تجزیه باپایداری عملکرد در زنوتیپ‌های نخود با استفاده از تجزیه آثار اصلی افزایشی و آثار متقابل ضرب‌پذیر (AMMI)

حسین زالی۱، سید حسین صباح‌پور۲، عزت الله فرشادفر۲، پیام پژشکور۳، منصور صفی خانی۲
رمضان سربرست۴ و عبداله هاشمی‌پورگی۴

(تاریخ دریافت: ۱۴/۸۵/۸/۱۱۴/۰۸/۱۳۸۶ تاریخ پذیرش: ۱۳۸۶/۳/۵)

چکیده

وجود اثر متقابل زنوتیپ × محیط موجب شده که عملکرد زنوتیپ‌ها در دانه و سببی یا اثرشکافی موجب می‌شود که این اثر باعث افزایش یا کاهش عملکرد کند. این اثرات می‌توانند به دو دسته تقسیم شوند: اثرات تصادفی و اثرات همبسته. اثرات تصادفی می‌توانند تصادفی یا ناپیچیده باشند. این اثرات می‌توانند به دو دسته تقسیم شوند: اثرات باربر و اثرات غیربازار. اثرات باربر به معنی اثرات بازابی‌پذیر و اثرات غیربازار به معنی اثرات غیربازابی‌پذیر هستند. اثرات باربر اثرات متقابل است و اثرات غیربازار اثرات ساده است. اثرات غیربازار اثرات متقابل است و اثرات باربر اثرات ساده است.

واژه‌های کلیدی: نخود، اثر متقابل زنوتیپ × محیط، تجزیه باپایدار، مدل آثار اصلی افزایشی و آثار متقابل ضرب‌پذیر (مدل AMMI)، پایین‌آوری

مقدمه

جهت به‌خاطر ویژگی‌های مهم کشت نیتروژن انمسافی در خاک موجب حاصل کردن کشت محصولات به‌عنوان جهت کشت محصولات به‌عنوان

۱. به‌تربیت دانش‌جوی سایر کارشناسی ارشد و استاد زراعت اصلاح نباتات، دانشکده کشاورزی، دانشگاه رازی کرمانشاه
۲. استادان مؤسسه تحقیقات دانشگاه کرمانشاه
۳. مربی پژوهش مرکز تحقیقات دانشگاه کرمانشاه
۴. مربی پژوهش مرکز تحقیقات دانشگاه کرمانشاه
۵. مربی پژوهش مرکز تحقیقات دانشگاه کرمانشاه
۶. مربی پژوهش مرکز تحقیقات دانشگاه کرمانشاه

* مسئول مکاتبات: بست کرمان‌پوری، Hassanzali1382@yahoo.com

173
مقاله و روش‌ها
آزمایش در شرایط آب و هوایی هوایی کشور انجام شد و در آن
۱۷ لایه یا مایع بر روی آن رنگ آمیخته شده و گرم شده و در دو تا
طرح بلوری کامل تجربی دیگر چهار تکرار در بین این نتایج
تحقیقات کشاورزی کرمانشاه، ایران، گچساران، گرگان، و ایلام

استفاده قرار گیرد (۲۳) این اتاق با سطح زیر کشت حدود
۲۰۰۰۰۰۰ هکتار جمده راه چهار پیس از هندوستان،
پاکستان و ترکیه دارای برآورد
۶۵ درصد سطح زیر کشت نخود
در ایران در شرایط دیگر می‌شود، عملکرد گیاه نخود در
واحد سطح در ایران ۴۰ کیلوگرم در هفته می‌باشد که نسبت به
مانگین عملکرد جهانی و کشورهای مهم آن کننده نخود
عملکرد گیاه در ایران بسیار بالای می‌باشد به عوامل مختلف در
پایین بودن عملکرد نخود ممنوعیت که بکی از عوامل مهم آن را
یافته اندازه‌گیری و تولید محرک مولتی‌وکسیدی به بیماری
برق زدگی (Ascochyta rabiei) نام بر (۲) است.

استفاده از تجربیات و تلاش‌ها معمل مختبر استفاده از
جدول‌های تجربی واژنی مربوط فقط اطلاعاتی در مورد اثر متقابل
زئوتیپ و محیط به دست می‌دهد، محققین می‌توانند را
جهت تشخیص واژن‌های ارضی و معنی‌آور آنها به کار بردند (۲).

