اثر پاتئنل‌های محیط رشد سویه‌های بومی ازتوباکتر کروکوکوم روی رشد، عملکرد و جذب عناصر غذایی در گندم

سعیده رجاپی ۱، حسینعلی علیخانی ۲ و فائز رئیسی ۳

چکیده

این تحقیق به منظور بررسی اثر بررسی اثر برخی از پاتئنل‌های محیطی رشد شناخته شده در تعدادی از سویه‌های بستری روزی Azotobacter chroococcum در شرایط گلخانه‌ای به اجرا در آمد. تعدادی از سویه‌های ازتوباکتر کروکوکوم بر روی اثرات زیر ثابت کردند: سیب‌درخت، میوه و تیمه که اثرات زیر را در قالب یک طرح کاملاً تصادفی توسط این سویه‌ها نشان دادند و برخی از شاخه‌های رشد، عملکرد و جذب عناصر غذاهای اندازه‌گیری شدند که اثر تحقیق باکتری بر روی شاخه‌های عملکرد بیولوژیکی درصد پروتئین دانه، وزن هزار دانه، شاخه سطح برگ و به ویژه جذب عناصر Fe، Zn و Cu مشابه در گردد. بیشترین اثرات می‌تواند در افزایش شاخه‌های مذکور در تیمارهای سویه‌های ازتوباکتر کروکوکوم تولید گردند. Zn و سولفیرومون (IAA) و سویه‌های بیولوژیکی و پیوند مکمل مشاهده گردید. به طور کلی بر اساس نتایج این مطالعه می‌توان گفت تئیپسیوسیه‌های ازتوباکتر کروکوکوم بومی استان چهار محال و بختیاری که در زمینه ریزپوشاکی‌های محیط رشد گیاه (PGPR) قرار گرفته بودند تأثیر مثبت روی رشد و عملکرد گندم شامل عملکرد بیولوژیکی و کیفیت دانه (درصد پروتئین دانه) تحت شرایط گلخانه‌ای داشته‌اند. ممکن است از این سویه‌ها می‌تواند در جهت بهبود تغذیه گندم از نظر عناصر غذایی کم مصرف مانند آهن و روی استفاده نمود.

واژه‌های کلیدی: ازتوباکتر کروکوکوم، IAA، سولفیرومون، تیمه، بیولوژیکی پیوند، HCN.

مقدمه

گندم جزو مهم‌ترین گیاهان زراعی جهان، به ویژه در کشورهای در حال توسعه، به شمار می‌آید و در مقایسه با سایر محصولات غلات بیشترین سطح زیر کشت را به خود اختصاص داده است. در ایران از مجموع حدود ۱۷۳ ۷۸۱ میلیون هکتار اراضی تحت کشت غلات، گندم با ۵۱۷/۸۶ (۳۱۰۵ هزار هکتار) در

