مقایسه روش‌های هیدرولوژیکی و هوشمندی جهت پایش روزانه خشکسالی: مطالعه موردی دوره خشکسالی ۱۳۸۸ لاغیت ۱۳۸۵ استان تهران

سید مرتضی و شهلا پایمزد

(تاریخ دریافت: ۸/۷/۱۳۸۶؛ تاریخ پذیرش: ۸/۱۱/۱۳۸۶)

چکیده

استفاده از معرفی‌های هوشمندی و به خصوص بارندگی از دیر باید برای پایش خشکسالی مد نظر بوده و روش‌های بسیاری در این خصوص ارائه شده است. اما علاوه بر آنها، معرفی‌های هیدرولوژیکی نیز می‌توانند نقش مهمی را در پیشگیری ویژه‌ای داشته باشند. در این تحقیق، یکی از معرفی‌های پایش هیدرولوژیکی خشکسالی به نام روش چانگک به مقیاس روزانه داری، به تغییرات برای ارزیابی (EDI) Effective Drought Index چگونگی خشکسالی روزانه استان تهران مورد استفاده قرار گرفت و سپس با شاخص خشکسالی مؤثر (AX) مقایسه شد. نتایج نشان داد که روش چانگک یکی از بهترین ویژه‌های خشکسالی برای پایش خشکسالی نشان می‌دهد. به طوری که مقیاس‌های دیگر روش‌های طی سال‌های ۷۸-۷۳ و ۸۰-۷۹ از این است که به خشکسالی در پاییز‌های شدید و شاخص خشکسالی موثر برای هیمن طبیعی از خشکسالی رقم ۳۷ درصد ابام را اعلام کرده است. به دلیل دخالت معرفی‌های یکسان دیگر شدید، روش‌های هیدرولوژیکی همراه با شاخص‌های هوشمندی می‌توانند تجربی ایدئال را در اعلام وضعیت خشکسالی ارائه دهند که در آن هم خشکسالی ناشی از کاهش نیروهای طبیعی و هم ناشی از صرف بالا و سوء مدیریت قابل توجهی باشد.

واژه‌های کلیدی: پایش خشکسالی هیدرولوژیکی، شاخص خشکسالی هوشمندی، مطالعه موردی، استان تهران، روش چانگک، شاخص خشکسالی مؤثر

مقدمه

به منظور اتخاذ اقدامات مناسب به منظور مقابله با آثار زیان‌بار خشکسالی، سامانه‌های پایش خشکسالی باید از ابزارهای مهمی می‌باشند که قادر به ارائه اطلاعات به‌همگام از دوام، شدت و توزیع جغرافیایی خشکسالی در یک ناحیه هستند. با توجه به

1. به ترتیب: دانشگاه و دانشجوی سابق دکتری منابع آب، دانشکده کشاورزی، دانشگاه تهران، تهران
2. : مسئول مکاتبات، پست الکترونیکی: morid_sa@modares.ac.ir

325
است. اما برای SWSI فقط ضعیف گزارش شده مانند این که: روشنی مشخص برای یکسانی باورهایی از وجود ندارد، برآورد این منکی بی تجربه می‌باشد. عملکرد آن در تمام زمین‌های یکسان نیز در ارتفاع خشکسالی با دیگران مانند جراین‌آب سطحی (HDI) می‌باشد. با شرایط سطحی خشکسالی‌های در مختصات از اولین یکسانی در (PHDI) (Palmer Hydrological Drought Index).

پالمر (PHDI) (Palmer Hydrological Drought Index) (PDSI) (Palmer Drought Severity Index) (Run Theory) (Truncation Level)

زیدر قرار گرفت (15). یوگویچی (17) خشکسالی را اساس تعریف (18) SWSI نامیده که برای هر روش در نظر گرفته شده که