در مدل AMMI مولفه‌های اصلی (می‌باشد (۱۴) و به ترتیب حاصل از تجربه
زئوتیپ (یا یک محیط) یا به قابلیت زئوتیپ یا محیط برگری جداگانه
یک زئوتیپ دریگ (یا یک محیط) می‌باشد.

- یک زئوتیپ (یا یک محیط) با فاصله زیادی از مرکز به
پایت، دارای اثر متقابل زئوتیپ × محیط برگری
یک زئوتیپ دریگ (یا یک محیط) می‌باشد.

- زاویه بین پاتریست که یک زئوتیپ و یک محیط را به
مرکز یا گروه وصل می‌کند، نشان دهنده بیشتر یا منفی
بودن اثر متقابل می‌باشد.

هدف از این تحقیق بررسی سازگاری و پایداری عملکرد
زئوتیپ‌های نخود و گرین زئوتیپ‌های پایدار با عملکرد پالا
در شرایط دید می‌باشد.

کتابخانه و دانشگاه
جدول 1. مشخصات زنوتیپ‌های موجود بررسی در آزمایش

<table>
<thead>
<tr>
<th>مشابه</th>
<th>نام زنوتیپ</th>
<th>شماره زنوتیپ</th>
<th>مشابه</th>
<th>نام زنوتیپ</th>
<th>شماره زنوتیپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایکاردا</td>
<td>X95TH154</td>
<td>10</td>
<td>ایکاردا</td>
<td>FLIP 97-211</td>
<td>1</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>FLIP 97-43</td>
<td>2</td>
<td>ایکاردا</td>
<td>FLIP 97-113</td>
<td>3</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>FLIP 97-95</td>
<td>12</td>
<td>ایکاردا</td>
<td>FLIP 97-85</td>
<td>4</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>FLIP 97-114</td>
<td>13</td>
<td>ایکاردا</td>
<td>FLIP 97-78</td>
<td>5</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>X94TH145K10</td>
<td>14</td>
<td>ایکاردا</td>
<td>FLIP 97-41</td>
<td>6</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>X95TH154</td>
<td>15</td>
<td>ایکاردا</td>
<td>FLIP 97-30</td>
<td>7</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>X45TH150K10</td>
<td>16</td>
<td>ایکاردا</td>
<td>FLIP 97-102</td>
<td>8</td>
</tr>
<tr>
<td>رقم معرفی شده</td>
<td>Arman</td>
<td>17</td>
<td>ایکاردا</td>
<td>FLIP 97-79</td>
<td>9</td>
</tr>
<tr>
<td>ایکاردا</td>
<td>X95TH1</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(گرگان- سال 1382-2003) نشانگر محیط‌های مناسب. مشخصات زنوتیپ‌های مورد استفاده نیز در جدول 1 آمده است.

در محل توزیع و تجربه مؤلفه‌های اصلی AMMI به طور همزمان انجام می‌شود. مدل تجزیه AMMI به صورت زیر است (۴، ۱۳):

\[
Y_{g} = \mu + \alpha_{g} + \beta_{g} + \sum_{k} \lambda_{g} \gamma_{g_{k}} + \rho_{g} + \epsilon_{g}
\]

در فرمول بالا \(Y_{g} \) ضریب AMMI در محیط گره و تکرار \(g \) اثر اصلی زنوتیپ (اختلاف میانگین یک زنوتیپ از میانگین زنوتیپ‌ها)، \(\alpha_{g} \) اثر اصلی محیط (اختلاف میانگین یک محیط از میانگین محیط‌ها) \(\beta_{g} \)، میانگین یک محیط \(\lambda_{g} \)، میانگین یک میانگین یک محیط \(\gamma_{g_{k}} \) و میانگین \(\rho_{g} \) و خطای جداسازی \(\epsilon_{g} \) می‌باشد. سیگما \(\sum_{k} \lambda_{g} \) ضریب مورد مطرح \(\text{Eigen value} \) می‌باشد.

