بررسی آبیاری تیپ و شیاری از لحاظ عملکرد و کارایی مصرف آب در زراعت سیبزیمی

سامرا اخوان، سید فرهاد موسوی، بهروز مصطفی زاده فرد و علی قدمی نیروآبادی

چکیده

به منظور بررسی روش‌های آبیاری تیپ و شیاری از لحاظ عملکرد و کارایی مصرف آب در زراعت سیبزیمی، آزمایشی در مرکز تحقیقات کشاورزی و منابع طبیعی همدان (اکتاناک) در سال 1383 انجام شد. این تحقیق به صورت کرتهای خرده شده در قالب بلوک‌های کامل نمادین با فاکتور اصلی مختلف آب آبیاری در سه سطح (75، 100 و 125 درصد تبخیر تجمیعی رسته‌ی کلاس 8) و فاکتور فرعی روش آبیاری در چهار نوع (شمال نواحی آبیاری توسط پشت پشتی روی سطح خاک، نواحی آبیاری توسط پشت پشت بین سطح پشتی و پشت پشتی روی سطح خاک و آبیاری شیاری) در سه تکرار انگریزی گردید. نتایج نشان داد که با افزایش آب مصرفی عملکرد محصول افزایش می‌یابد. بدون در نظر گرفتن روش آبیاری، در بین سطوح فاکتور اصلی، حداکثر عملکرد سیبزیمی (34.1 درصد ترکیبی) در روش آبیاری شیاری بود. در میان تیمارهای مختلف فاکتور فرعی، کمترین عملکرد (21/34 درصد) در روش آبیاری شیاری و بیشترین عملکرد (91.89 درصد) در روش آبیاری تیپ بود. میزان مصرف آب (123/4 کیلوگرم بر متر مکعب) در روش آبیاری تیپ، بیشترین تداوم تیمار نوار بود. در سطح 75 درصد تبخیر تجمیعی و سطح زمین و وزگ پشتی می‌باشد. بیشترین کارایی مصرف آب در سطح 75 درصد نوار بود. اختلاف کارایی مصرف آب بین تیمارهای آب آبیاری 75 و 100 درصد معنادار بود و بیشترین کارایی مصرف آب (49/24 کیلوگرم بر متر مکعب) در تیمار آبیاری 125 درصد بود. این نتایج بهبود سطوح استفاده مفرد مصرفی بر صرفه‌تر می‌باشد.

وژه‌های کلیدی: آبیاری تیپ، آبیاری شیاری، کارایی مصرف آب، راندمان کاربرد

مقدمه

با افزایش جمعیت، نیاز به استفاده از آب بیشتر شده و از آنجا که بخش کشاورزی عمده‌ترین مصرف کننده آب به شمار می‌رود، هرگونه صرفه‌جویی در این بخش، یکی از مهم‌ترین مسئله‌های معنادار مورد توجه است. مصرف آب به صرفه‌جویی در منابع آب تلقوی می‌شود. بر اساس آمار موجود، 130 میلیارد متر مکعب مصرف می‌باشد. در سال 1383 در ایران حدود 32 درصد در کارایی مصرف آب (WUE) مقدار کافی استفادهی تجدید شونده در ایران حدود 130 میلیارد متر مکعب می‌باشد. راندمان آبیاری در ایران قرب به (Water use efficiency, WUE) 27 مقدار درصد مصرف آب (125/24 کیلوگرم بر متر مکعب است. (9). مقدار متوسط تولید محصولات کشاورزی سال 1382 حداکثر 15 درصد بود.
عملکرد در استان همدان 1388 و در سطح کشور 21.6 درصد در هکتار است. در میانه آب سیبزنبه‌ای در روستاهای نوین آبیاری قطعات مربوط به است که به دلیل حساسیت این محصول نسبت به نسبت در خروجی اهمیت است. (15).