به کار گرفته شد. این روش به چند مدل می‌باشد. مولفه‌های اول سیستم تغییر مصرفی و هیدروژنیکی به کار رفته منطقه طبیعی در همکاران (1) نیز قابلیت این شناخت را برای منطقه ملایمی (5، 9 و چنانگ (6، 9) همکاران (12) در همکاران (8 و همکاران (1) به کار گرفته شد. این روش به چند مدل می‌باشد. مولفه‌های اول سیستم تغییر مصرفی و هیدروژنیکی به کار رفته منطقه طبیعی در همکاران (1) نیز قابلیت این شناخت را برای منطقه ملایمی (5، 9 و چنانگ (6، 9) همکاران (12) در همکاران (8 و همکاران (1) به کار گرفته شد. این روش به چند مدل می‌باشد. مولفه‌های اول سیستم تغییر مصرفی و هیدروژنیکی به کار رفته منطقه طبیعی در همکاران (1) نیز قابلیت این شناخت را برای منطقه ملایمی (5، 9 و چنانگ (6، 9) همکاران (12) در همکاران (8 و همکاران (1) به کار گرفته شد. این روش به چند مدل می‌باشد. مولفه‌های اول سیستم تغییر مصرفی و هیدروژنیکی به کار رفته منطقه طبیعی در همکاران (1) نیز قابلیت این شناخت را برای منطقه ملایمی (5، 9 و چنانگ (6، 9) همکاران (12) در همکاران (8 و همکاران (1) به کار گرفته شد. این روش به چند مدل می‌باشد. مولفه‌های اول سیستم تغییر مصرفی و هیدروژنیکی به کار رفته منطقه طبیعی در همکاران (1) نیز قابلیت این شناخت را برای منطقه ملایمی (5، 9 و چنانگ (6، 9) همکاران (12) در همکاران (8 و همکاران (1) به کار گرفته شد. این روش به چند مدل می‌باشد. مولفه‌های اول سیستم تغییر مصرفی و هیدروژنیکی به کار رفته منطقه طبیعی در همکاران (1) نیز قابلیت این شناخت را برای منطقه ملایمی (5، 9 و چنانگ (6، 9) همکاران (12) در همکاران (8 و همکاران (1) به کار گرفته شد. این روش به چند مدل می‌باشد. مولفه‌های اول سیستم تغییر مصرفی و هیدروژنیکی به کار رفته منطقه طبیعی در همکاران (1) نیز قابلیت این شناخت را برای منطقه ملایمی (5، 9 و چنانگ (6، 9) همکاران (12) در همکاران (8 و همکاران (1) به کار گرفته شد. این روش به چند مدل می‌باشد. مولفه‌های اول سیستم تغییر مصرفی و هیدروژنیکی به کار رفته منطقه طبیعی در همکاران (1) نیز قابلیت این شناخت را برای منطقه ملایمی (5، 9 و چنانگ (6، 9) H
مقایسه روش‌های هیدرولوژیکی و هوشمندی جهت پایش روزنامه خشکسالی

روش هیدرولوژیکی چانگ در پایش خشکسالی

کار اصلی چانگ برای این روش در سال 1991 انجام شد که وی با استفاده از تحقیقات قبلی روشی را برای پایش خشکسالی با استفاده از ۵ معرف مشترک رودخانه‌های خوزستان با سطح آب زیرزمینی و سطح آب در مخازن ارائه داد. (۷) لازم به ذکر است که از مجموعه این معرفها سطح آب زیرزمینی و مخازن سدها ضمن این که معرفی برای خشکسالی هستند، اطلاعات مصرف را نیز در خود جای می‌دهند. در ادامه مراحل کار این روش به اختصار ارائه می‌گردد:

سطح آستانه و تعیین خشکسالی

برای تعیین خشکسالی در این روش از سطح آستانه معرفها استفاده می‌گردد. در ابتدا مقدار معرفها به طور مشترک به طور مشترک برای هر کدام از عکس‌ها مربوط می‌شود. سطح آستانه X درصد مقدار است که مربوط به موقعیت وام داده‌های مربوط به ن ن می‌باشد. این مقدار برای جریان‌های رودخانه، بارندگی و

سطح آب دریاچه سد و سطح آب در مخازن:

سطح آب دریاچه سد و سطح آب در مخازن

\[i = \frac{100 - X}{N} \]

و برای اطلاع روزنامه و دو روز در دو روز تعیین شده است.

\[i = \frac{X}{N} \]

اشکال ۲ و ۳ به طور مشترک تعیین خشکسالی را برای معرف روزی و آب زیرزمینی ارائه می‌دهد.

