نظارت شده و داده‌های IRS و PAN در تصاویر مربوط به سال‌های 2001 و داده‌های IRS نرخ برای تصویب و تعیین دقیق سطح زیر کشت شالیزارهای اصفهان IRS LiSS III در پایان این کیفی واقعی و قابل استفاده خواهد بود.

واژه‌های کلیدی: شالیزار، سنجش از دور، طبقه‌بندی نظارت شده، اصفهان، IRS، LiSS III

مقدمه

منابع طبیعی کاربرد دارد (۳). امروزه در میان از موارد کاربرد آن، نه تنها هزینه‌های زیادی ندارد، بلکه منابع آن، به هدف استفاده که هزینه خرید داده‌ها در مقابل سرعت انجام کار و حجم منابع موجود در بررسی‌های و برنامه‌های کشاورزی و مصنوعی در بررسی‌های و برنامه‌های کشاورزی و

1. دانش‌های مرتع و ابیزداری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان
2. کارشناس ارشد بیوتکنیک، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان

513
ایالت آندوراپارادوست هند برآورد نمود.

در مطالعات توسط نانگ و همکاران (200) در ونیتن برای بررسی اثرات آبی بروی بر روی کوستیمنگ مایکروبرد ارگانیک از تفصیل‌های منجر به ملاحظه مورد مطالعه دارای نوع کولوژنیک و کاربری اراضی (از جمله مزارع برنج) بود. این تحقیق جدایی کردن برخی از سطحیابی که به کار رفت.

(11) تخمین و تعیین سطح زیر کشت محصولات کشاورزی در برنامه‌های و توصیه‌های مهم‌های اهمیت دارد. برای از کشورها جهت این کار به جمع آوری اطلاعات و مشاهدات زمینی و گزارشات مربوطه منکس هستند. که بسیاری در دارای و زمان‌بندی این مطالعات و مبهم (کارشناسی استونرود) که به نتایج پیش‌بینی از این مطالعات را مشکلاتی در نیاز به اگره‌ها یا ایستگاه‌های هوشمند می‌سازند. در این مطالعات از دوری نمونه‌برداری با تشخیص نوع و تعیین سطح زیر کشت محصولات، اطلاعات مفیدی در این رابطه به مختصات کشاورزی ارائه کرد.

برنگر مهارت‌های غذای محصول می‌شود. با بر گزارشی پینه‌پایی در دانشگاه آبراهام مورد نظر در سطح کوچک و در آمیز پایینی دارند تولید می‌شود. تولید، مصرف و تجارت برنج در آسیا گردیده و توسط کشور تغییرات از سال 1985 در دست پرداخت. باند مادون فرمز (Short Wave) Infrared SWIR موج کوتاه‌تر طول موج 1.5-1.7 میکرو متر توسط عرض‌های مشابه در سطح مأمور کردند. در این مطالعات سوراخ به شکل مربعی از کشور سطح زیر کشت محصولات در داخل کشور مطالعاتی برای سطح زیر کشت محصولات است. جمله برنج به کمک از سنتیس اصلاح در اکتشافات که نشان می‌دهد، مصالح و رابطه تخمین سطح زیر کشت محصولات از جمله برنج به کمک از سنتیس اصلاح در اکتشافات که نشان می‌دهد، مصالح و رابطه تخمین سطح زیر کشت محصولات در داخل کشور مطالعاتی برای سطح زیر کشت محصولات است. جمله برنج به کمک از سنتیس اصلاح در اکتشافات که نشان می‌دهد، مصالح و Rf (ග) Global positioning system (GPS) (شناختی و مرز عوام موجود در داخل آنها بر روی تصادف ترکیب و کدگذاری شده. سپس اگر گریزه حداکثر احتمال، طبقه‌بندی انتخاب و طبقات مختلف از جمله برنج زاگرفت تاکید گردد. دقت تخمین طبقه‌بندی مشاهده به کمک نسبت واقعی زمین معمولاً در محل کالسار برنج) تعیین گردید.

در مطالعات توسط دریابی (1) در آدابه کل آمار و اطلاعات وزارت کشاورزی سطح زیر کشت برنج کاری‌های استان داده‌ها و نتیجه‌گیری آن‌ها برای برنامه‌ریزی ناچیز می‌باشد. منافع حاصل از سنجش از دور به واسطه بهبود زمین و امکان آن‌ها در تغییرات سریع محیطی به‌خوبی در تکنیک‌های که در کشاورزی به کار می‌روند. نمایان شده است.