۱. به ترتیب دانشجوی دکتری و دانشیار خاکنشناسی، دانشکده کشاورزی، دانشگاه شهید ۱. استادیار خاکنشناسی، دانشکده کشاورزی، دانشگاه شهید ۱۳۸۶
پیامدهای منفی زست محیطی و افزایش هشیمه تولید را به همراه داشته است و این امر ضرورت تحصیل نظر در شیوه‌های جدید افزایش تولید محصول را کوشش می‌نماید. (۲۱)
فراهم‌سازی شرایط لازم برای استفاده بیشتر از فرآیندهای طبیعی مانند تولید پیلوئولیزیکی نیتروژن یکی از راهکارهای تولید بهینه محصول و مهمتر از آن حفظ سلامت محیط است که امرزه در کشورهای مختلف به طور جدی در بالا است. یکی از شیوه‌های پیلوئولیزیکی برای افزایش تولید در کشاورزی استفاده بالقوه از میکوراگانیزم‌های مقیم خازکی است که سی‌تامانی از روش‌های مختلف استفاده افزایش رشد و عملکرد گیاه شوند. از جمله این موضوعات می‌توان به ریزوکاتر نامیده رشد (Plant Growth Promoting Rhizobacteria) (PGPR) که آشکار کرده است، گروه از باکتری‌ها در منطقه ریزوفر، در طبقه مکانیسم‌های مختلف باعث افزایش رشد و عملکرد گیاه توانسته است. (۳۴) این سه‌دهه گذشته می‌باشد (۹.۶ و ۱۵). نورالو و همکاران اثر تلقیح سیب‌های افزایش رشد کرکودول تولید کننده IAA و حلال کننده فسفات را در جنگل ناکامی‌های شیراک و NPK تحت شرایط کلیه‌ای مثبت و منفی دار گزارش کرده‌اند.(۱۹) در یک بررسی سیب‌کاهان و همکاران گزارش دادند. تلقیح گندم با ازتوپاتر تحت شرایط گلخانه‌ای در ۵۰ درصد نیتروژن مورد نیاز گیاه را چاپگریب نموده است.(۲۲) همچنین از ازتوپاتر در افزایش جوانی نبات‌های لازم‌ماندگی محصولات مختلف منفی میانگر گزارش داده که میزان این تأثیر به عبارتی ازتوپاتر بستگی دارد. در بین محققین مختلف از نظر استفاده از سیب‌های مناسب برای هنر فنون گیاهی انفاج بیش از هر مدتی میانگر گزارش دادند. در بین زنتوپاتر های مختلف کنترل پایه‌های تعداد از زنتوپاترها بیاس بهتری به تلقیح ازتوپاتر نشان می‌دهند.(۲۲)
راابطه بین زنتوپاتر گیاهی و سیب‌های وابسته به ویژگی‌های مشارکتی در سیستم شمار ترکیبات کفی و کمی تشکیل تشکیل‌های دیگر با متافلوپتیریک‌های یزیده‌سی‌های ویژگی‌های زنتوپاتر گیاهی در جذب و انتقال نیتروژن عنوان شده است. این باید به این تکه توجه داشته که شرایط خاک همچون مقادیر رطوبت و
مواد و روش‌ها

تعداد 75 نمونه خاک از مزارع مختلف گندم در استان چهارمحال و بختیاری و 70 نمونه از تولیدکننده کروکومکروکوم از این استان جداسازی گردید. سپس نمونه‌های تولید، IAA سیدروفوروم (SD) و همچنین تیترینترنوز مکلکوئید (HCN) و همچنین تیترینترنوز مکلکوئید در این سویه‌ها انداره گیری شد (3، 6 و 14) و از بین این سویه‌ها 12 سویه برای آزمون گلخانه‌ای انتخاب شدند که نتایج آزمایش واگذاری به خاک گلخانه‌ای اضافه گردید. خصوصیات آنها در جدول 1 نشان داده شده است. همان‌طور که در این جدول مشاهده می‌شود سویه‌های مربی سویه‌های تولید بالاترین پتانسیل در زمینه تولید اکسید ترکیبی می‌باشند. به عنوان مثال سویه‌های 37 و 36 دارای بالاترین پتانسیل تولید سیدروفوروم و سویه‌های 25 و 30 دارای بالاترین پتانسیل تولید IAA در 75 سویه از تولیدکننده بودند. در مورد تولید IAA و تیترینترنوز مکلکوئید (HCN) و همچنین تیترینترنوز مکلکوئید (HCN) و همچنین
جدول 1. سویه‌های مورد استفاده در آزمون گلخانه‌ای

<table>
<thead>
<tr>
<th>مکانیسم تحضیرکننده</th>
<th>شماره سویه</th>
<th>8.3 nmol C<sub>H</sub><sub>2</sub> h<sup>-1</sup></th>
<th>7.5 nmol C<sub>H</sub><sub>2</sub> h<sup>-1</sup></th>
<th>7.6 nmol C<sub>H</sub><sub>2</sub> h<sup>-1</sup></th>
<th>0 nmol C<sub>H</sub><sub>2</sub> h<sup>-1</sup></th>
<th>0 nmol C<sub>H</sub><sub>2</sub> h<sup>-1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>AZT</td>
<td>5</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
<tr>
<td>AZT</td>
<td>8</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
<tr>
<td>AZT</td>
<td>69</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
<tr>
<td>AZT</td>
<td>17</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
<tr>
<td>AZT</td>
<td>68</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
<tr>
<td>AZT</td>
<td>23</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
<tr>
<td>AZT</td>
<td>26</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
<tr>
<td>AZT</td>
<td>48</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
<tr>
<td>HCN</td>
<td>HCN</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
<tr>
<td>HCN</td>
<td>HCN</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
<tr>
<td>72 mg/l IAA</td>
<td>AZT</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
<tr>
<td>70 mg/l IAA</td>
<td>AZT</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
<tr>
<td>67 mg/l IAA</td>
<td>AZT</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
<tr>
<td>40 mg/l IAA</td>
<td>AZT</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
<tr>
<td>0 mg/l IAA</td>
<td>AZT</td>
<td>نتیجت بیولوژیک نیتروژن</td>
</tr>
</tbody>
</table>

