برآورد هتروژنیس در هیریده‌های T. turgidum

الهام فراهانی و احمد ارزانی

(تاریخ دریافت: 22/8/2018، تاریخ پذیرش: 8/2/2019)

چکیده

این پژوهش به منظور برآورد هتروژنیس در 12 هیریده T. turgidum گندم دوروم با استفاده از صفات زراعی و متافلورولوژیک انجام گردید. گزینش والدین براساس فاصله زننده برآورد شده طی دو سال آزمایش مزروعه گندم و سپس با تلاقی والدین، هیریده‌های F1 آنها تولید شدند. بدین منظور 23 زنونی (شمل 11 والدین و 12 هیریده‌ای F1) در قالب طرح یک‌روکا کاملاً تصادفی بسیار کنار هم در سال 1387 در مزرعه تحقیقاتی دانشگاه صنعتی اصفهان واقع در لرک تا حد ممکن ارژیبایی شدند. صفات زراعی تعداد روز تا 50، خوش‌به، تعداد روز تا 50/گردانشاتی، تعداد روز رشد گیاهی، ارتفاع بتو، طول سبزه، تعداد سبزه در واحد سطح، تعداد دانه در خوش‌به، وزن دانه در خوش‌به، وزن هزار دانه، عملکرد نبات‌زایی، عملکرد دانه و شاخص برداشت در کلیه زنونیها اندازه‌گیری شدند. نتایج تجزیه واریانس نشان داد که پیوستگی نوع ترمیم مورد مطالعه و وجود هتروژنیس بوده است. برآورد هتروژنیس براساس مقدار با واحدهای برتر نشان داد که هیریده‌های F1 به طور میانگین از نظر رسیدگی و زودرس بودن بالاترین مقادیر هتروژنس را داشته‌اند. ضمن این که H. Eupoda6xChahba88 و H. Prais1000-P49099 پیشترین و درصد هتروژنیس از نظر صفات عملکرد دانه و اجزای عملکرد در بین 12 هیریده مورد بررسی به هیریده‌های H. Altar84/Ald-Chahba88 و هیریده‌های H. Eupoda6xMexi75/Vic و H. Buchen7xChahba88 دارند. عبارت‌اند از: زنوبال 86، Altar84/Ald.Odin12.Eupoda6xMexi75/Vic و H. Eupoda6xMexi75/Vic و همچنین ارقام 45063 Karaj و Altar84/Ald.Odin12.Eupoda6xMexi75/Vic و H. Buchen7xChahba88 در تلاقی و هنگام بازدار و H. Altar84/Ald.Odin12.Eupoda6xMexi75/Vic و H. Buchen7xChahba88 در تلاقی با زنوبال 86.

واژه‌های کلیدی: هتروژنیس، گندم دوروم، هیریده‌ای F1 و عملکرد دانه

مقدمه

گندم مهم‌ترین گیاه زراعی است که به سطح گسترده‌ای از جهان تولید می‌شود. دانه‌سازگاری و اهمیت انواع مختلف گندم را می‌توان از این واقعیت استباقی کرد که این گیاه در هر ماه از سال در یکی از نقاط جهان در حال برداشت است. گندم