(12) سطح زیر کشت برنج‌ها را در منطقه‌های در نظام آباد NDVI.
جدول ۱. داده‌های مورد استفاده در مطالعه

<table>
<thead>
<tr>
<th>سال</th>
<th>تاریخ</th>
<th>سنجش</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰۰۳</td>
<td>۱۸ می‌باشد</td>
<td>PAN</td>
<td>۱</td>
</tr>
<tr>
<td>۲۰۰۳</td>
<td>۲۰ می‌باشد</td>
<td>LISS III</td>
<td>۲</td>
</tr>
<tr>
<td>۲۰۰۳</td>
<td>۲۲ سپتامبر</td>
<td>WIFS</td>
<td>۳</td>
</tr>
<tr>
<td>۲۰۰۳</td>
<td>۲۳ سپتامبر</td>
<td>WIFS</td>
<td>۴</td>
</tr>
<tr>
<td>۲۰۰۳</td>
<td>۳۰ سپتامبر</td>
<td>WIFS</td>
<td>۵</td>
</tr>
<tr>
<td>۲۰۰۳</td>
<td>۲ سپتامبر</td>
<td>WIFS</td>
<td>۶</td>
</tr>
<tr>
<td>۲۰۰۳</td>
<td>۲۴ سپتامبر</td>
<td>WIFS</td>
<td>۷</td>
</tr>
<tr>
<td>۲۰۰۳</td>
<td>۲۵ سپتامبر</td>
<td>WIFS</td>
<td>۸</td>
</tr>
<tr>
<td>۲۰۰۴</td>
<td>۱ سپتامبر</td>
<td>WIFS</td>
<td>۹</td>
</tr>
<tr>
<td>۲۰۰۴</td>
<td>۲۵ سپتامبر</td>
<td>WIFS</td>
<td>۱۰</td>
</tr>
</tbody>
</table>

۲. مواد و روش‌ها

۲.۱. مشخصات داده‌های ماهواره‌ای مورد استفاده و منطقه

مورد مطالعه

دانه‌های ماهواره‌ای مورد استفاده داده‌های ماهواره‌ای IRS-1D و WIFS و PAN و LISS III هند و مربوط به سنجش‌های و به سنجش‌های (Wide Field Sensor) IRS-1D داده‌های مورد استفاده مطالعه ارائه شده است. ماهواره‌های و PAN ماهواره‌های WIFS و PAN LISSIII به سنجش‌های و PAN ۵۰/۵۵۰ بکرومتر با قدرت تکنیک SWIR (۵/۸ متر است. سنجش‌های LISS III و ضبط از پلیمر، نوردیم و مادون نوردیم و زمینی (NIR) و مادون تکنیک و در این مورد قرار می‌گیرد. ماهواره‌های و PAN ۳۷/۵ متر برای داده‌های مهری و است. سنجش‌های و PAN WIFS و PAN ۳۷/۵ متر برای داده‌های مهری و است. S

هدف از مطالعه حاصل استفاده از داده‌های تصویری سنجش‌های LISS III به سمت IRS-1D و PAN در سال‌های ۲۰۰۳ و ۲۰۰۴ می‌باشد. بسته به تعداد صورت‌های زمین‌سنجی و PAN سال ۲۰۰۴، داده‌های استفاده شده در مقاله تا شرایط فنی سنجش در تحقیق شاهد نشده و در مورد سنجش‌های LISS III راه‌حل‌های بصورت بایان‌گذاری شده در نمودارهای این مقاله نشان داده شده است. سنجش‌های LISS III به سمت IRS-1D و PAN در سال ۲۰۰۴ و ۲۰۰۱ سال ۲۰۰۴ و ۲۰۰۱ HTTPS://www.iutjournals.iut.ac.ir at 13:58 IRDT on Wednesday July 7th 2021
محصولات دیگر کسب شد. کشت بقیه مزارع شالیکاری در منطقه به‌جوار جوز در منطقه شرق شیراز با عمدتاً گیاه است. در فرآیند بهره‌برداری از این مزارع شفاف گیاه شده و در نهایت اول دریده‌نشسته ماه خرداد گیاهی صورت می‌گیرد. در لنجن در ده سوم ارایه‌شده ماه زمان نهضت به‌روز می‌باشد، در منطقه شرقی عملیات مه‌بلند به‌بیان این قرار گرفت که نهضت کاری حذف هفته دوم تا انجام می‌گردد. اولین ظهور خوشه‌های یک تا ۱۱۵ روز از خیساندن بذر است و ۹۵٪ خوش‌های دهه ۱۱۰ تا ۱۲۵ روز پس از خیساندن بذر اتفاق می‌افتد. دانه‌ها ۱۳۱ تا ۱۴۲ روز پس از خیساندن بیان می‌شود.

