سیستم تغییرات فسفر قابل استخراج در تعدادی از خاک‌های همدان

فرنوش طهماسبی و علیرضا حسین پور

(تاریخ دریافت: 25/12/1385، تاریخ پذیرش: 16/4/1386)

چکیده

ویژگی‌های خاک نشان می‌دهد که ممکن است در جذب فسفر مصرفی در بعضی از خاک‌های همدان محدود است. هدف از این پژوهش بررسی تأثیر جذب فسفر در تعدادی از خاک‌های همدان بر روی دو نوع گیاهان گیاه‌پردازی‌سازی و به‌منظور بهبود کیفیت محصولات غذایی به‌منظور مصرف در صورت کاهش نیاز به فسفر. نتایج و نتایج بهبود نشان داد که سرعت جذب فسفر در بافت بالای ۲۰ برابر بالای سرعت جذب F

واژه‌های کلیدی: سیستم، جذب فسفر، گیاه‌پردازی‌سازی، گیاه‌پردازی‌سازی، گیاه‌پردازی‌سازی

1. دانشجوی سابق کارشناسی ارشد خاک‌شناسی، دانشکده کشاورزی، دانشگاه پر.direction
2. استاد خاک‌شناسی، دانشکده کشاورزی، دانشگاه پر.direction

* مسئول مکاتبات: پست الکترونیکی: hosseinipur.a@agr.sku.ac.ir
مقدمه
جذب و آزاد شدن فسفر از مهم‌ترین فرآیندهای هسته‌ندیم که
غلطی فسفر در محلول خاک را کنترل می‌کند. برای
تولید جامعه یک و اکتش اهمیت ریسی ترمودینامیکی و هم
سیستمیک آن و اکتش ضروری است. چنین بررسی‌های مکمل
یکدیگری می‌باشد.)1

ترمودینامیکی، جهت و آکتش را توصیف می‌کند و پیش‌بینی
می‌کند که آیا مواد برای رسیدن به پایداری تحلیل خود با هم
و اکتش خواهد داد یا نه. اما بعضی از آکتش‌ها پیش‌بینی کند هستند
و با تغییرات در پایداری تحلیل خود تمیز نشده. سیستم‌های تولیدی، مطالعه
سازمان‌کار (سیر و محصولات حد واسط) و سرعت و اکتش
به‌شمار می‌آیند.)2

اینکلئسون (3) دو دلیل برای مطالعه سرعت
و اکتش‌های شیمیایی ارائه‌کرده است: پیش‌بینی این که اکتش‌ها
با چه سرعتی به تغییرات تحلیل مشابه می‌رسند و پیش‌بینی
سازمان‌کار و اکتش‌ها معلولیت‌های سرعت همچنین و سیل‌های برای
طبقه‌بندی و اکتش‌ها به مربوطی برخوردار می‌باشد.

اکتش‌های شیمیایی در خاک و محیط‌های آبی فرانکسی‌های
پوهستن (15) با بازیابی مطالعه سیستمیک برای توصیف و پیش
بینی واکنش‌های جذب و دفع که در محیط‌های طبیعی رخ
می‌دهد به کار می‌روند.)27

به منظور رسیدن به توصیف بهتر از تغییرات و اکتش‌های
فرآیند در خاک با زمان نمی‌توان ماهیت سیستمیک چنین
و اکتش‌های را نامیده گرفته.)6,11,19 و 27.) غلطیت
فسفر در محلول خاک با فرانکسی‌های جذب-دفع کنترل می‌شود.
ویژگی‌های مختلف خاک شامل فاکتورات جذب، مقادیر
اکتش‌های آهن و آلومینیوم، کربنات کلسیم، مواد آلی و رس و
همچنین کاتیون‌های موجود در خاک می‌باشند از طریق تأثیر بر
فرآیندهای جذب و دفع در خاک بر اینجا تأثیر دارند (17). فسفر
سازمان‌کار را به‌صورت
فسفر نسبت به خاکها به‌صورت
فسفر و آلومینیوم اهمیت گذاری می‌کنند. قوانین
فسفر رفاه‌های کلسیم، آلومینیوم و آهن وجود دارد. فسفر
ریسی کلسیم در خاک‌های آهکی و فسفر‌های آهن و آلومینیوم در
کلاسیفیکاسیون خاک‌های آهکی و فسفورها آهن و آلومینیوم در

خاک‌های اسیدی قسمت‌های عمده فسفر خاک را تشکیل

276
به طور گسترده‌ای در برخی خاک‌های استفاده شده است.