PCA بایک مانند در محل توزیع موادی اثر اصلی محیط (PCA) و البته زنوتیپ تیم از اثر چندین محیط \(\rho_{g} \) و عبارتی از خطای جداسازی \(\epsilon_{g} \) می‌باشد. گره ۲۵ سانتی‌متر از ابتدا دو ریشه پیشاسازی \(\rho_{g_{k}} \) می‌باشد. سیگما \(\sum_{k} \rho_{g_{k}} \) ضریب مورد مطرح \(\text{Eigen value} \) از همان مولفه‌های اصلی است. سیگما \(\sum_{k} \lambda_{g_{k}} \) ضریب \(n \) مورد مطرح به همان مولفه‌های اصلی است. سیگما \(\sum_{k} \rho_{g_{k}} \) ضریب مورد مطرح به همان مولفه‌های اصلی است. سیگما \(\sum_{k} \epsilon_{g_{k}} \) ضریب مورد مطرح به همان مولفه‌های اصلی است.

(گرگان- سال 1382-2003) از روش‌های طبقه‌بندی (K-means) و (K-medoids) برای تشخیص دستگاه‌ها و کنترل‌ها کارآمد بوده‌اند. با توجه به محدودیت‌های موجود در توزیع (Ke) یک محیط استفاده‌های کارآمد بازرسی و دو ترتیب دادن (K-means) و (K-medoids) علاوه بر (Ke) و (K-medoids) در هر دو ترکیب ۴-۲ (K-means) و (K-medoids) و (۱۳۹۷) بازرسی برای دقت زنوتیپ‌ها و محیط‌های تجربه کلاستر باید روی مولفه‌های اصلی اول و دوم اندازه‌گیری شد.
جدول 2. تجزیه برای زنوتیب‌های نخور در محیط‌های مختلف AMMI

میانگین مربعات درصد مجموع مربعات مجموع مربعات درجه آزادی	منابع تغییرات	تعداد	تیمار	زنوتیب	محیط	محیط × زنوتیب	IPCA1	IPCA2	IPCA3	IPCA4		
202442.00**	0.21	169	96	16	9	124	22	22	20	18	18	
352169.00**	0.67	5714705	2791	0.517	24	0.6	18	24	20	18	18	
3101172244**	0.82	5714705	2791	0.517	24	0.6	18	24	20	18	18	
496837**	0.16	0.68	5714705	2791	0.517	24	0.6	18	24	20	18	18
118597**	0.08	2754321	24	0.6	18	24	20	18	18	18	18	
733159**	0.08	2754321	24	0.6	18	24	20	18	18	18	18	
47869**	0.08	0.67	5714705	2791	0.517	24	0.6	18	24	20	18	18
253515**	0.08	2754321	24	0.6	18	24	20	18	18	18	18	
58249**	0.08	2754321	24	0.6	18	24	20	18	18	18	18	
125964	0.08	2754321	24	0.6	18	24	20	18	18	18	18	

یافته‌ها؛ باقی مانده در مدل نهایی 6 % از مجموع مربعات اثر متقابل را توجیه کرد. بنابراین مدل AMMI با چهار مؤلفه اصلی (AMMI4) که 94 % از تغییرات اثر متقابل را توجیه کرد در نظر گرفته شده است. در این تحقیق برای تجزیه AMMI و برای رسم نمودار از نرم‌افزار Statistica و برای تجزیه کلاستر از نرم‌افزار GENESTAT استفاده شد.

نتایج و بحث

تجزیه و اریانس با مدل AMMI تجزیه و اریانس با مدل AMMI اثر معنی‌داری را برای محیط و اثر متقابل زنوتیب × محیط نشان داد (جدول 2). زنوتیب، محیط و اثر متقابل به ترتیب 0.76، 0.16 و 0.17 % از کل مجموع مربعات را توجیه می‌نمودند. اثر متقابل حدوداً به برابر اثر زنوتیب می‌باشد که اهمیت نسبی اثر متقابل را نشان می‌دهد.

به منظور تجزیه اثر متقابل زنوتیب × محیط تجزیه به‌صورت های اصلی روی ماتریس باقی مانده سوزرت گرفته که چهار مؤلفه اصلی اول در سطح احتمال 1/10 (P<0.1) معنی‌دار شدند. اولین مؤلفه اصلی 48 % از مجموع مربعات اثر متقابل را به حروف اختصاص داد و این مقدار برای IPCA1 و پس از این ترتیب برای IPCA2 و IPCA3 و IPCA4 به ترتیب 28، 26 و 8 % می‌باشد. مؤلفه اصلی IPCA1
تجزیه پایداری عملکرد در زنوتیپ‌های نهای با استفاده از تجزیه آثار اصلی افزايشی و ...