روابط فوق و مفهوم آن یعنی معادله که در سطح آستانه مورد نظر X درصد داده‌های ثبت شده (جبریان رودخانه، بارندگی و سطح دریاچه) از آن بیشتر که داده‌های ثبت شده گذشته کمتر از آن باشد. به همین دلیل برای این معرفها، تعیین خشکسالی که از دریاچه مشاهداتی به طور پی در پی کمتر از سطح آستانه خاص باشد. تعیین کندن مدلت خشکسالی می‌باشد و برای دو نوع دیگر، آب زیرزمینی و درجه حرارت، حالت عکس را دارد. وی طراحی شدند. (۸) درصد را برای خشکسالی و تعیین سطح آن باید برداشت. لازم به ذکر است که در محاسبات بالا هیچ گونه فرض نرم‌آل بودن داده‌ها مطرح نیست.
نمی‌باشد و عمل روز، توزیع نجیب داده‌ها مانند آنچه در منحنی تداوم جریان انجام می‌گیرد، صورت می‌پیزد.

روش پایین‌تر

در این روش مشخصات مبنای برد معرفی‌های خشکسالی عبارتند از: (1) شدت واقعی خشکسالی (2) شدت خشکسالی

(3) احتمال شرطی که یک واقعه خشکسالی از سطحی خاص به سطح شدت بالاتر برود. برای این کار در ابتدا سطح شدت خشکسالی هر کدام از معرفی‌های دکلی استفاده‌ها نکه بک تبعین می‌گردد و سپس شدت خشکسالی دیگر معرفی بر اساس کلیه استفاده‌ها و توان نظر به دست‌می‌آید. در نهایت با بروی ترکیب سطح شدت بین معرفی باد، سطح شدت خشکسالی حوزه‌تیمی می‌شود.

تعریف سطح شدت خشکسالی برای یک معرفی (دبی)

به منظور تشخیص هر مقدار، با استفاده از داده‌های مربوط به معرفی، شدت خشکسالی برای هر روز ارائه می‌گردد. در اولین قدم از داده‌های لیست شده، سطح آستانه دیگر است. انتخاب عبارت به شرحی که بقا آمی، تعیین می‌شود. سپس، دو سطح خشکسالی که دنبال گردیده‌ها روی جایی کسی این قرار می‌گیرد، انتخاب می‌شود.

روش پایین‌تر مبتدی تعیین شدت خشکسالی برای آن استفاده است. مگر این که یکی از شرایط زیر نقض شده باشد:
عینی سطح میان‌کاهشی در کل حوزه

با توجه به سطح میان‌کاهشی که برای 5 معرف بیان شده، شدت خشکسالی، باید باعث مبنا قرار گیرد.

اگر دیگر در سطح شدت خشکسالی خاصی باشد (مثلاً 60 و 95 درصد) و حداقل یکی از چهار معرف دیگر به سطح شدت خشکسالی دیگر با پیش بینی از آن رسیدن نشده، در این حالت سطح شدت خشکسالی باید به عنوان سطح شدت خشکسالی در کل حوزه انتخاب شود.

اگر دیگر در یک سطح شدت خشکسالی مشخص باشد و حداقل یکی از معرف‌ها به سطح شدت 70 درصد یا بیشتر رسیده، وین، این شدت کمتر از شدت خشکسالی دیگر باشد، سپس شدت خشکسالی 70 درصد به کل حوزه می‌فرزند.

اگر حداکثر دو معرف دیگر در سطح شدت خشکسالی واقع شده‌اند، در این حالت سطح شدت 75 درصد برای کل حوزه در نظر گرفته می‌شود.

استفاده از سطح آستانه ماهیانه به جای سالیانه

چانگ در روش خود کل دوره آماری را یکسان دیگر است. بدین معنی که در این روش، سطح آستانه به طور سالانه محاسبه می‌شود. تحتچین شرایطی با استفاده از اطلاعات کل دوره آماری (فقط) یک سطح آستانه 95 یا 99 درصد در هر استگاها قابل تعیین خواهد بود. در صورتی که مناسب با شرایط نشان شود، در نظر گرفته می‌شود. این روش به نیاز به یک سطح خشکسالی مبنای علمی برای کل حوزه منطقه‌ای نمی‌آید، اما از این رو برای

این حالت سطح میان‌کاهشی انتخاب می‌شود.