از جمله روش‌های آبیاری تحت فشار، آبیاری قطره‌ای (Tape) استفاده از نوارهای تیپ می‌باشد. مهیار شرعی مشخصه این نوارهای آبیاری در میانه آب سیبزنبه‌ای صورت می‌گیرد. برای تولید همین مقدار محصول نیاز به عبارت برای نیاز به خودکافی لازم است که به حداکثر ۱۳ کیلوگرم بر متر WUE مکعب آبیاری باشد. (9).

استان همدان با متوسط بارندگی سالانه ۳۱۳ میلی‌متر و نامساعد بودن پراکنش آن از زمینه و مکانی جزو مناطق نیمه خشک کشور محصول می‌شود. حداکثر ۹۴ درصد منابع آب زیرزمینی این استان در بخش کشت‌کشاورزی مصرف می‌گردد. بر اساس براوردگاه استان همدان ۲۰۰۹ (۷۰ درصد برآوردگاه استان همدان) در میانه آبیاری قطره‌ای از مزرعه‌های می‌شود. ۲۴ میلیون مترمکعب است که به دلیل شیوه بودن یک سوم از مصرف مفیده شده و به‌طور نسبی، مصرف منظم جویانه سطح خورشید و عدم اجرای سلسله در سطح آن، ریش تیپ‌هایی را که حسی تنش خواهد و عضوی از اکسیژن کافی بهره‌برداری می‌گردد. در صورت قرار دادن نوارها در زیر خاک، بر خلاف روش‌های دیگر آبیاری، وزش باید در کارایی آن تأثیر نداشته و در نتیجه آب کمتری تبخیر می‌شود.

از مفاهیم ابزاری قطره‌ای زیرسطحی با سبب سیستم‌های آبیاری تحت فشار، که مقدار محصول برای آبیاری قطره‌ای زیرسطحی برای یک‌تایی‌گری از سیستم‌های زیرسطحی برابر با حجم بخشی از سیستم‌های است. (۱۸).

محصول سبزی‌های کالیفرنیا در آبیاری قطره‌ای زیرسطحی بیشتر از آبیاری بالین بود (۱۹) و ریزاب یا بیشتر از آبیاری بالین با ویلیمو (Wheel move) در آب‌های بالین‌های شفاف‌ترین آبیاری قطره‌ای زیرسطحی فقط ۵۰ تا ۷۰ درصد میزان آب مورد نیاز در آبیاری بالین‌های زیرسطحی است. (۳۲).

سافتوسک و دی. پاتولا (۳۵) گزارش کردند که آبیاری بالین با لوله‌های ۵۵ میلی‌متری دفن شده در زیر زمین و در بین ردیف‌های کاشت می‌تواند عملکرد آب تا ۲۵ درصد نسبت به آبیاری بالین افزایش دهد. گوتیو و سپین (۳۱) در آزمایشی در سال ۱۳۸۲ برای مقایسه میان آبیاری بالین و آبیاری قطره‌ای به این تبیین رسیدند که محصول سبزی‌های آبیاری قطره‌ای ۵۰ تا ۶۰ درصد
مواد و روش‌ها
آزمایش‌های صحیری این مطالعه در پهناور سال 1383 در مرزهای تحفیظی، ایستادگی، ادغام واقع در مکانیک تخصصی تک‌سرنشین و سایپسی مورد استفاده قرار گرفت. به‌طور کلی، هدایت الکتریکی آب آب‌پیوند 7/62 و 0/615 مسیزمنس بر متر بود. این مقدار خاک وسیع‌ترین نسبت رسی و جرم مخصوص فاز ظاهری خاک 0/96گرم بر سانتی‌متر مکعب بود. همچنین در این آزمایش‌ها، شیپر و هدایت الکتریکی آب آب‌پیوند 0/615 و 0/615 مسیزمنس بر متر بود. آزمایش‌ها به‌صورت کرده‌های خرد شده به‌دلیل خاک وسیع‌ترین نسبت رسی و جرم مخصوص فاز ظاهری خاک 0/96گرم بر سانتی‌متر مکعب بود.