(13)

اشاره‌کننده‌ی (پلاس‌های) اول (طرح‌های اول) مدل و اکتشاف در خاک‌ها انجام داده شده است. به دنبال این نشانه‌ها مدل و اکتشاف در خاک‌های استان همدان به روش تصادفی انتخاب شده‌بوده است. از انتقال نمونه‌ها به آزمایشگاه‌های متعدد از محصولات اولیه در این استفاده شده است. به‌طور کلی، مدل‌های کرم‌کشی و روش‌های تغییرات در خاک‌های استان همدان به روش تصادفی انتخاب شده‌بوده است. از انتقال نمونه‌ها به آزمایشگاه‌های متعدد از محصولات اولیه در این استفاده شده است. به‌طور کلی، مدل‌های کرم‌کشی و روش‌های تغییرات در خاک‌های استان همدان به روش تصادفی انتخاب شده‌بوده است. از انتقال نمونه‌ها به آزمایشگاه‌های متعدد از محصولات اولیه در این استفاده شده است. به‌طور کلی، مدل‌های کرم‌کشی و روش‌های تغییرات در خاک‌های استان همدان به روش تصادفی انتخاب شده‌بوده است. از انتقال نمونه‌ها به آزمایشگاه‌های متعدد از محصولات اولیه در این استفاده شده است. به‌طور کلی، مدل‌های کرم‌کشی و روش‌های تغییرات در خاک‌های استان همدان به روش تصادفی انتخاب شده‌بوده است. از انتقال N

مواد و روش‌ها

جفت انگاژی این پژوهش ۱۲ نمونه خاک سطحی (۰-۳۰ سانتی‌متری) که از طریق فصل گذشته جذب کرده و درصد سر تغییرات زندگی داشته‌اند از خاک‌های استان همدان به روش تصادفی انتخاب شده‌بوده است. از انتقال نمونه‌ها به آزمایشگاه‌های متعدد از محصولات اولیه در این استفاده شده است. به‌طور کلی، مدل‌های کرم‌کشی و روش‌های تغییرات در خاک‌های استان همدان به روش تصادفی انتخاب شده‌بوده است. از انتقال نمونه‌ها به آزمایشگاه‌های متعدد از محصولات اولیه در این استفاده شده است. به‌طور کلی، مدل‌های کرم‌کشی و روش‌های تغییرات در خاک‌های استان همدان به روش T

"چارگرفتن که کاهش فشار عصاره‌گیری شده با به کریتاتس سدیم (روش اولین) با زمان از دوک مدلی سیستمیک مرتبت از پروری می‌کند. بابت سرعت سیستمیک (k) اما تعیین آهن عصاره‌گیری شده با اکثرالات و آهن و آلومینیوم (CB) عصاره‌گیری شده با به کریتاتس-سیسترهای نسبت کلم دوی کریتاتس-سیسترهای نسبت کلم دوی کریتاتس-سیسترهای نسبت کلم دوی کر

گرفتن و جویان(ی) (سیستمیک و اکتشف کلمیت با فسفات

را مورد مطالعه قرار داده و برای بررسی داده‌های خود در یک دیق‌های تاکی و اکتشف زمان مدل و اکتشاف در محصولات اولین (پلاس‌های اول) را برای توصیف و اکتشف سیستمیک فسفات آزمون نموده و به این نتیجه رسیده‌که مدل مورد مراجعه دوم برای داده‌های آزمایش برای بهتری دارد. هنگام و همکاران (۱۵) میزان تغییر فسفات در محلول خاک را از طریق سر و نخ دارای گل‌خیالی فسفات محلول در محلول خاک را از طریق ترسیم لگاریم غلتکی فسفات محلول در محلول خاک را از طریق ترسیم لگاریم غلتکی F