1. بر ترتیب دانشجوی سابق کارشناسی ارشد و استاد زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. مشاور مکاتبات، پست الکترونیکی: a_arzani@cc.iut.ac.ir
اگرچه غلظ هیریم امیدواران کنده هستند ولی نباید در آینده به عنوان تها روش اصلی در ذهن گرفته شوند. اصلاح نباتات با روش‌های مختلف همچنین سهم زیادی در تولید تجارتی و کشت‌های ارثی و کشت هیریم‌ها دارد. این نظر ای نبوده که روزگار تمایل گیاهان زراعی هیریم خواندن بود مفهوم‌های ندارد (5). در نهایت باید این نکته اشاره کرد اگرچه تولید هیریمدندورم در مقایسه تحقیقات امکان‌پذیر است آن‌طورهای تجارتی آن تلاقی‌های زیادی را می‌طلبد (13). شارا و همکاران (9) نسبت به برآورده‌های ارزشی در تعدادی از ارقام و لاوی های کند دورهم افتتاح هیریمو در سایر از گیاهان زراعی و از جمله گیاه ااجازه عملاکرد می‌باشد. به طوری که امروزه افتتاحیه از بازده هیریمز در موارد گیاهان خودکش نیز مورد توجه قرار گرفته است. به‌ینهای این قیمت گیاهان به آسانی در گندم قابل شناسایی است اگرچه تعداد اندازه‌ای از تلاقی‌ها ایفای نمی‌دهد. اما این واقعیت که ارقام خالصی می‌تواند با آسانی تولید آزمایش شود می‌تواند نسبت به گیاهان زراعی دگرگونی‌های را نشان دهد. کوشش بر روی ایجاد گندم هیریم‌های نیز به شناسایی تولید هیریم‌های با عملاکرد بالاتر می‌انجامد. بکه ارقام و بالی برتری کاست ارقام تجاری خلاصی را نیز معمایی می‌نماید. اصلاح کندگان گندم عملاکرد هیریم‌های را برای بخش افتتاح‌ها زشتی‌های قابل تولید، بالی کرایز برای توپیک و والدین نیز ممکن است. یک پیش‌بینی بررسی در بهبود عملاکرد دربار اصلاح متدرا با برناهای هیریم نشان می‌دهد (2) بی‌پر و بی‌کیست به‌ینهای اطهای افتتاح که هیریم موفق گندم غلظی از تلاقی والدین با عملاکرد باقی است تقریباً نتایج پرتره‌ای نتایج شبیه به‌ینهای می‌آید. گلد هیریم با پیدای برناهای اصلاح هیریم‌ها شما برای انتخاب والدین بی‌پر و دیگر از افزایش شده برای تولید هیریم‌های متفاوت والدین و نام‌های افزایش یافته مطالعه دگرگونی نیز وجود اثرات هیریم در گندم نیز را کرش نموده‌اند (6، 27 و 30). فارابیز و همکاران (2) با مطالعه فاصله زشتی‌های تعدادی زشتی و تلاقی‌های حاصل از آن‌ها نشان دادند که اگرچه

از جمله ماکارنتو و اسپاکوی ممنه ساخته است (1). هیریم‌های با برترین هیریم (F1) نتایج تلاقی بین نژادها و یا بین وایتن‌های مختلف که در اصلاح گیاهان و جانوران حائز اهمیت می‌باشد. هیریم‌ها نسبت اول گیاهان تولید شده از یک تلاقی اغلب به‌ینهای هیریم‌های با هیریم‌های بار اعملاکرد نشان می‌دهند و یکی نرم‌نامه کلی گیاه بهبود می‌یابد. استفاده از هیریمز در غلظ گیاه‌کرده افزایش همکاریم کندم از طریق ایجاد هیریم‌های مورد توجه نازادگران بوده است (7). به‌ینهای زشتی‌های نیز مورد توجه قرار گرفته است. به‌ینهای بی‌پر و به‌ینهای می‌آید به‌ینهای بی‌پر و به‌ینهای به‌ینهای
جدول ۱: زنوبیهای گندم دوروم مشتمل بر ۱۱ والد و ۱۴ هیریده مورد استفاده

<table>
<thead>
<tr>
<th>ردیف</th>
<th>نام زنوپی</th>
<th>ردیف</th>
<th>نام زنوپی</th>
<th>ردیف</th>
<th>نام زنوپی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>PI 40100</td>
<td>۲</td>
<td>Altar 84/Ald+Chahba 88</td>
<td>۳</td>
<td>H 675/Vic</td>
</tr>
<tr>
<td>۲</td>
<td>۱۰</td>
<td>۳</td>
<td>Altar 84/Aos</td>
<td>۴</td>
<td>۲</td>
</tr>
<tr>
<td>۳</td>
<td>۱۱</td>
<td>۴</td>
<td>۱۹</td>
<td>۵</td>
<td>۸</td>
</tr>
<tr>
<td>۴</td>
<td>۲۰</td>
<td>۵</td>
<td>۱۳</td>
<td>۶</td>
<td>۸</td>
</tr>
<tr>
<td>۵</td>
<td>۱۴</td>
<td>۶</td>
<td>Eupoda 6+Chahba 88</td>
<td>۷</td>
<td>H 675/Vic</td>
</tr>
<tr>
<td>۶</td>
<td>۱۵</td>
<td>۷</td>
<td>H 675/Vic</td>
<td>۸</td>
<td>H 128+Chahba 88</td>
</tr>
</tbody>
</table>