لیستی کامل تصاویر و در جدول 3 نتایج ایراد شده است.

t = \frac{\frac{\frac{1}{2}a}{\frac{1}{2}a}} {A}

که در آن:
\begin{align*}
\text{تعداد آب‌پیوند} & = T
\text{مساحت سطح زمین} & = A
\text{عمق ناحیه آب مورد نیاز} & = D
\text{میزان دی‌بی ورودی به کرت} & = Q
\end{align*}

در روش آب‌پیوند، از نواحی تپل (T-Tape) به طول 15 متر استفاده شد. نواحی دارای قطر 16 میلی‌متر و فاصله
\[E_a = \frac{d}{d_g} \times 100 \]

که در آن:

\[E_a = \text{بازده کاربرد آب} \]

و میزان عمق آب داده شده به مزرعه، سانتی‌متر

برای تعیین رانده‌نام کاربرد آب در آب‌یابی تیپ از دو روش

استفاده شد.

(۱) رانده‌نام مصرف آب، که به نسبت تعرق به مصرف (TR)

و در این مطالعه مصرف آب (EU) برای عرضه در این هاله

رانده‌نام کاربرد را می‌توان به مکمل رابطه (۵) محاسبه نمود (۴):

\[E_a = \text{TR} \times \text{EU} \]

که در آن: TR عبارت است از نسبت آب آب‌یابی که به‌صورت

تعرق درآمده به کل آب مصرفی در مناطقی که حداقل آب را

دریافت داشته‌اند.

(۲) تخمین‌افاکتور کاهش

که به نتایج تغییر فشار

ايجاد می‌شود، از فشار ورودی لوله جابجایی در مسیر حفر یک

مانفعتها استفاده می‌شود (۸):

\[\text{ERF} = \frac{A + 1/2B}{2/5A} \]

که در آن:

\[\text{FACTOR کاهش بزده} = \text{ERF} \]

میانگین فشار ورودی لوله جابجایی در مسیر حفر یک

مانفعتها

و\[\text{حداقل میانگین فشار ورودی لوله جابجایی در مسیر حفر یک

مانفعتها} \]

از آنجایی که در این سیستم هیچ موردی برای تلف شدن آب از

طریق تبخیر و یا پاپترابک وجود ندارد، در نتیجه:

\[E_a = \text{ERF} \times \text{EU} \]

زا مورد آزمایش در پاییز مال قل شد خم عمق زده شده بود

بنابراین عوامل تهیه زمین از تاریخ 22 اردیبهشت 1383 با

مساعدت شدند شرایط جوی و آمادگی زمین از لحاظ کاشت آغاز

گردید و کلیه عملیات زراعی مانند ونین، کود دهی و سمپاشی

قطوره‌کن‌ها ۲۰ سانتی‌متر بود. اندام‌گیری و کنترل مقدار آب

آب‌یابی در هر تیمار توسط شرایط گازی و کنترل‌های حجمی

که روی لوله‌های بی‌انلاین انتقال آب تعیین شده بودند، انجام

می‌شود. در تیمارهای که نواره‌ها در دو طرف پنجره قرار داشتند از

شرایط زیست انتقال برای عملیات حجم یکسان آب نسبت به بقیه

موقعیت‌ها استفاده شد. دور آب‌یابی در روش تیپ، در روزه در

نظر گرفته شد.

برای محاسبه نیاز آب گیاه از داده‌های تبخیر از نشت کلاس A

که در ایستگاه‌های انسانی محل طرح مستقر بود، استفاده A

VIS. محیط تبخیر و تعرق پتانسیل از رابطه ۲ محاسبه شد:

\[\text{ET} = \text{K_p} \times \text{E_{pan}} \]

که در آن:

\[\text{تبخیر و تعرق در فاصله دو آب‌یابی، سانتی‌متر} \]

\[\text{ضریب نشت تبخیر} = \text{K_p} \]

\[\text{میانگین تبخیر از نشت بین هر دو آب‌یابی متوالی} = \text{E_{pan}} \]

سپس مقدار آب هر تیمار با ضرب ۷۵/۴۰۰ و ۱۳۵

درصد (مربوط به سطح آب تیمارها)، در تبخیر و تعرق

محاسبه شده از رابطه ۲ تعیین گردید.