جدول 2. برخی ویژگی‌های فیزیکی و شیمیایی خاک مورد استفاده در آزمون گلخانه‌ای

<table>
<thead>
<tr>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>sandy clay loam</td>
<td>40</td>
<td>25</td>
</tr>
</tbody>
</table>

دانه شده است. طبق نتایج اثر تیمار باکتری بر روی ارتفاع بونه در پایان ماه سوم (گیاه 33 روزه) در سطح 1 درصد معنی‌دار می‌باشد. این اثر باعث افزایش ارتفاع بونه در این مرحله متعلق به سویه شماره 8.3 nmol C_H₂ h⁻¹ می‌باشد. افزایش ارتفاع بونه در این مرحله متعلق به سویه شماره 7.5 nmol C_H₂ h⁻¹ می‌باشد. افزایش ارتفاع بونه در این مرحله متعلق به سویه شماره 7.6 nmol C_H₂ h⁻¹ می‌باشد. افزایش ارتفاع بونه در این مرحله متعلق به سویه شماره 0 nmol C_H₂ h⁻¹ می‌باشد. افزایش ارتفاع بونه در این مرحله متعلق به سویه شماره 0 nmol C_H₂ h⁻¹ می‌باشد. افزایش ارتفاع بونه در این مرحله متعلق به سویه شماره 0 nmol C_H₂ h⁻¹ می‌باشد.

زن خشک قسمت‌های هواپیما گیاه (عمک‌یکی بیولوژیک)، وزن خشک دانه (عمک‌یکی بیولوژیک)، نتایج تحقیقاتی در سطح 1 درصد معنی‌دار می‌باشد. این اثر باعث افزایش ارتفاع بونه و در این مرحله متعلق به سویه شماره 8.3 nmol C_H₂ h⁻¹ می‌باشد. این اثر باعث افزایش ارتفاع بونه و در این مرحله متعلق به سویه شماره 7.5 nmol C_H₂ h⁻¹ می‌باشد. این اثر باعث افزایش ارتفاع بونه و در این مرحله متعلق به سویه شماره 7.6 nmol C_H₂ h⁻¹ می‌باشد. این اثر باعث افزایش ارتفاع بونه و در این مرحله متعلق به سویه شماره 0 nmol C_H₂ h⁻¹ می‌باشد. این اثر باعث افزایش ارتفاع بونه و در این مرحله متعلق به سویه شماره 0 nmol C_H₂ h⁻¹ می‌باشد. این اثر باعث افزایش ارتفاع بونه و در این مرحله متعلق به سویه شماره 0 nmol C_H₂ h⁻¹ می‌باشد.

نتایج

تفاوت شاخص‌های رشد گندم در جدول 3 نتایج مقایسه میانگین شاخص‌های رشد گندم ناشان
جدول 3. مقایسه میانگین شاخص‌های رشد و عملکرد گندم در تیمارهای سویه‌های مختلف از‌تویاکر کروکوم

تیمار (سویه‌ی)	وزن خشک بذر (گ)	وزن خشک ریشه‌ای (گ)	اندازه هوری (گ)	درصد	سیستمکرد	طول سبزی	ارتفاع بذر (نهايي) (cm)	ارتفاع بذر (50 روزه) (cm)	طول بذر (50 روزه) (cm)	سطح بذر (cm²)	پنجه در بذر	
A - 5	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83
A - 8	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83
A - 11	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83
A - 13	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83
A - 17	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83
A - 23	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83
A - 25	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83
A - 26	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83
A - 48	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83
A - 53	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83
A - 57	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83
A - 68	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83
A - 69	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83
A - 72	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83
CV	0.72	2.49	14.99	20	4.5	18	348.7	37.6	21.5	0.95	0.5	1.83