راستگی می‌رسد. برداشت محصول از اواخر شهریور تا اواسط ماه ماه در محل‌های مختلف و نسبت به زودرسی با دیر رسی برنج انجام می‌گردد (۱۲). جدول (۲) شماره کشت برنج را در وضعیت‌های پرآبی و کم آبی نشان می‌دهد.

۲.۲ پارامترهای و برداشت تصاویر مراحل برداشت داده‌های ماهواره‌ای تا دستیابی به تعیین سطح قرار داشته‌اند. برای انتخاب قرارگیری اندازه‌گیری PAN باند برای تمامی تصاویر، آنالیز و تفسیر‌های صورت گرفته. منطقه تحت پوشش باند PAN دارای مختصات دو گوشه شمال غرب به مختصات UTM شمایی و جنوب شرقی و ۵۹۶۲۹۵ شمایی و ۳۷۶۱۸۶ شمایی را دارد، که مساحت آن به استفاده باند ۶۵۰۰۰۰ هکتار باعث می‌گردد. علاوه بر داده‌های ماهواره‌ای از نقشه‌های سازمان جغرافیایی کشور، مسلح نیز استفاده شد. شکل (۱) موقعیت جغرافیایی منطقه مورد مطالعه را نشان می‌دهد.

۲.۲.۱ جمع آوری اطلاعات زمینی جهت تعیین سطح زیر کشت شالیکاری به استفاده از نقشه‌های منطقه‌ای استفاده از GPS و رایانه نوت بوک از ارایه‌دهنده تا آخر ماه ماه به منطقه مراجعه شد، ناپایین آشنا با مناطق شالیکاری، نواحی تعیین مناسب به‌منظور نیز تعیین گردید. همچنین از کشاورزان و مالک‌ها اراضی زیر اطلاعاتی درباره نوع کشت و تاریخ کاشت و برداشت برنج و
جدول 2. شماری کشت محصول برنج و وضعیت مزرعه در وضعیت پرآبی و کم آب

آب‌نیروهای زمین	ظهور آلوون نشانه‌ها	نشان‌های کارکردهای زمان‌نامه‌ای	رسیدگی کامل	برداشت محصول باراتفه	زمان افتتاح	
بهترین	0	0	0	0	0	0
متوسط	1	1	1	1	1	1
بدترین	2	2	2	2	2	2

بهترین زمان تصور برای مطالعه شالیزار

با توجه به این که در این تحقیق از داده‌های جدید زمانه استفاده شد، اقدام به هم مختل شد. نظر به قدرت تفکیک مناسب بانک پاکرومایک، تصویر مربوط به این باند نسبت به نفتخانه‌های 1:25000 با انتخاب 25 نقطه مشترک با پاکرت مناسب در سیستم تصور UTM مختل شد. بنابراین سنجش LISHI نسبت به تصویر تصور SHADE شده‌اند. انتقال شاهد و باندهای سنجش SHADE به تصویر تصور SHADE تصحیح شده.

1.3.2. توصیه‌های اثر تپوگرافی (پیست و بلندی)

جهت بررسی تأثیر تپوگرافی و تغییرات ناشی از آن در مقایسه عددی تصاویر ماهواره‌ای از عمق‌های موجود در نرم‌افزار تحت ملاحظه استفاده کردن تپوگرافی استفاده کردن که از استفاده کردن تپوگرافی و ارتفاع‌های ارتفاع و از امتیاز شوید و نیز نشانه‌های منطقه DEM استفاده کردن. مدل کاربردی لامبنتی می‌باشد.