رانده‌نام کاربرد آب در آب‌یابی شیاری با تعیین نمونه‌های

رطوبتی خاک قبل و بعد ۲۷ ساعت بعد از آب‌یابی در سطح توسعه

رشته، با استفاده از روابط ۳ و ۴ محاسبه گردید (۱۲ و ۲۲):

\[d = (0 + 0)(\frac{\rho_{C}}{\rho_{w}})R_z \]

که در آن:

\[\text{متغیر عمق آب ذخیره شده در ناحیه توسعه رشته} \]

\[\text{سانتی‌متر} \]

\[\text{رطوبت ونی خاک قبل از آب‌یابی (اعشاری)} \]

\[\text{رطوبت ونی خاک بعد از آب‌یابی (اعشاری)} \]

\[\text{جرم مخلوط ظاهری خاک} \]

\[\text{جرم بر سانتی‌متر مکعب} \]

\[\text{چگالی آب (معمولا)} \]

\[\text{بر سانتی‌متر مکعب} \]

\[\text{عمق توسعه رشته، سانتی‌متر} \]
شکل 1. میزان آب مصرفی در سطوح مختلف آب آپاری بر حسب متر مکعب در هکتار

جدول 1. راندمان کاربرد آب در سطح آب آپاریی 15 درصد تبخیر از تشته تبخیر

<table>
<thead>
<tr>
<th>راندمان کاربرد آب (درصد)</th>
<th>عمق بندی داده شده (میلی متر)</th>
<th>متوسط رطوبت خاک قبل از آبیاری (درصد حجمی)</th>
<th>متوسط رطوبت خاک بعد از آبیاری (درصد حجمی)</th>
<th>نویت آبیاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/2</td>
<td>32/68</td>
<td>2.4/7</td>
<td>1.1/6</td>
<td>1</td>
</tr>
<tr>
<td>99/15</td>
<td>35/55</td>
<td>2.5/5</td>
<td>1.05</td>
<td>3</td>
</tr>
<tr>
<td>96/91</td>
<td>34/75</td>
<td>2.5/7</td>
<td>1.06</td>
<td>5</td>
</tr>
<tr>
<td>98/88</td>
<td>37/21</td>
<td>2.5/6</td>
<td>1.03</td>
<td>7</td>
</tr>
<tr>
<td>92/90</td>
<td>39/61</td>
<td>2.5/8</td>
<td>1.23</td>
<td>9</td>
</tr>
</tbody>
</table>

جدول 2. راندمان کاربرد آب در سطح آب آپاریی 100 درصد تبخیر از تشته تبخیر

<table>
<thead>
<tr>
<th>راندمان کاربرد آب (درصد)</th>
<th>عمق بندی داده شده (میلی متر)</th>
<th>متوسط رطوبت خاک قبل از آبیاری (درصد حجمی)</th>
<th>متوسط رطوبت خاک بعد از آبیاری (درصد حجمی)</th>
<th>نویت آبیاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>97/18</td>
<td>23/76</td>
<td>0.2</td>
<td>0.45</td>
<td>1</td>
</tr>
<tr>
<td>99/15</td>
<td>27/40</td>
<td>0.5</td>
<td>1.38</td>
<td>3</td>
</tr>
<tr>
<td>96/91</td>
<td>28/40</td>
<td>0.3</td>
<td>1.33</td>
<td>5</td>
</tr>
<tr>
<td>98/88</td>
<td>29/61</td>
<td>0.2</td>
<td>1.50</td>
<td>7</td>
</tr>
<tr>
<td>92/90</td>
<td>32/81</td>
<td>0.2</td>
<td>1.54</td>
<td>9</td>
</tr>
</tbody>
</table>