شکل 1. بای پلات میانگین زنوتیپ‌ها و محیط‌ها و مقدار اولین مؤلفه اصلی آنها (مدل 1)

جدول 3. عملکرد دانه و مقادیر مؤلفه‌های اصلی اول و دوم زنوتیپ‌های نهای

<table>
<thead>
<tr>
<th>IPCA2</th>
<th>IPCA1</th>
<th>میانگین</th>
<th>کد</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/9337</td>
<td>-16/87930</td>
<td>1774</td>
<td>1</td>
</tr>
<tr>
<td>2/6428</td>
<td>16/14660</td>
<td>1510</td>
<td>2</td>
</tr>
<tr>
<td>3/77530</td>
<td>-8/43838</td>
<td>1567</td>
<td>3</td>
</tr>
<tr>
<td>-1/3321</td>
<td>-10/44339</td>
<td>1884</td>
<td>4</td>
</tr>
<tr>
<td>-6/7715</td>
<td>10/38124</td>
<td>1734</td>
<td>5</td>
</tr>
<tr>
<td>-8/9986</td>
<td>11/05375</td>
<td>1531</td>
<td>6</td>
</tr>
<tr>
<td>-1/4580</td>
<td>-8/3290</td>
<td>1838</td>
<td>7</td>
</tr>
<tr>
<td>6/0505</td>
<td>6/38249</td>
<td>1599</td>
<td>8</td>
</tr>
<tr>
<td>1/3300</td>
<td>-15/3492</td>
<td>1579</td>
<td>9</td>
</tr>
<tr>
<td>5/1215</td>
<td>-21/39229</td>
<td>1988</td>
<td>10</td>
</tr>
<tr>
<td>1/9333</td>
<td>13/8631</td>
<td>1554</td>
<td>11</td>
</tr>
<tr>
<td>10/1087</td>
<td>14/86525</td>
<td>1822</td>
<td>12</td>
</tr>
<tr>
<td>-1/8873</td>
<td>4/92771</td>
<td>1718</td>
<td>13</td>
</tr>
<tr>
<td>-11/845</td>
<td>12/71150</td>
<td>1835</td>
<td>14</td>
</tr>
<tr>
<td>-2/8705</td>
<td>-8/37739</td>
<td>1835</td>
<td>15</td>
</tr>
<tr>
<td>12/5580</td>
<td>-12/76850</td>
<td>1612</td>
<td>16</td>
</tr>
<tr>
<td>-2/9061</td>
<td>17/931197</td>
<td>1796</td>
<td>17</td>
</tr>
</tbody>
</table>
جدول 2: گروه‌بندی زنوتیپ‌ها و محیط‌ها بر اساس اولین مؤلفه اصلی اثر متغیر و مؤلفه‌های اصلی اول و دوم

<table>
<thead>
<tr>
<th>شماره زنوتیپ‌ها با محیط‌ها</th>
<th>گروه</th>
<th>مؤلفه اصلی اثر متغیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>IPCA1 (Genotype)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>IPCA1 (Environment)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مقدار اولین مؤلفه اصلی زنوتیپ‌ها و همچنین محیط‌ها (جدول 2) انجام شد. تجزیه کلاستر مقادیر اولین مؤلفه اصلی برای زنوتیپ‌ها، چهار گروه زنوتیپی را مشخص نمود که گروه اول شامل زنوتیپ‌های شماره 16, 17 و 18 با مقادیر بالا و IPCA1 بودند. گروه دوم شامل زنوتیپ‌های شماره 15, 15, 16 و 17 با مقادیر کمتری از IPCA1 بود. گروه سوم شامل زنوتیپ‌های شماره 14, 14, 15, 15, 16 و 17 با مقادیر کمتری از IPCA1 بود. گروه چهارم شامل زنوتیپ‌های شماره 13, 13, 14, 14, 15 و 15 با مقادیر کمتری از IPCA1 بود. به طور کل، مقدار اولین مؤلفه اصلی محیط‌ها به صورت لمب‌های مرئی به نظر می‌رسید که نشان‌دهنده گروهی از ناحیه‌های محیط‌های مختلف با مشخصه‌های مختلفی مانند فاصله بین پایه‌ها است که مشخصه‌های مختلفی مانند جنسیت یا نوع محیط‌ها را دارا می‌باشند.
تجزیه پایداری همکرد در زنوتیپهای تخود با استفاده از تجزیه آثار اصلی افزایش و...