1.3.3.1. تصحیح مشترک

برای تصویر اختراعی از تکنیک‌های تاریک استفاده شد. با این فرضیه که پیک‌سیگنال تاریک با حداکثر اختلاف، کمترین میزان اندازه‌گیری را داشته و وضعیت آب و سایه می‌توان تصویر باشد که اندازه‌گیری آن صفر باشد. زیرا در زیر کشت برنج به صورت زیر می‌باشد: 1- تصویر رادارومتریک و هندسی-2- بازرسی (ازایش کنترل و انواع آنالیزهای) 3- طبقه بندی تصویر (مکان‌بندی نظارت شده و طبقه‌بندی نظارت نشده) 2- تلفیق دقیق لایه‌های نهایی شده.

1.3.2. توصیه‌ها

اطلاعات ماهواره‌ای در حال اولیه به دلیل داشتن اعجاب‌های هندسی و انسانی نیاز به تصویری دارد که این توصیه‌ها با هدف کلی به اعمال امرد، این مرحله شامل جهان خطاها سنجش و تغییر و تبدیل داده‌ها، بررسی باندهای مختلف و تولید مجموعه‌های جدید اطلاعات با استفاده از کامپیوتر می‌باشد (15.161).

برای داشتن تصویری که می‌تواند با هم‌پوش هم‌پوش با تعیین منظور طبقه‌بندی، شناسایی و تفکیک بی‌پدیدی زمینی که هدف اصلی تفسیر اطلاعات ماهواره‌ای است، تصویر داده‌های ماهواره‌ای صورت گرفت. تصویه‌ها در سه بخش هندسی، رادارومتریک و آنسیفری انجام شد (5 و 8).

1.3.2. توصیه‌ها

جهت بررسی اندازه‌گیری هندسی به نحوی تصویر شده که

فائل‌های خروجی قابلیت انطباق با نقشه‌ها داشته باشند (12).
صوت و وجود ذرات پراکنده در جو، پراکنش جوی باعث می‌شود که عملکد تابعی یکپارچه نارنجی صورت نگیرد. در این مطالعه از منطقه‌های واقع در دریاچه سد زاینده، رود که آب عمق دارد و نیز سایه‌گیری‌ها برای تصحیح تصاویر مختلف بر اساس باند مادون قرمز هستند. لیست آنتی‌بیوتیک مختلف، تصحیح‌های مسترکوست استفاده شد.

۳.۲ تصحیح رادیوسبک

صححه‌گیری یا کالیبره کردن سنجه دامنه مزاری ضرورت بیدار می‌کند که تصاویر چندین زمانه را مورد استفاده قرار گیرد و تصاویری مربوط به فصول مختلف را مبتنی بر این تحقیقات با استفاده از روابط و معادلات دیگر روي داده‌ها اعمال می‌گردد.

\[\text{NDWI} = \frac{(\text{NIR} - \text{SWIR})}{(\text{NIR} + \text{SWIR})} \]

SWIR = باند ۴، NIR = باند ۳

۳.۲.۱ فرشه سازی داده‌ها با روش Tasseled cap

بنابراین نیاز به تنظیم خطی ساده است که جهت تشخیص بهتر پوشش گیاهی کاربرد دارد. این تیزیک یک نوع خاص از تبیین شده در بسیاری از سطوح در این اسکایل بهتر و در واقعیت متوسطی عمیق می‌کند و خروجی‌های عملی اسکایل آنلاین می‌باشد. به‌طور خاص در سطوح سایر است که بر اساس ماژوریستی مولفه‌های روشنایی (brightness، مولفه سیبرنگی (یک نین و مادون قرمز تبیین بین مادون قرمز و باندهای مادون قرمز در نیروی رطوبتی) و مولفه رطوبتی (تبیین باندهای مادون قرمز و مادون قرمز در نیروی رطوبتی) ارائه می‌شود.

۳.۲.۵ استفاده از شاخص‌های گیاهی

در مورد پوشش گیاهی زمین از بخش مرتبه بطش مادون قرمز می‌باشد. در بخش‌های جذبی طبیعی زمین و نیز در بخش‌های بطش مادون قرمز می‌باشد. مولفه‌های روشنایی (brightness)، مولفه سیبرنگی (یک نین و مادون قرمز تبیین بین مادون قرمز و باندهای مادون قرمز در نیروی رطوبتی) و مولفه رطوبتی (تبیین باندهای مادون قرمز و مادون قرمز در نیروی رطوبتی) ارائه می‌شود.