شاخص هواشناختی EDI

شاخص خشکسالی‌های EDI یک شاخه جدید می‌باشد (4).
جدول 1: همان‌سانی طبقات خشکسالی در روش‌های EDI و چانگ

<table>
<thead>
<tr>
<th>طبقه خشکسالی</th>
<th>EDI</th>
<th>چانگ</th>
<th>فراوانی تجمعی (%)</th>
<th>شماره طبقه</th>
<th>سطح‌های استفاده‌شده</th>
<th>سطح‌های استفاده‌شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>خشکسالی بی‌پایان</td>
<td>-</td>
<td>-</td>
<td>987</td>
<td>0</td>
<td>2/5</td>
<td>2/5</td>
</tr>
<tr>
<td>خشکسالی متوسط</td>
<td>95</td>
<td>95</td>
<td>97/3</td>
<td>0.75</td>
<td>2/5</td>
<td>2/5</td>
</tr>
<tr>
<td>خشکسالی شدید</td>
<td>95</td>
<td>95</td>
<td>97/3</td>
<td>0.75</td>
<td>2/5</td>
<td>2/5</td>
</tr>
<tr>
<td>خشکسالی مزمن</td>
<td>0</td>
<td>0</td>
<td>97/3</td>
<td>0.75</td>
<td>2/5</td>
<td>2/5</td>
</tr>
</tbody>
</table>

1. در طول مقاله برای بیان میزان شدت خشکسالی از شماره طبقات آمده در این جدول استفاده شده است.

شکل 2: تغییرات روزانه طبقات خشکسالی و مقدار استاندارد شده معرفه‌ها طی دوره خشکسالی 1379-1380

بیشتری را اعلام می‌دارد که در ادامه بیشتر تشخیص خواهد شد. در اساسنامه این دوره و به واسطه این، بیشترین عوامل آن در دهه 70-79 نیز، این بیشتری را نشان داده که هر روش به آن پاسخ داده‌اند و حتی برای چند روز پایان خشکسالی را نیز اعلام داشته‌اند. ولی مدت بیشتری را در EDI بیشتری به آن مانده است.

نتایج در شکل 4 بر اساس طبقات ارائه شده است. این شکل مقایسه روز را طی این دوره خشکسالی نشان می‌دهد. شکل علاوه بر طبقه خشکسالی، متوسط روزانه هر یک از معرفه‌ها به ترتیب بر متوسط این روزات آنها استاندارد شده‌اند و بر اساس اطلاعات ایستگاه‌های مورد استفاده نشان می‌دهد.

رفتار در روش یا این در مقابل تغییرات معرفه‌ها کاملاً قابل تعقیب است. هر یک روش جداگانه خشکسالی را نشان می‌دهد. اعلام داشته‌اند ولی روز 6 ماه اول طبقات خشکسالی چانگ شدت پر سال چانگ است که ناشی از ذخیره منابع آب از سال قبل می‌باشد. عکس همین روند برای روز 6 ماه آخر این دوره نشان داده شده است که علی رغم بهبود در پارامترها، کل شدت آن در ادامه کاهش یافت.
جدول 2. مقایسه فراوانی (٪) طبقات خشکسالی در روش چانگ و EDI طی سالهای آی 87-88 و 1377-78

<table>
<thead>
<tr>
<th>سال آی</th>
<th>شاخص</th>
<th>شرایط نرمال با مراحل</th>
<th>خشکسالی خفیف</th>
<th>خشکسالی متوسط</th>
<th>خشکسالی شدید</th>
</tr>
</thead>
<tbody>
<tr>
<td>1377-78</td>
<td>EDI</td>
<td>13/7</td>
<td>4/3</td>
<td>4/0</td>
<td>0/0</td>
</tr>
<tr>
<td></td>
<td>Chang</td>
<td>2/0</td>
<td>3/0</td>
<td>2/9</td>
<td>1/2</td>
</tr>
<tr>
<td>1378-79</td>
<td>EDI</td>
<td>19/5</td>
<td>6/2</td>
<td>5/6</td>
<td>0/0</td>
</tr>
<tr>
<td></td>
<td>Chang</td>
<td>10/1</td>
<td>5/5</td>
<td>5/1</td>
<td>1/8</td>
</tr>
<tr>
<td>1379-80</td>
<td>EDI</td>
<td>14/3</td>
<td>18/4</td>
<td>17/4</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>Chang</td>
<td>9/9</td>
<td>10/4</td>
<td>6/1</td>
<td>1/6</td>
</tr>
</tbody>
</table>