جدول 3. راندمان کاربرد آب در سطح آب آپاریی 125 درصد تبخیر از تشته تبخیر

<table>
<thead>
<tr>
<th>راندمان کاربرد آب (درصد)</th>
<th>عمق بندی داده شده (میلی متر)</th>
<th>متوسط رطوبت خاک قبل از آبیاری (درصد حجمی)</th>
<th>متوسط رطوبت خاک بعد از آبیاری (درصد حجمی)</th>
<th>نویت آبیاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>98/9</td>
<td>24/77</td>
<td>0.2</td>
<td>0.47</td>
<td>1</td>
</tr>
<tr>
<td>93/88</td>
<td>29/75</td>
<td>0.2</td>
<td>0.32</td>
<td>3</td>
</tr>
<tr>
<td>81/31</td>
<td>35/75</td>
<td>0.3</td>
<td>0.78</td>
<td>5</td>
</tr>
<tr>
<td>94/99</td>
<td>39/75</td>
<td>0.2</td>
<td>1.08</td>
<td>7</td>
</tr>
<tr>
<td>93/92</td>
<td>42/75</td>
<td>0.3</td>
<td>1.29</td>
<td>9</td>
</tr>
</tbody>
</table>
جدول 4. متوسط راندمان کاربرد آب در سطح مختلف کاربرد آب در روش شیرای

| سپاسخواه (4) بالینی بودن راندمان کاربرد را در مزارع، کم در نظر گرفتن عمق توسعه ریشه از حد واقعی عوணم کند.

<table>
<thead>
<tr>
<th>راندمان کاربرد (درصد)</th>
<th>تیمار 75 درصد</th>
<th>تیمار 100 درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>89/88</td>
<td>93/14</td>
<td>76/53</td>
</tr>
</tbody>
</table>

ب) راندمان کاربرد آب در روش تیب

برای تعمیم راندمان کاربرد آب در روش تیب، پاتامراهی، ضریب یکنواعتی TR و محاسبه ERF محسوب گردید. برای محاسبه ضریب یکنواعتی، دیو 60 خروجی (3) هر لوله فرعي، 5 لوله فرعي از هر 3 تکار (اندازه‌گیری شد. مقدار فشار ورودی 6 لوله فرعي (1) لوله فرعي دو هر 3 تکار) برای اندازه‌گیری شد. مقدار راندمان کاربرد برای هر در روش مورد استفاده که در بخش موارد و روش‌ها شرح داده شده در جدول 5 ارائه شده است. در آبیاری تیب، ضریب یکنواعتی (8) در ارتفاع شده، در آبیاری تیب (6/7) می‌باشد. بالا بودن این مقادیر از مراحل کاربرد نوارهای آب می‌باشد. مهندس حسین آبادی و قانونی (42) اطّلعیکی در شیار تابع مشاهدی را به دست آورده‌اند. کمیت خوب آب آبیاری و به تبع آن عدم گرفتگی خروجی‌ها در طول دوره آزمایش را می‌توان از علل دیگر با بودن ضریب یکنواعتی و راندمان کاربرد دانست.

عملکرد

الف) عملکرد در راه سطح

اثر روش‌های آبیاری بر عملکرد غده‌ها در سطح اختلال 1 درصد معنی‌دار نبود (جدول 6). بیشتر عملکرد مربوط به تیمار $T_{2/3}$ و $T_{1/3}$، مربوط به تیمار F و G مقدار $12/17$ نت در هکتار به‌دست آمد (جدول 8).