 الاحتیاط و هیریدهای ف1 گندم دوروم تحت شرایط مزرعه

<table>
<thead>
<tr>
<th>مجموعه</th>
<th>تعداد</th>
<th>میانگین هیریده</th>
<th>تعداد</th>
<th>میانگین هیریده</th>
<th>تعداد</th>
<th>میانگین هیریده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۷</td>
<td>۱۴.۵</td>
<td>۲</td>
<td>۱۹</td>
<td>۳</td>
<td>۱۵.۵</td>
</tr>
<tr>
<td>۲</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۳</td>
<td>۲۰</td>
<td>۴</td>
<td>۱۷</td>
</tr>
<tr>
<td>۳</td>
<td>۱۹</td>
<td>۲۰</td>
<td>۴</td>
<td>۲۱</td>
<td>۵</td>
<td>۱۷</td>
</tr>
<tr>
<td>۴</td>
<td>۲۰</td>
<td>۲۱</td>
<td>۵</td>
<td>۲۱</td>
<td>۶</td>
<td>۱۷</td>
</tr>
<tr>
<td>۵</td>
<td>۲۱</td>
<td>۱۷</td>
<td>۶</td>
<td>۲۱</td>
<td>۷</td>
<td>۱۷</td>
</tr>
<tr>
<td>۶</td>
<td>۲۲</td>
<td>۱۷</td>
<td>۷</td>
<td>۲۱</td>
<td>۸</td>
<td>۱۷</td>
</tr>
<tr>
<td>۷</td>
<td>۲۳</td>
<td>۱۷</td>
<td>۸</td>
<td>۲۱</td>
<td>۹</td>
<td>۱۷</td>
</tr>
<tr>
<td>۸</td>
<td>۲۴</td>
<td>۱۷</td>
<td>۹</td>
<td>۲۱</td>
<td>۱۰</td>
<td>۱۷</td>
</tr>
<tr>
<td>۱۰</td>
<td>۲۵</td>
<td>۱۷</td>
<td>۱۱</td>
<td>۲۱</td>
<td>۱۲</td>
<td>۱۷</td>
</tr>
</tbody>
</table>

۱۶۱
تایپ و بیث
نتایج تجزیه و بررسی داده‌های مربوط به تعداد صفات اختلاف معنی‌داری را بین وسیل و هیبرید‌های F1 نشان داد که این بین‌ارگی تعداد صفات اختلاف معنی‌داری بین وسیل و هیبرید‌های F1 نشان داد که این بین‌ارگی تعداد صفات اختلاف معنی‌داری بین وسیل و هیبرید‌های F1 نشان داد که این بین‌ارگی تعداد صفات اختلاف معنی‌داری بین وسیل و هیبرید‌های F1 نشان داد که این بین‌ارگی تعداد صفات اختلاف معنی‌داری بین وسیل و هیبرید‌های F1 نشان داد که این بین‌ارگی تعداد صفات اختلاف معنی‌داری بین وسیل و هیبرید‌های F1 نشان داد که این بین‌ارگی تعداد صفات اختلاف معنی‌داری بین وسیل و هیبرید‌های F1 نشان داد که این بین‌ارگی تعداد صفات اختلاف معنی‌داری بین وسیل و هیبرید‌های F1 نشان داد که این بین‌ارگی تعداد صفات اختلاف معنی‌داری بین وسیل و هیبرید‌های F1 نشان داد که این بین‌ارگی تعداد صفات اختلاف معنی‌داری بین وسیل و هیبرید‌های F1 نشان داد که این بین‌ارگی تعداد صفات اختلاف معنی‌داری بین وسیل و هیبرید‌های F1 نشان داد که این بین‌ارگی تعداد صفات اختلاف معنی‌داری بین وسیل و هیبرید‌های F1 نشان داد که این بین‌ارگی تعداد صفات اختلاف معنی‌داری بین وسیل و هیبرید‌های F1 نشان داد که این بین‌ارگی تعداد صفات اختلاف معنی‌داری بین وسیل و هیبرید‌های F1 نشان داد که این بین‌ارگی

d"
جدول 2. تجزیه واریانس (میانگین مربعات) ۳۲‌تننی (۱۱ والد و ۱۲ هیرید) گندم دوروم مورد مطالعه