۳.۲.۲ بهبود کترست

برای بهبود تصاویر روش کترست (Linear Stretch) استفاده شد. برای عمل بهبود کترست به کمک ضرورت گرفت.

۳.۲.۳ ایجاد تصاویر نگین کاپ و ادغام باندها

برای ایجاد تصاویر نگین کاپ باند در این مطالعه می‌باشد. تولید شد. استفاده شد. با استفاده از روش کترست (False Colore Composite) (FCC) با استفاده از روش کترست، روش کترست، کترست به کمک پک‌های دانه‌های می‌باشد. با استفاده از روش کترست، روش کترست، کترست به کمک پک‌های دانه‌های WiFS نیز کترست رنگی به

۵۱۸
پردازش بافت‌های مایع و آنالیزهای تصمیم‌گیری، ارزش‌سازی و پردازش بر روی داده‌های رقیق مورد استفاده در تعیین سطح زیر کشف شالیزارهای منطقه اصلی. نتایج مراحل مختلف آنانالیز به شرح ذیل حاصل شد:

- تصحیح هندسی تصویر به‌ساز و انرژوماتیک با RMSE برای 1/35 پیکسل انجام گرفت.
- نیز 12 ملاحظه کاربردی در WiFS و LISS III در این پروژه بوده است. نتایج مراحل مختلف آنانالیز به شرح ذیل حاصل شد:

3. نتایج و بحث

با انجام پردازش‌های مایع و آنانالیزهای تصمیم‌گیری، ارزش‌سازی و پردازش بر روی داده‌های رقیق مورد استفاده در تعیین سطح زیر کشف شالیزارهای منطقه اصلی. نتایج مراحل مختلف آنانالیز به شرح ذیل حاصل شد:

- تصحیح هندسی تصویر به‌ساز و انرژوماتیک با RMSE برای 1/35 پیکسل انجام گرفت.
- نیز 12 ملاحظه کاربردی در WiFS و LISS III در این پروژه بوده است. نتایج مراحل مختلف آنانالیز به شرح ذیل حاصل شد:

PCA در این تحقیق به موهای اصلی (Principle Component Analysis) استفاده گردیده به این نحو که در روش اول بر ترکیب باندهای داده‌های یک زمان مشخص PCA و LISS III اعمال گردید. در روش دوم این آلیز، بر ترکیب سری زمانی داده‌های برای هر سال و روش سوم آلیز بر ترکیب شاخص‌های گیاهی 4 زمان متغیر مرتب به هر سال اعمال و در ادامه از نتایج آن برای تشخیص عوارض مختلف سطح زمین استفاده گردید.

4. طبقه‌بندی داده‌های ماهواره‌ای

با توجه به هدف اصلی تکنولوژی سنجش از دور، طبقه‌بندی تصویر سنجش‌های WiFS و LISS III پان من‌نوان به عنوان مهم‌ترین بخش تفسیر اطلاعات ماهواره‌ای مطالعه به شمار آورده (21). در مطالعه حاضر برای طبقه‌بندی شاخص‌ها از پدیده‌ها و عوارض مختلف از الگوریتم‌های دو روش طبقه‌بندی نظرات شده و طبقه‌بندی نظارت نشده استفاده شد.

4.1. ارزیابی دقت طبقه‌بندی

با استفاده از روش‌های مختلف نمونه‌گیری و کنترل زمینی و...
فلچرهای 1. الگوریتم مراحل انجام مطالعه

روش تبدیل فضای رنگ، با استفاده از دستورالعمل‌های نرم‌افزار
عملیت‌های فوق صورت گرفته، با انجام عملیات ادعام
LISS III (Merge resolution)
ورزش کریک باندهای