جدول 3. ارقام سالانه معرف‌های مورد استفاده در روش چانگ

<table>
<thead>
<tr>
<th>مجموع بارندگی سالانه (میلی‌متر)</th>
<th>متوسط سطح آب سالانه (متر)</th>
<th>کرج</th>
<th>لان</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال آی</td>
<td>مهرآباد</td>
<td>سیسرا</td>
<td>ابعلی</td>
</tr>
<tr>
<td>1377-78</td>
<td>24/8</td>
<td>16/7</td>
<td>19/5</td>
</tr>
<tr>
<td>1378-79</td>
<td>26/8</td>
<td>16/7</td>
<td>19/5</td>
</tr>
<tr>
<td>1379-80</td>
<td>24/8</td>
<td>16/7</td>
<td>19/5</td>
</tr>
</tbody>
</table>

چانگ خشکسالی بهبود شدید (سطح 95٪) و EDI شرایط خشکسالی بهبود شدید (سطح 95٪) و

گیرش بارندگی معرف‌های دی (سیسرا و رودک). شرایط آب دریاچه (سدر آب، نیافته، کرج) دما (کرج، مهرآباد، همند، آبعلی) و بارندگی (باقی‌آبی، فشند، مرا، سیرا، مهرآباد و ابعلی) به ترتیب برای است. با 95٪ و صفر درصد ارقام این سطح به خوبی علت این اختلاف را نشان می‌دهد. برخورداری باید این روز و وضعیت مناسبی برخورداری بوده و از این‌رو که نمی‌توان دیگر نیاز که نه اکنون به بارندگی دارد، براساس مسند

شاخص EDI به طور دقیق تر به بیان می‌گردد. در این روز

1378 به طور دقیق تر بیان می‌گردد. در این روز

331
سنده ایجاد مجموعه است. هم مربوط با منابع آب (مما بایدکه) که آن
ان تحقیق شیعه تا نقص استفاده از یک معرف (روش
و چند معرف (روش چانگ) در پایش خشکسالی مورد
ارزیابی قرار گرفت و در این خصوص دو روش خشکسالی
777 لغات 2019 که از شاخصترین آن طی نه
اخر برای استبان تهران، مورد بررسی قرار گرفت. نتایج زیر
از آن تحقیق قابل ارائه است:
1- مقایسه دو روش نشان داد که روش چانگ نسبت به
کمبودهای خصوصی عملیاتی است و حتی در
شیعه که مجموعه روزانگی سالانه رو به افزایش بوده
است، روش چانگ درصد بالایی از ایام سال را در
خشکسالی پیش بندی باید اعلام می‌دارد.
2- پایش خشکسالی توسط شناخت‌های هوشمند براساس
اطلاعات نظارتی صورت می‌گیرد، به عنوان مثال در درست
تهار که منطقه مسئولیت کشاورزی وجود دارد، خشکسالی
که به میان آمار ایستگاه‌های باران‌سنجی موجود در آن
ارزیابی می‌گردد و این در حالی است که این منطقه به
شدت تحت تأثیر منابع آب بالادست خود (مادر تغییر

متابع مورد استفاده
1. مریدی، س.، مقدسی، ش. پایبرده، و ه. قائمی. 1384. طرح تحقیقی سیستم پایش خشکسالی استبان تهران، دفتر امور پزوهشه و
پیشبینی علمی معاونت امور آب وزارت نیرو یک کد 9848.
2. مقدسی، م. 1381. ارزیابی و پایش روزانگی خشکسالی استبان تهران، پایان‌نامه کارشناسی ارشد دانشگاه کشاورزی، دانشگاه تربیت
مدرس، تهران.
WWW: URL: http://enso.unl.edu/ndmc.

322
13. Hong Wu., M. J. Hayes, A. Weilss and Q. Hu. 2001 An evaluation the standardized precipitation index, the china-z index and the statistical z-score. Inter. J. Climatol. 21: 745-758.