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>درجه دفعه</th>
<th>روز تا ۵۰%</th>
<th>تعداد سبک</th>
<th>ارتفاع بوته</th>
<th>تعداد دانه</th>
<th>وزن دانه</th>
<th>وزن دانه در کاهش قدرت‌افشایی رسیدگی</th>
<th>خوش‌خیمه‌گی</th>
<th>خوداردی</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص بردشت</td>
<td>۲/۸۵۳</td>
<td>۱۱/۰۸۸</td>
<td>۱/۸۵۱</td>
<td>۹/۲۷۲</td>
<td>۶/۲۴۷</td>
<td>۶/۴۴۵</td>
<td>۹/۵۵۷</td>
<td>۱۱/۱۸۶</td>
<td>۳۸/۹۶۰</td>
</tr>
<tr>
<td>عملکرد بیولوژیک</td>
<td>۳/۸۵۰</td>
<td>۱/۸۵۱</td>
<td>۹/۲۷۲</td>
<td>۶/۲۴۷</td>
<td>۶/۴۴۵</td>
<td>۹/۵۵۷</td>
<td>۱۱/۱۸۶</td>
<td>۳۸/۹۶۰</td>
<td>۳/۲۸۴</td>
</tr>
</tbody>
</table>

میانگین میان‌яет

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>درجه دفعه</th>
<th>روز تا ۵۰%</th>
<th>تعداد سبک</th>
<th>ارتفاع بوته</th>
<th>تعداد دانه</th>
<th>وزن دانه</th>
<th>وزن دانه در کاهش قدرت‌افشایی رسیدگی</th>
<th>خوش‌خیمه‌گی</th>
<th>خوداردی</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص بردشت</td>
<td>۲/۸۵۳</td>
<td>۱۱/۰۸۸</td>
<td>۱/۸۵۱</td>
<td>۹/۲۷۲</td>
<td>۶/۲۴۷</td>
<td>۶/۴۴۵</td>
<td>۹/۵۵۷</td>
<td>۱۱/۱۸۶</td>
<td>۳۸/۹۶۰</td>
</tr>
<tr>
<td>عملکرد بیولوژیک</td>
<td>۳/۸۵۰</td>
<td>۱/۸۵۱</td>
<td>۹/۲۷۲</td>
<td>۶/۲۴۷</td>
<td>۶/۴۴۵</td>
<td>۹/۵۵۷</td>
<td>۱۱/۱۸۶</td>
<td>۳۸/۹۶۰</td>
<td>۳/۲۸۴</td>
</tr>
</tbody>
</table>

جدول 3. میانگین کل والدین و هیریدهای F۱ از لحاظ ۱۲ صفت زراعی مورد مطالعه

<table>
<thead>
<tr>
<th>(s.e.)</th>
<th>F۲</th>
<th>P</th>
<th>(F۱)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۸۰</td>
<td>۱۴۶/۸</td>
<td>۱۴۶/۸</td>
<td></td>
</tr>
<tr>
<td>۱/۹۶</td>
<td>۱۷۷/۴</td>
<td>۱۷۷/۴</td>
<td></td>
</tr>
<tr>
<td>۰/۱۱</td>
<td>۲۱۴/۹</td>
<td>۲۱۴/۹</td>
<td></td>
</tr>
<tr>
<td>۵/۳۲</td>
<td>۹۶/۲</td>
<td>۹۶/۲</td>
<td></td>
</tr>
<tr>
<td>۰/۷۵</td>
<td>۱۳/۵</td>
<td>۱۳/۵</td>
<td></td>
</tr>
<tr>
<td>۱/۱۵</td>
<td>۱۸۶/۴</td>
<td>۱۸۶/۴</td>
<td></td>
</tr>
<tr>
<td>۰/۷۵</td>
<td>۳۴/۷</td>
<td>۳۴/۷</td>
<td></td>
</tr>
<tr>
<td>۰/۸۲</td>
<td>۲/۵</td>
<td>۲/۵</td>
<td></td>
</tr>
<tr>
<td>۱/۹۳</td>
<td>۵۴/۳</td>
<td>۵۴/۳</td>
<td></td>
</tr>
<tr>
<td>۰/۹۷</td>
<td>۲۱/۰</td>
<td>۲۱/۰</td>
<td></td>
</tr>
<tr>
<td>۰/۶۵</td>
<td>۶/۲</td>
<td>۶/۲</td>
<td></td>
</tr>
<tr>
<td>۱/۹۶</td>
<td>۳۰/۶</td>
<td>۳۰/۶</td>
<td></td>
</tr>
</tbody>
</table>