پانکروماتیک و ترکیب باندهای

با گرفتن مکانی بهتر تولید شد که در کنترل زمینی حاشیه مزارع و

نیاز امداد اقیانوس هر دو رنگ به صورت ادمام شده با یاد

پانکروماتیک و هم بدون انجام عملیات ادمام حاشیه شد. شکل

(2) تصویر ترکیب رنگ باندهای سنجیده LISS III ادمام شده

با یاد

PAN

با ناشان می‌دهد

در تبدیل تسلسکاک برای تصویر
LISS III مولفه‌های مربوطه حاشیه. علاوه بر تصویر مولفه‌های
روشنایی، رطوبت و سبزی، تصویر ترکیبی مولفه‌های نیز به

دست آمد. مناطق دارای شالی را تا حدودی می‌توان از عوارض

دسته‌بندی می‌کرد، ویژه‌ترهای دیگر با شیب مخلوط هستند:
DVI و RVI، NDVI

برای تفکیک آنها از شاخص‌های گیاهی

تیز استفاده شد که در جهی‌های حاشیه از اعمال این شاخص‌ها
برای تفکیک پوشش‌های طبیعی از کشاورزی مناسب هستند، اما

برای تفکیک شالیزارها از سایر کشت‌های هم‌زمان در منطقه

نتیجه خوبی حاصل نشد.

با استفاده تحت توصیه حاصل از انجام آنالیزهای

LAPTOP و GPS

(مختلف، برداشتهای زمینی (با استفاده از

و اخذ اطلاعات از زارعین اقدام به طبقه‌بندی بر روی تصاویر

شده. طبقه‌بندی نظارت شده ترکیبات به دست آمده محدوده

شالیزارها را به طور کامل جدا نکرد. علت آن تداخل باژتاب

پیداگر و عوارض دیگر با شیب هزارهای

با آنالیز

PCA علاوه بر جزء‌های تصویر، از اجراء،

ترکیب‌های مختلفی نیز حاصل شد، که در تشخیص عوارض
جدول ۳ ماتریس همبستگی سه باند و اجزاء PCA تصویر مورد مطالعه

<table>
<thead>
<tr>
<th>باند و اجزاء</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>۱</td>
<td>۱/۶۵</td>
<td>۶۸/۵</td>
<td>۰/۸۹</td>
<td>۰/۳۹</td>
<td>۰/۲۵</td>
</tr>
<tr>
<td>B3</td>
<td>۰/۶۵</td>
<td>۱</td>
<td>۶۴/۰</td>
<td>۰/۲۴</td>
<td>۰/۴۰</td>
<td>۰/۵۷</td>
</tr>
<tr>
<td>B4</td>
<td>۶۸/۵</td>
<td>۰/۵۴</td>
<td>۰/۵۴</td>
<td>۰/۹۳</td>
<td>۰/۳۶</td>
<td>۰/۲۵</td>
</tr>
</tbody>
</table>

LISS III کرده. جدول ۳ ماتریس همبستگی ۳ باند سنجش PCA و اجزاء آنالیز را نشان می‌دهد. با استفاده از الگوریتم طبقه‌بندی نظارت شده، علاوه بر شالیزارها، اراضی مانند رختموندها و اراضی رها شده و شوره‌زارها در تصاویر PCA قابل تفکیک هستند. با طبقه‌بندی تصاویر شاخه مقیاس‌گی عوارض مربوط به یوشن گیاهی مانند اراضی غیر‌شالیسی جدای

مناسب هستند. با انتخاب نواحی تعیین و استفاده از الگوریتم طبقه‌بندی نظارت شده، علاوه بر شالیزارها، اراضی مانند رختموندها و اراضی رها شده و شوره‌زارها در تصاویر PCA قابل تفکیک هستند. با طبقه‌بندی تصاویر شاخه مقیاس‌گی عوارض مربوط به یوشن گیاهی مانند اراضی غیر‌شالیسی جدای
شکل 3. نقشه شالیکاری‌های منطقه اصفهان (سنگده سال ۲۰۰۳)

این مناطق بود. لذا نواحی تعلیمی جدید در یا عوارض مورد نظر تصحیح شدند. در مجموع مساحت شالیکاری‌ها در تصویر مورد بررسی حدود ۱۵۰۰ هکتار تعبیه می‌گردد. این مقدار سطح زیر کشت با مقداری که بخش تحقیقات برنج استان اصفهان اعلام نموده (۱۸۰۰۰ هکتار) مطابقت دارد.