ب) عملکرد در بیوت

اثر روش آبیاری بر عملکرد در بیوت در سطح اختلال 1 درصد معنی‌دار نبود (جدول 6). تیمار $T_{2/3}$ دارای بالاترین متوسط

21
جدول 5. راندمان کاربرد آب در روش آب‌آوری تپ

<table>
<thead>
<tr>
<th>E0 (درصد)</th>
<th>ERF</th>
<th>TR</th>
<th>EU (درصد)</th>
<th>q1* (لیتر بر ساعت)</th>
<th>q2* (لیتر بر ساعت)</th>
<th>روش محاسبه</th>
</tr>
</thead>
<tbody>
<tr>
<td>90/33</td>
<td></td>
<td>95</td>
<td>95/08</td>
<td>1/22</td>
<td>1/16</td>
<td>1</td>
</tr>
<tr>
<td>92/20</td>
<td>97</td>
<td>95</td>
<td>95/08</td>
<td>1/22</td>
<td>1/16</td>
<td>2</td>
</tr>
</tbody>
</table>

* به ترتیب متوسط یک چهارم پایینین دیگر خروجی‌ها و متوسط دیگر کل خروجی‌های مورد استفاده می‌باشد.

جدول 6. تجزیه و ارائه عملکرد و کارایی مصرف آب سیپمینی

<table>
<thead>
<tr>
<th>کارایی مصرف آب (کیلوگرم در هکتار)</th>
<th>عملکرد در بونه (کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین سطح مربعات احتمال</td>
<td>میانگین سطح مربعات احتمال</td>
</tr>
<tr>
<td>تکرار</td>
<td>مقدار آب آب‌آوری</td>
</tr>
<tr>
<td>3/79 **</td>
<td>19/33 **</td>
</tr>
<tr>
<td>3/65 **</td>
<td>25/03 b</td>
</tr>
<tr>
<td>2/49 a</td>
<td>32/51 a</td>
</tr>
</tbody>
</table>

جدول 7. مقایسه مانگین‌های عملکرد و کارایی مصرف آب سیپمینی

<table>
<thead>
<tr>
<th>کارایی مصرف آب (کیلوگرم در هکتار)</th>
<th>عملکرد تیمار آزمایشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح فاکتور اصلی</td>
<td>W25</td>
</tr>
<tr>
<td>3/79 b</td>
<td>19/33 c</td>
</tr>
<tr>
<td>3/65 b</td>
<td>25/03 b</td>
</tr>
<tr>
<td>2/49 a</td>
<td>32/51 a</td>
</tr>
<tr>
<td>سطح فاکتور فرعی</td>
<td>T05</td>
</tr>
<tr>
<td>0/48 a</td>
<td>28/02 a</td>
</tr>
<tr>
<td>0/55 b</td>
<td>28/12 a</td>
</tr>
<tr>
<td>0/59 b</td>
<td>24/18 b</td>
</tr>
<tr>
<td>0/33 c</td>
<td>21/35 c</td>
</tr>
</tbody>
</table>

* اعداد هر تیمار آزمایشی در هر ستون که دارای یک حرف مشترک هستند، فاقد تفاوت معنی‌دار بر اساس آزمون دانکن در سطح احتمال 5 درصد می‌باشند.
جدول 8: اثرات متقابل مقدار آب آبیاری و روش آبیاری بر عملکرد غده‌ها و کارایی مصرف آب

<table>
<thead>
<tr>
<th>کارایی مصرف آب (کیلوگرم در متر مکعب)</th>
<th>عملکرد در بونه (کیلوگرم)</th>
<th>مقدار آب آبیاری</th>
<th>روش آبیاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/11 cd</td>
<td>20/95 de</td>
<td>T15</td>
<td>F</td>
</tr>
<tr>
<td>0/16 cd</td>
<td>20/89 de</td>
<td>T10</td>
<td>W25</td>
</tr>
<tr>
<td>0/33 cd</td>
<td>18/75 de</td>
<td>T8</td>
<td>W75</td>
</tr>
<tr>
<td>0/17 cd</td>
<td>18/60 de</td>
<td>T6</td>
<td>W75</td>
</tr>
<tr>
<td>0/81 ab</td>
<td>18/34 de</td>
<td>T5</td>
<td>W100</td>
</tr>
<tr>
<td>0/33 bc</td>
<td>18/44 bc</td>
<td>T5</td>
<td>W100</td>
</tr>
<tr>
<td>0/88 cd</td>
<td>18/44 de</td>
<td>T4</td>
<td>W100</td>
</tr>
<tr>
<td>0/33 bc</td>
<td>18/44 de</td>
<td>T3</td>
<td>W100</td>
</tr>
<tr>
<td>0/33 cd</td>
<td>18/44 de</td>
<td>T2</td>
<td>W100</td>
</tr>
<tr>
<td>0/33 ab</td>
<td>18/44 de</td>
<td>T1</td>
<td>W100</td>
</tr>
</tbody>
</table>