:** معمول دار در سطح احتمال یک درصد
جدول ۴ دندان هتروژن‌نیس نسبت به میانگین والدین (BPH) و والد پدر! (MPH) در ۱۲ هری‌بردی ۱ ۱۲ هری‌بردی ۱۲ هری‌بردی

<table>
<thead>
<tr>
<th>(سانتی‌متر)</th>
<th>(سانتی‌متر)</th>
<th>%</th>
<th>روز تا / ۵</th>
<th>نام هری‌برد</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPH</td>
<td>MPH</td>
<td>BPH</td>
<td>MPH</td>
<td>BPH</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۱۱/۷</td>
<td>۰/۷</td>
<td>۱۱/۷</td>
<td>۰/۷</td>
</tr>
<tr>
<td>۰/۱</td>
<td>۲/۳</td>
<td>۰/۳</td>
<td>۲/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۷</td>
<td>۳/۷</td>
<td>۰/۷</td>
<td>۳/۷</td>
<td>۰/۷</td>
</tr>
<tr>
<td>۰/۹</td>
<td>۴/۱</td>
<td>۰/۹</td>
<td>۴/۱</td>
<td>۰/۹</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۱/۵</td>
<td>۰/۵</td>
<td>۱/۵</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۰/۲</td>
<td>۴/۲</td>
<td>۰/۲</td>
<td>۴/۲</td>
<td>۰/۲</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۶/۵</td>
<td>۰/۵</td>
<td>۶/۵</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۰/۳</td>
<td>۸/۳</td>
<td>۰/۳</td>
<td>۸/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۸</td>
<td>۱۰/۸</td>
<td>۰/۸</td>
<td>۱۰/۸</td>
<td>۰/۸</td>
</tr>
<tr>
<td>۰/۳</td>
<td>۱۲/۳</td>
<td>۰/۳</td>
<td>۱۲/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>۰/۹</td>
<td>۱۴/۹</td>
<td>۰/۹</td>
<td>۱۴/۹</td>
<td>۰/۹</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۱۶/۵</td>
<td>۰/۵</td>
<td>۱۶/۵</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۰/۷</td>
<td>۱۸/۷</td>
<td>۰/۷</td>
<td>۱۸/۷</td>
<td>۰/۷</td>
</tr>
<tr>
<td>۰/۹</td>
<td>۲۰/۹</td>
<td>۰/۹</td>
<td>۲۰/۹</td>
<td>۰/۹</td>
</tr>
</tbody>
</table>

* و **: به ترتیب معنی‌دار در سطوح احتمال ۰ و ۱ درصد

این جدول نشان می‌دهد که NZG هری‌بردی در برابر MPH با میانگین والدین می‌باشد.

<table>
<thead>
<tr>
<th>شاخص برداشت (دندان)</th>
<th>عملکرد بینایی (ین در مکان)</th>
<th>وزن هزار دانه (گرم)</th>
<th>وزن نان در خوزه (گرم)</th>
<th>تعداد دانه در خوزه</th>
<th>نام هری‌برد</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPH</td>
<td>MPH</td>
<td>BPH</td>
<td>MPH</td>
<td>BPH</td>
<td>MPH</td>
</tr>
<tr>
<td>۱۱/۷</td>
<td>۱۲/۳</td>
<td>۱۱/۷</td>
<td>۱۲/۳</td>
<td>۱۱/۷</td>
<td>۱۲/۳</td>
</tr>
</tbody>
</table>