شکل (۳) نقشه طبقات مختلف از جمله پراکنش شالیکاری‌ها در اواست乃是 مربوط به سنگده LISS III در سال ۲۰۰۳ را نشان می‌دهد. با استفاده از باند مادون قرمز موج کوتاه و استفاده از NDVI و NDWI محدوده‌های مختلف رقم پیکSEL که شالیکاری وجود دارد.
جداسازی شالیزار را از یکدیگر با استفاده از NDVI که توسط سیستم املاح کردن، می‌تواند درخت‌ها و گیاهان آبی رودر از مناطق تپه‌های زیرین آنها تشخیص دهند. همچنین، این سیستم می‌تواند با استفاده از NDVI که توسط سیستم املاح کردن، می‌تواند درخت‌ها و گیاهان آبی رودر از مناطق تپه‌های زیرین آنها تشخیص دهند.

دیگر یک مثال از استفاده از NDVI، می‌تواند در پژوهش‌های طبیعی و منابع طبیعی استفاده شود. به عنوان مثال، NDVI می‌تواند در پژوهش‌های طبیعی و منابع طبیعی استفاده شود. به عنوان مثال، NDVI می‌تواند در پژوهش‌های طبیعی و منابع طبیعی استفاده شود. به عنوان مثال، NDVI می‌تواند در پژوهش‌های طبیعی و منابع طبیعی استفاده شود.
شکل 5. نقشه شاملگری‌های منطقه اصفهان (سنجدهد) سال 1386

صورت گرفت. شاخه‌های گیاهی و ترکیب شاخه‌های مربوط به سری زمانی هرسال با یکدیگر همخوانی ترکیب پیاده‌اند. زمان‌های مختلف و طبقه‌بندی این تصورات و ترکیبات نتوانست شالی‌ها را از کشت‌های دیگر کاملاً تفکیک کند. اما برای عوارض دیگر قابل استفاده هستند. با استفاده از الگوریتم PCA برای اندازه‌گیری تقسیم‌بندی این ماده‌ها از مولفه‌های مختلف حاصل شد. ترکیب مولفه‌های اول الگوریتم PCA مربوط به تاریخ‌های مربوط به تاریخ‌های مختلف هر سال به صورت FCC استفاده شد و روی آنها نواحی معنی‌داری انتخاب گردید و طبقه‌بندی بنری نظرات شده صورت گرفت. با این روش شالی‌های منطقه ابرای سال‌های 2002 و 2003 از سایر کشت‌ها و عوارض جدا شد. سطح زیر کشت پرینج در این دادها 2002 و 2003 منطقه اصفهان
تشییع سطح شالیزارهای حاشیه زاینده رود در منطقه اصفهان با داده‌های WIFS سال ۲۰۰۴

شکل ۵ نشانگر شالیزارهای منطقه اصفهان (ستجده)
جدول ۲ مایتریل خاکی تأثیر لاهیای طبقه‌بندی شده

<table>
<thead>
<tr>
<th>کلاس‌های مرجع طبقه‌بندی شده</th>
<th>لاهیای طبقه‌بندی شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>اراضی غیرشالزاری (پوشش گیاهی، اراضی رهانده و جاده‌ها)</td>
<td>شالزاراها</td>
</tr>
<tr>
<td>رحمون و جاده‌ها</td>
<td></td>
</tr>
<tr>
<td>جمع کمیسیون</td>
<td></td>
</tr>
<tr>
<td>کمای کلی = ۸۳/۹۸%</td>
<td></td>
</tr>
<tr>
<td>دقت کلی = ۹۱/۷۲%</td>
<td></td>
</tr>
<tr>
<td>جمع پیکسل‌ها = ۷۷۸۸</td>
<td>۵۹۲</td>
</tr>
</tbody>
</table>

- محدوده طبیعی مادون قرمز موج کوتاه بیان اخذ
- اطلاعات از پوشش گیاهی سطح زمین مناسب است.
- مزارع بزرگ تولید کانه متانی کندن و میانان عمدا در بالای یا شالزار باقی می‌ماند. بین جنگل‌ها کلروفولوکرین‌ها (CFCs) تهیه می‌شود. بار این مادون، ۳۰ با حاشیه زیر که از پیک مولکول کبکی می‌گردد. گرمای دام
- می‌دانند. گاز مانگ مانند ابزار عمل می‌کند و جذب شدید
- الکترومغناطیسی دارد و در طول موج‌های مختلف عاملی که در بی‌پایان بیان تأثیر قابل توجه در
- جذب و پاسکت الکترومغناطیسی طبیعی دارد که در تعیین سطح
- زیر کشت مزارع بزرگ می‌تواند مؤثر باشد (۱۰). پیشنهاد
- می‌گردد مطالعه بیشتری در این زمینه با ماهورهای دیگر
- صورت گیرد.