*: اعداد هر نیم‌میلی‌نگین در هر ستون که دارای یک حرف مشترک هستند، فاقد تفاوت معنی‌دار بر اساس آزمون دانکن در سطح احتمال 0/05 درصد می‌باشند.

در بونه معنی‌دار نشد (جدول 6). حداکثر عملکرد غده‌ها در بونه در تیمار 125 درصد تیمار T15 (0/87 کیلوگرم) و حداقل عملکرد غده‌ها در بونه در تیمار 75 درصد شارب (0/30 کیلوگرم) حاصل شد (جدول 8).

کارایی مصرف آب

اثر روش آبیاری بر کارایی مصرف آب در سطح احتمال 1 درصد معنی‌دار نبود (جدول 6). در بررسی تأثیر روش‌های آبیاری نسبت به تیمار کناری مصرف آب نسبت به تیمار T15 بر می‌باشد. میانگین کارایی مصرف آب در تیمار F به تیمار T15. تونس (جدول 7). روش آبیاری 2/3 کیلوگرم بر متر مکعب می‌باشد (جدول 7). روش آبیاری نسبت به تیمار 24 درصدی کارایی مصرف آب نسبت به روش آبیاری شارب گردید. در آبیاری نسبت به گاه، تقریباً به طور روزانه تأمین می‌شد. لذا رطوبت خاک در منطقه توسه عاملCR (0/37 کیلوگرم در بونه) و تیمار F دارای کمترین میزان بهبود که این پیشنهاد می‌تواند علت عدم وجود تفاوت معنی‌دار نسبت به تیمار 4/25 کیلوگرم بر متر مکعب و تیمار 125 درصدی T15 در پیشنهادات و همکاران (29) نشان می‌دهد که عاملCR بهبود که در بونه از 0/38 تا 0/09 کیلوگرم در بونه به تیمار 4/25 کیلوگرم بر متر مکعب می‌باشد (جدول 7). تیمار 24 درصدی کارایی مصرف آب از 25 درصد تیمار 125 درصدی تیمار 24 درصدی کارایی مصرف آب در عملکرد غده‌ها.

اثر متقابل روش آبیاری و سطح آبیاری بر عملکرد غده‌ها

23
مقایسه اقتصادی سطح مختلف آب آفتابی

مقایسه اقتصادی در این بخش با در نظر گرفتن قیمت هر متر مکعب آب آفتابی ۵۰ریال، هزینه تولید در یک هکتار سبزیجات (کانتینر، دشت و برداشت) بندان در یک هکتار هزینه آب ۱۵/۱۲۶/۸۰ ریال و نیز قیمت یک هکتولیتر سبزیجات ۶۷۲ ریال انجام شد.

متوسط حجم آب آفتابی در سطح مختلف آب‌آفتابی در شکل ۱ نشان داده شده است. سطح آب‌آفتابی ۱۲۵ درصد نسبت سطح ۱۰۰ درصد مکعب آب اضافی مصرف داشته است. بنابراین هزینه آب مصرفی اضافی برابر ۲۴/۶۲ ریال می‌باشد. مقدار افزایش مصرف آب آفتابی ۱۵۰ درصد نسبت به سطح آب‌آفتابی ۱۰۰ درصد و ۱۲/۹۹ درصد افزایش نسبت به سطح ۱۰۰ درصد مصرف آب اضافی مصرف می‌باشد.