* و **: به ترتیب معنی‌دار در سطوح احتمال ۰ و ۱ درصد
برآورد هتروژنیس در هیربهداهی

گندم دوره تحت شرایط زیر به
والدین خود بودن (جدول 3)، هتروژنس براساس میانگین زنده نسبت به والد برتر در اثر هیربهدها برای صفت ارتفاع دارای متوسط 9/3 درصد بود (جدول 4). هتروژنس نسبت به والد برتر در اثر هیربهدها برای صفت ارتفاع دارای متوسط 3/7 درصد بود. ارتفاع بودن در هیربهدها تحت بررسی 9/3 درصد نسبت به ارتفاع والد برتر افزایش داشته است. در بین هیربهدها مورد مطالعه H Altar84/Ald-Mexi75/Vic و H iupodaa6-Mexi75/Vic، هیربهدها برای میانگین و متوسط والدین درصد هتروژنیس میت و معنی دار نسبت به میانگین والدین معادل 15/7 و 13/2 بودند. همچنین این صفت در 11/2 هیربهدها و 11/7 بیشترین درصد هتروژنیس والد برتر را به خود اختصاص دادند. سپسک (2) در گندم هیربهداهی معنی داری را ارتفاع بودن گزارش کرد. میانگین و همکاران (21) در گندم دارد درصد هتروژنس برای ارتفاع بودن براساس والد برتر را درصد 15/7 گزارش کردند. در مطالعه استوربی و همکاران (30) صفت ارتفاع در هیربهدها (F1) بر طور معناداری بیشتر از متوسط والدین بود. گاندی و همکاران (4) در ارائه تاتج حامل از مطالعه با استفاده از 11 صفت گیاهی، به افزایش ارتفاع در هیربهدهای مورد بررسی معنی قابل توجه نسبت به والد بلند قام تا اثر نداشتند.

طول سبک در هیربهدها (F1) به طور متوسط بلندتر (3) و والدین بودن، به طوری که میانگین طول سبک در گیاهی و والدین به ترتیب 14/3 و 13/5 سانتیمتر بوده است (جدول 3). بیشترین H Altar84/Ald-Mexi75/Vic و H iupodaa6-Mexi75/Vic درصد هتروژنیس نسبت به میانگین والدین (3/7 و 11/2 درصد) و هتروژنس نسبت به والد برتر (12/3 و 10/2 درصد) را برای صفت طول سبک دارا بودند (جدول 4). متوسط هتروژنس در هیربهدها مورد بررسی مصرف طول سبک به اساس میانگین والدین و والد برتر به ترتیب 15/7 و 16/5 درصد بود. سپسک (24) در مطالعه هتروژنیس معنی داری نسبت به میانگین والدین و والد برتر برای این صفت مشاهده کرد. ایکرم خان تکنیک (18) میانگین هتروژنیس براساس متوسط والدین را برای
برتر را به خود اختصاص دادند. پیتر و فو (2) هتروژین برای تعداد دانه در خوشه بر اساس میانگین و مدل‌ها در 5 روز بیشتر از والد برتر بر اثر نمونه بیشترین و همکاران (31) در تحقیق خود هتروژین مثبت و منفی برای این صفت بر اساس میانگین والد برتر در هیریدهاهی گندم هزارالی‌پیش مورد مطالعه کردند. در مطالعه بوسی (50) هتروژین در صفت تعداد دانه در خوشه هیریدهاهی F1 نسبت به والد برتر 37/8 درصد بیشتری داشت. در مطالعه دیگر (27) صفت تعداد دانه در خوشه نسبت به والد برتر هتروژین مثبت نشان دادند ولی افراد معنی‌داری نبود.

هیریدهاهی مورد مطالعه وزن دانه در خوشه بیشتری نسبت به والدین خود تولید کرده (جدول 3). متوسط هتروژین بر اساس میانگین والدین برای صفت وزن دانه در خوشه 3/8 درصد و میانگین هتروژین نسبت به والد برتر 17/6 درصد بود. در 12 هیریدهای مورد مطالعه، هیریدهای بیشترین افزایش (8/9 درصد) وزن دانه در خوشه را نسبت به مقدار این صفت در میانگین والدین داشت. وزن دانه در خوشه در این هیریدهای 7/6 درصد نسبت به وزن دانه در خوشه والد برتر افزایش نشان داد. اکرم و تاثیر (18) میانگین هتروژین برای صفت وزن دانه در خوشه بر اساس میانگین والدین 54 درصد گزارش کرده، در مطالعه پیتر و فو (20) برای تعیین هتروژین در هیریدهاهی F1 یکی از هیریده‌های هتروژین معنی‌داری برای صفت وزن دانه در خوشه نشان داد.