می‌باشد.

سایگورای

محققین از مزایا و محدود شده‌های جغرافیایی بی‌پایان مدل کشور که داهه‌های ماهورهای مورد نیاز تحقیق را در اختیار فاراب دادند،

سیاست‌گزایی

برای تحصیل سطح و داده‌های WiFS برای تحقیق و تعیین نوع محصول استفاده

SIISSH

گردد.
منابع مورد استفاده

1. فرهادی، ع. و شاکری، ع. (۱۳۸۷). تدوین سطح شالیزارهای جنگلی و نیشکری زاینده‌رود در منطقه اصفهان با داده‌های ایمیج‌های سایر سال‌های. اصفهان.

2. بروجردی، ج. و یکهربا، م. (۱۳۸۷). تدوین سطح شالیزارهای جنگلی و نیشکری زاینده‌رود در منطقه اصفهان با داده‌های ایمیج‌های سایر سال‌های. اصفهان.

3. تیمی‌چی، م. (۱۳۸۷). تدوین سطح شالیزارهای جنگلی و نیشکری زاینده‌رود در منطقه اصفهان با داده‌های ایمیج‌های سایر سال‌های. اصفهان.

4. فرهادی، ع. و شاکری، ع. (۱۳۸۷). تدوین سطح شالیزارهای جنگلی و نیشکری زاینده‌رود در منطقه اصفهان با داده‌های ایمیج‌های سایر سال‌های. اصفهان.

5. فرهادی، ع. و شاکری، ع. (۱۳۸۷). تدوین سطح شالیزارهای جنگلی و نیشکری زاینده‌رود در منطقه اصفهان با داده‌های ایمیج‌های سایر سال‌های. اصفهان.

6. فرهادی، ع. و شاکری، ع. (۱۳۸۷). تدوین سطح شالیزارهای جنگلی و نیشکری زاینده‌رود در منطقه اصفهان با داده‌های ایمیج‌های سایر سال‌های. اصفهان.

7. فرهادی، ع. و شاکری، ع. (۱۳۸۷). تدوین سطح شالیزارهای جنگلی و نیشکری زاینده‌رود در منطقه اصفهان با داده‌های ایمیج‌های سایر سال‌های. اصفهان.

8. فرهادی، ع. و شاکری، ع. (۱۳۸۷). تدوین سطح شالیزارهای جنگلی و نیشکری زاینده‌رود در منطقه اصفهان با داده‌های ایمیج‌های سایر سال‌های. اصفهان.

9. فرهادی، ع. و شاکری، ع. (۱۳۸۷). تدوین سطح شالیزارهای جنگلی و نیشکری زاینده‌رود در منطقه اصفهان با داده‌های ایمیج‌های سایر سال‌های. اصفهان.

10. فرهادی، ع. و شاکری، ع. (۱۳۸۷). تدوین سطح شالیزارهای جنگلی و نیشکری زاینده‌رود در منطقه اصفهان با داده‌های ایمیج‌های سایر سال‌های. اصفهان.

11. فرهادی، ع. و شاکری، ع. (۱۳۸۷). تدوین سطح شالیزارهای جنگلی و نیشکری زاینده‌رود در منطقه اصفهان با داده‌های ایمیج‌های سایر سال‌های. اصفهان.

12. فرهادی، ع. و شاکری، ع. (۱۳۸۷). تدوین سطح شالیزارهای جنگلی و نیشکری زاینده‌رود در منطقه اصفهان با داده‌های ایمیج‌های سایر سال‌های. اصفهان.

13. فرهادی، ع. و شاکری، ع. (۱۳۸۷). تدوین سطح شالیزارهای جنگلی و نیشکری زاینده‌رود در منطقه اصفهان با داده‌های ایمیج‌های سایر سال‌های. اصفهان.

577