- حروف مشابه در هر ستون نشانه عدم وجود اختلاف معنی‌دار در سطح احتمال 5 درصد می‌باشد.
- تمامی صفات به ارایه یک بوته می‌باشند.
- خیر معنی‌دار N.S.
به تیمار شاهد و سایر تیمارها کاهش نشان می‌دهند. بر طبق نتایج جدول ۳ اثر تیمار باکتری روی میانگین طول سبیله، تعداد نتیجه در پونه، تعداد سبیله در یک بوته معنی‌دار نیست.

پ (عملکرد) در جدول ۳ اثر تیمارهای مختلف باکتری روی شاخه‌های عملکرد کندینت تیمار داده شد است. طبق نتایج وزن خشک اندام هواپیمایی در سطح ۱ درصد معنی‌دار نیست. وزن خشک اندام هواپیمایی در تیمار شاهد است. اثر تیمار باکتری روی وزن خشک ریشه، تعداد در سبیله و عمرکرد دانه معنی‌دار نشد.

تلقیح سویه‌های مختلف ازبتوکرات کروکوم روی وزن هزار دانه (جدول ۳) اثر معنی‌داری در سطح ۱ درصد داشت است. میانگین وزن هزار دانه در تیمارهای ۷۵ و ۷۲ به صورت معنی‌داری نسبت به تیمار دایر و سایر تیمارها افزایش نشان می‌دهد. اثر تیمار شاهد و سایر تیمارها اختلاف آماری معنی‌داری مشاهده نمود.

اثر تیمارهای مختلف باکتری روی درصد پروتئین دانه در سطح ۱ درصد معنی‌دار نیست. درصد پروتئین دانه در گیاه تلقیح شده با سویه‌های ۵۵ و ۵۴ به صورت معنی‌داری بیشتر از تیمار شاهد می‌باشد. اثر تیمار باکتری روی وزن خشک اندام هواپیمایی در سطح ۱ درصد معنی‌داری کمتر از تیمار شاهد و سایر تیمارها مشاهده نمود.

گ (جذب عناصر غذایی) در جدول ۴ اثر تیمارهای مختلف باکتری روی جذب تیزرول، فسفر، آهن و روی در گندم نشان داده شد است. طبق نتایج اثر تیمارهای مختلف باکتری روی جذب تیزرول، فسفر، آهن و روی در سطح ۱ درصد معنی‌دار نیست. کل تیزرول جذب شده در تیمارهای ۷۵ و ۷۱ درصد معنی‌دار نیست. کل تیزرول جذب شده در تیمارهای ۷۵ و ۷۱ درصد معنی‌دار نیست.
جدول 4. مقایسه میانگین جذب و غلظت عناصر Zn، Fe، P و N در گندم در نمایه‌های سویه‌های مختلف از تیباتکر کروکوم

<table>
<thead>
<tr>
<th>عنصر</th>
<th>جذب (μg/p)</th>
<th>غلظت (mg/kg)</th>
<th>پاسخ</th>
<th>جذب (μg/p)</th>
<th>غلظت (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ان锶لا گرددن. در سنوئی نشانه عدم وجود اختلاف معنی‌دار در سطح احتمال 5 درصد می‌باشد.
- جذب و غلظت به ارزیابی پژوهش می‌باشد.
اثر پانسانی‌های محرک رشد سویه‌های بومی ازتوتاقز کروکوکوم روی رشد

و تیمارهای یکنفره از نظر تعداد سیببه اختلاف معنی‌داری وجود نداشت. این مطلب بیانگر این نکته است که هر چند در تیمار شاهد تعداد پنجه‌ها بهتر از سایر تیمارهای مسایل اساب وضعیت پنجه‌های اضافی سیب بهتر است. سپس به کاهش پنجه‌های نابار در اثر تلفت ازتوتاقز باشند این مسئله ویژگی پسیار مشی تلقی می‌گردد زیرا یک حذف پنجه‌های نابار که فاقد سبله می‌باشد می‌تواند منجر به میعانه بهترین پنجه‌های باوری گردد.