برد به مقدار محسوب نولدیه ۳۷/۲۰ درصد و درصد حاصل ۲/۹۷ درصد هر درصد ۲۰/۲۰ درصد خواهد بود. باعث توجه داشت که افزایش سطح زیرکشت سبزیجات هزینه اضافی مانند هزینه بذر، اماده‌سازی زمین، کود و غیره می‌باشد. بنابراین هزینه تولید سبزیجات در ۱/۸۳ هکتار (بدون ضد‌گریز و گریز) هزینه آب برابر ۲/۲۴/۱۲۳/۲۵۶ ریال می‌باشد. هزینه حاصل خیلی کم می‌باشد (۲/۳۷۲/۵۳۰ ریال می‌باشد). در نتیجه به کار بردن حجم آب اضافی در سطح آب‌آفتابی ۱۲۵ درصد نسبت به سطح آب‌آفتابی ۱۰۰ درصد از نظر اقتصادی ارجاع به صرفه می‌باشد (سود ۲۴/۷۷۲/۶۹۸۸ ریال در مقایسه ۲/۶۳۷/۳۵ ریال).

سطح آب‌آفتابی ۱۰۰ درصد نسبت به سطح آب‌آفتابی ۱۵ دارد.
پرستی آبی‌نیپ و شیاری از لحاظ عملکرد و کارایی مصرف آب در زراعت سیبزیمی

بردن حجم آب اضافی در سطح آبی‌نیپ ۱۲۵ درصد نسبت به سایر نیمارهای آب‌آبی‌و از نظر اقتصادی مفروض به صرفه‌نیش می‌باشد. لازم به ذکر است که مقایسه فرق با افزایش کیفیت آب آبی‌نیپ می‌تواند به صورت بهبود و این مقایسه با کیفیت فعلي انجام شده است.

سیاست‌گزاری

بدینوسیله از مرکز تحصیلات کشاورزی و منابع طبیعی استان همدان و دانشگاه صنعتی اصفهان که در تامین امکانات و انجام آزمایش همکاری نموده‌اند، تشریح و قدردانی می‌گردد.

منابع مورد استفاده

1. اسحاق، ا.ش.، اشرفی، ج.، باغ‌پروری، ج.، سهیلی، ج.، انگارنگی‌هایی. ۱۳۹۱. منابع طبیعی و اقتصادی کشاورزی. خریداری، تولید، ف. سیبزیم. تجدید نشر، ایران، تهران.
2. اسحاقی، ع. ۱۳۹۳. کشتی‌های انگارنگی در ابروه، جمهوری اسلامی ایران. تاریخ و تمدن، تهران.
3. جعفری، ع. ۱۳۸۹. کشتی‌های انگارنگی در ابروه، جمهوری اسلامی ایران. تاریخ و تمدن، تهران.
4. سپاسخوانی، ع. ۱۳۸۷. کشتی‌های انگارنگی در ابروه، جمهوری اسلامی ایران. تاریخ و تمدن، تهران.
5. سیدو، ع. و ع. قبادی، ۱۳۸۱. کشتی‌های انگارنگی در ابروه، جمهوری اسلامی ایران. تاریخ و تمدن، تهران.
6. علی‌محمدی، ۱۳۸۷. تاریخ و تمدن، ابروه، جمهوری اسلامی ایران. تاریخ و تمدن، تهران.
7. فرشتی، ع. ۱۳۸۷. کشتی‌های انگارنگی در ابروه، جمهوری اسلامی ایران. تاریخ و تمدن، تهران.
8. فراهانی، ه. ۱۳۸۷. کشتی‌های انگارنگی در ابروه، جمهوری اسلامی ایران. تاریخ و تمدن، تهران.
9. میرزا، ع. و ز. میرزا، ۱۳۸۲. کشتی‌های انگارنگی در ابروه، جمهوری اسلامی ایران. تاریخ و تمدن، تهران.
10. کشاورزی، ع. و ع. کشاورزی، ۱۳۸۳. کشتی‌های انگارنگی در ابروه، جمهوری اسلامی ایران. تاریخ و تمدن، تهران.