متوسط وزن دانه در کل هیریدهها والدین به ترتیب 6/3 و 6/77 بن در هکتار بود. نتایج این هیریدهها به طور میانگین معادل 61 تن در هکتار از والدین خود عملکرد دانه بیشتری تولید کرده (جدول 3). با این وجود برای صفت عملکرد دانه از لحاظ میانگین هتروژین در بین هیریده‌ها نوع قابل ملاحظه‌ای مشاهده شد (جدول 4). مدل‌های افزودن اثر مثبت و منفی هتروژین مشاهده شده در هیریده‌ها مورد مطالعه بوده است. هتروژین نسبت به میانگین والدین برای این صفت در دانشمندان و بیشتر را به خود اختصاص دادند. پیتر و فو (2) هتروژین برای تعداد دانه در خوشه بر اساس میانگین والدین را در 5 روز بیشتر از والد برتر بر اثر نمونه بیشترین و همکاران (31) در تحقیق خود هتروژین مثبت و منفی برای این صفت بر اساس میانگین والد برتر در هیریده‌ای گندم هزارالی‌پیش مورد مطالعه کردند. در مطالعه بوسی (50) هتروژین در صفت تعداد دانه در خوشه هیریده‌ای F1 نسبت به والد برتر 37/8 درصد بیشتری داشت. در مطالعه دیگر (27) صفت تعداد دانه در خوشه نسبت به والد برتر هتروژین مثبت نشان دادند ولی افراد معنی‌داری نبود.

متوسط وزن دانه در کل هیریدهها والدین به ترتیب 6/3 و 6/77 بن در هکتار بود. نتایج این هیریدهها به طور میانگین معادل 61 تن در هکتار از والدین خود عملکرد دانه بیشتری تولید کرده (جدول 3). با این وجود برای صفت عملکرد دانه از لحاظ میانگین هتروژین در بین هیریده‌ها نوع قابل ملاحظه‌ای مشاهده شد (جدول 4). مدل‌های افزودن اثر مثبت و منفی هتروژین مشاهده شده در هیریده‌ها مورد مطالعه بوده است. هتروژین نسبت به میانگین والدین برای این صفت در دانشمندان و بیشتر را به خود اختصاص دادند. پیتر و فو (2) هتروژین برای تعداد دانه در خوشه بر اساس میانگین والدین را در 5 روز بیشتر از والد برتر بر اثر نمونه بیشترین و همکاران (31) در تحقیق خود هتروژین مثبت و منفی برای این صفت بر اساس میانگین والد برتر در هیریده‌ای گندم هزارالی‌پیش مورد مطالعه کردند. در مطالعه بوسی (50) هتروژین در صفت تعداد دانه در خوشه هیریده‌ای F1 نسبت به والد برتر 37/8 درصد بیشتری داشت. در مطالعه دیگر (27) صفت تعداد دانه در خوشه نسبت به والد برتر هتروژین مثبت نشان دادند ولی افراد معنی‌داری نبود.

متوسط وزن دانه در کل هیریدهها والدین به ترتیب 6/3 و 6/77 بن در هکتار بود. نتایج این هیریدهها به طور میانگین معادل 61 تن در هکتار از والدین خود عملکرد دانه بیشتری تولید کرده (جدول 3). با این وجود برای صفت عملکرد دانه از لحاظ میانگین هتروژین در بین هیریده‌ها نوع قابل ملاحظه‌ای مشاهده شد (جدول 4). مدل‌های افزودن اثر مثبت و منفی هتروژین مشاهده شده در هیریده‌ها مورد مطالعه بوده است. هتروژین نسبت به میانگین والدین برای این صفت در دانشمندان
برآورد هتروپوزیس در هیرپیده‌های F_1
گنبد دوروم تحت شرایط مزروعه

در تلافي بین واریانت‌های هیرپیده‌ای از این صفت در والدین داشتن همچنین افزایش عملکرد نسبت به والد برتر معادل 16 درصد بود (15). سیکا و همکاران (17) هتروپوزیس مثبت برای صفت عملکرد داده‌های در آزمایش‌های خود شاهد بودند. لوئیس (20) مرتضی هتروپوزیس برای صفت عملکرد داده‌ای در هیرپیده‌های F_1 را نسبت به والد برتر 10 درصد گزارش نمود.