در بین شاخص‌های رشد گیاه اثر تلفت ازتوتاقز یکی بر روی سطح برگ بیوه معنی‌دار داشت. گرچه سطح برگ پیشرفت تأثیر

شراط محیطی قرار گیرد (٢٠) تا فعالیت باکتری‌ها در بخش ریزوسفور، لینک با توجه به تأثیر بخش دست‌آموز از این تحقیق

می‌توان گفت که باکتری‌های اثر روی‌کننده IAA و تثبیت‌کننده

بی‌توجهی روز میزان سطح برگ تأثیر مشابه داشتند. محققین

مانند زاید و همکاران و راویکومار و همکاران اندزگری‌بی‌کین

کارفیل را به کمک اندزگری سطح برگ توصیه نمودند.

اثر تلفت ازتوتاقز روی ارتفاع بود ٢٥ روز معنی‌دار لذیز اثر روی ارتفاع نهایی بیوه معنی‌دار نشد. در حالی‌که در یک

پرسی کاری و همکاران اثر تلفت ازتوتاقز را در سطح مختلف

کود نیتروزی‌بی‌و اثر ارتفاع نهایی بیوه معنی‌دار و معنی‌دار ارزیابی

نمونه‌برداری به و در و آمار تعداد فرد اثر ارتفاع نهایی بیوه را

اثر تلفت ازتوتاقز نسبت به تیمار شاهد کروکوکوم نمود.ن.(٧)

در اثر تلفت ازتوتاقز نسبت به تیمار شاهد کروکوکوم نمود.ن.(٧)

دارای پیش‌ترین رشد و وزن هزار تانژیفیک در تیمارهای ٧١ و ٧٢

دارای پیش‌ترین رشد و وزن هزار تانژیفیک در تیمارهای ٧١ و ٧٢

سویه‌های با یک تانژیفیک نمود.ن (٨) با یک تانژیفیک نمود.ن (٨)
جدول 5. خلاصه اثر سویهویه بر روی شاخص‌های رشد و عملکرد گندم در شرایط گلخانه

<table>
<thead>
<tr>
<th>شاخص‌های معنی‌دار داشت</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>اکسیژن</td>
<td>42</td>
<td>43</td>
<td>45</td>
<td>47</td>
<td>49</td>
<td>51</td>
<td>53</td>
<td>55</td>
</tr>
<tr>
<td>لیزر</td>
<td>37</td>
<td>38</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>46</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>سطح ریشه</td>
<td>57</td>
<td>58</td>
<td>60</td>
<td>62</td>
<td>64</td>
<td>66</td>
<td>68</td>
<td>70</td>
</tr>
<tr>
<td>جذب عناصر</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>تروش هورمون‌ها</td>
<td>34</td>
<td>36</td>
<td>38</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>46</td>
<td>48</td>
</tr>
</tbody>
</table>
تغییرات محیطی در دلیل احتمال برای توجه این اثر ممکن است وجود داشته باشد.

احتمال اول اینکه سویه‌های 11 دارای قدرت کلی‌واسپان کمتری نسبت به سویه‌های مشابه با خود داشته و نوانتی رقابت و رشد در محیط ریزومتر نداشته است و احتمال دوم اینکه کافی‌آبی خفیط جدید آن طی‌سپرگ هدام شده‌است.

اهن طی‌سپرگ کننده 32 لیتر به‌کار رفته‌اند که در ضرورت دانه‌ای از ضرورت‌های ذکر آن‌داننداشته و در فرض سویه می‌تواند به عدم سازگاری سویه 11 با گیاه‌های نمود که هر سه این احتمالات تیزی به بررسی بیشتر در منطقه ریزومتر خواهد داشت.

آن‌ها به جدول 5 بدون وضعیت می‌شنوند که است که در این بررسی جداب‌ناور در محیط یکی از سایر مدل‌هایی رشد و عملکرد گیاه تحت تأثیر فعالیت‌های میکرو‌اکتیو گرفته است.

نتیجه‌گیری کلی از داده‌های بدست‌آمده نشان می‌دهد سویه‌های

متابع مورد استفاده

1. چهارمین کتاب خاوری ایران، آمار تولیدات و عملکرد سال زراعی 1379-1400، انتشارات پارس گل، تهران.

Microsoft Word استفاده