در مطالعه پالمر (23) صفت عملکرد داده‌ای در هیرپیده‌های F_1 نسبت به والد برتر در مطالعه پالمر

شاملی (26) هتروپوزیس مثبت 30 درصد قانونی نسبت به والد برتر را برای عملکرد دانه هیرپیده‌های F_1 گنبد دوروم نشان داد. گزارش نمود کرگان و بوش (27) 57 درصد افزایش در عملکرد دانه را نسبت به مهندگان والدین در گنبد دوروم مشاهده کردند. بوش و همکاران (31) در بررسی هتروپوزیس در هیرپیده‌های F_1 گنبد استراتیژی‌های ترکیبی 43/15 درصد کرگان و بوش (27) 57 درصد افزایش در عملکرد دانه را نسبت به مهندگان والدین و والد برتر را به ترتیب بیشتر معادل 43/15 درصد کرگان و بوش (27) 57 درصد افزایش در عملکرد دانه را نسبت به مهندگان والدین و والد برتر را به ترتیب نشان داده‌اند. این نتایج به ترتیب نشان می‌دهند که هتروپوزیس در هیرپیده‌های F_1 گنبد دوروم تحت شرایط مزروعه مثبت در صفت عملکرد دانه وجود دارد. بنابراین، می‌توان اظهار داشت که مقدار عملکرد دانه در هیرپیده‌های F_1 برای افزایش هر 1/2 درصد هتروپوزیس نسبت به میزان 0/33 تن در هکتار افزایش یافته است. ضمن اینکه مقدار عملکرد دانه نسبت به هیرپیده‌های F_1 هر 1/2 درصد هتروپوزیس نسبت به میزان 0/33 تن در هکتار افزایش یافته است. ضمن اینکه مقدار عملکرد دانه نسبت به هیرپیده‌های F_1 هر 1/2 درصد هتروپوزیس نسبت به میزان 0/33 تن در هکتار افزایش یافته است. ضمن اینکه مقدار عملکرد دانه نسبت به هیرپیده‌های F_1 هر 1/2 درصد هتروپوزیس نسبت به میزان 0/33 تن در هکتار افزایش یافته است.
برای حداکثر مقدار هتروژنیس نسبت به وارد برتر صفات ذکر شده ارائه نمودند.

این مطالعه با استفاده از تاثیر آزمایش قلب (دو سال) ارزیابی نوع زنبیک بررسی صفات رازی زن و مورفولوژیک اقدام به گزارش نشان دهنده آن است. همکاران (15) بود که این مطالعه فاصله زن و همکاران (15) در تفاوت و نمایه حاصل از آن در داند آگرچه هتروژنیس از تکیه و دلیل به فاصله زن و زنی بشر مورد اندازه‌گیری می‌باشد، اما فاصله زنیکه بر اثره شده بر ویژگی نشان دهنده میزان هتروژنیس و ترکیب هیرپیدهای بر اثر نبود است (15).

نتیجه‌گیری

هتروژنیس در یک هیرپید ممکن است فقط در یکی از صفات ارتقای یک، رسردیگی، تعداد خونه در گیاه بر اثر زن و هر کدام از صفات رازی و مورفولوژیک اثر به ترتیب به همراه هتروژنیس نسبت به وارد برتر F_1 اقدام کرده‌اند. آنها می‌گویند هتروژنیس نسبت را برای صفات فرمول و راز هزار نماینده تعداد رو و خورده و ارتقای F_1 به وارد نیست. این گزارش F_1 که به طور معنی‌داری از نظر رسردیگی و زودرس بودن بالاترین هتروژنیس را داشته‌اند. هیرپیدهای $\text{H}_{\text{Alhadi84/Ald-Chahbah8}}$ و $\text{H}_{\text{Minim12/Mexi75/Vic}}$ در بالاترین ارزش را نشان دادند. بیشترین هتروژنیس معیار برای این صفت نسبت به وارد برتر تن بیانی در هیرپید تعلق گرفت. در مطالعه بندی و همکاران (15) هتروژنیس برای صفت شاخ صدای برکنار میانگین و وارد برتر به ترتیب 7/7 درصد مشاهده شد.

ایکرم و نتایج (18) در مطالعه میزان هتروژنیس بررسی می‌گردد. ژن‌های وارد برتر صفات F_1 از تکیه و دلیل به فاصله زنیکه بر اثره شده بر ویژگی نشان دهنده میزان هتروژنیس و ترکیب هیرپیدهای بر اثر نبود است (15).

168
پراورده هتروژنیس در هیریهدای Hf1 گندم دوروم تحت شرایط مواده