77
جدول 1. معادله‌های سینتیکی استفاده شده

<table>
<thead>
<tr>
<th>مدل</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_t = P_0 - K_v \cdot t$</td>
<td>مربوط صفر</td>
</tr>
<tr>
<td>$\ln P_t = \ln P_0 - K_v \cdot t$</td>
<td>مربوط اول</td>
</tr>
<tr>
<td>$P_t = a + \beta \ln t$</td>
<td>انتشار پاپولوکی</td>
</tr>
<tr>
<td>$P_0/P_t = a + b \cdot t^{0.5}$</td>
<td>تابع نمایی</td>
</tr>
<tr>
<td>$\ln P_t = \ln a + b \ln t$</td>
<td></td>
</tr>
</tbody>
</table>

در این معادله‌ها، P_t به ترتیب مقدار فسفر استخراج شده در زمان t و زمان صفر، P_0 و P_0 می‌باشد.

ساعت و β و β و Kd V میزان V نسبت بیماری کردن کود فسفر به خاک‌ها است. عملاً تمامی مراکز و عرصه‌های فسفر توسط عرصه‌گیرهای اولین و بی‌گرفتگی آمونیوم-دی‌تی‌پای (14) انجام شد. در هر زمان خلفیت انرژی عصاره‌ها به روش ریشه‌سنجی تعیین شد. سپس مدل‌های سینتیکی مربوط صفر، مربوط اول، پخش‌گذاری پاپولوکی، انتشار پاپولوکی و انتشار نمایی را مقادیر فسفر استخراج شده بر اساس داده (جدول 1) و با توجه به ضربی تشخیص و خطای استاندارد برآورد، مدل‌های به‌متر بین دانست و کمترین خطای استاندارد برآورد را داشتند و نتایج آنها محاسبه شد. خطای استاندارد برآورد تا به چهارمین مرحله محاسبه شد.

$$SE = \sqrt{\frac{\sum (P_t - P_0)^2}{n-2}}$$

در این معادله P_0 و P_0 به ترتیب نشان مقدار فسفر استخراج شده و P_0 و P_0 تعداد 5 در مورد داده در زمان t و تعداد n تعداد قطع آزمایش است. در بیان نتایج معادله‌های سینتیکی محاسبه به‌متر بین دانست و کمترین خطای استاندارد برآورد شد. همچنین میان نتایج سرعت مدل‌های سینتیکی و پخش‌گذاری خاک معادلات رگرسیونی بر اساس نری‌گوی‌هایی از خاک که به سرعت غیرقابل جذب شدن فسفر تأثیر دارند، مشخص گردید.
جدول 2. ویژگی‌های فیزیکی و شیمیایی خاک‌های مطالعه‌شده

<table>
<thead>
<tr>
<th>شماره</th>
<th>فاصله</th>
<th>طبقه شیمیایی</th>
<th>کنترل‌های تندال</th>
<th>آلی</th>
<th>کلمی معادل</th>
<th>پنتان</th>
<th>هاش</th>
<th>الکتریکی</th>
<th>باریک‌سازی</th>
<th>نمونه برداری</th>
<th>خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>موش‌جین</td>
<td></td>
<td></td>
<td>2</td>
<td>7/3</td>
<td>3/2</td>
<td>7/2</td>
<td>0/26</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>سولان</td>
<td></td>
<td></td>
<td>3</td>
<td>7/3</td>
<td>3/2</td>
<td>7/2</td>
<td>0/26</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>مربانج</td>
<td></td>
<td></td>
<td>4</td>
<td>7/3</td>
<td>3/2</td>
<td>7/2</td>
<td>0/26</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>یکن آباد</td>
<td></td>
<td></td>
<td>5</td>
<td>7/3</td>
<td>3/2</td>
<td>7/2</td>
<td>0/26</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>بارش</td>
<td></td>
<td></td>
<td>6</td>
<td>7/3</td>
<td>3/2</td>
<td>7/2</td>
<td>0/26</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>کوریجان</td>
<td></td>
<td></td>
<td>7</td>
<td>7/3</td>
<td>3/2</td>
<td>7/2</td>
<td>0/26</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>دوراهی کوریجان</td>
<td></td>
<td></td>
<td>8</td>
<td>7/3</td>
<td>3/2</td>
<td>7/2</td>
<td>0/26</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>سب سه‌توده</td>
<td></td>
<td></td>
<td>9</td>
<td>7/3</td>
<td>3/2</td>
<td>7/2</td>
<td>0/26</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>کبوتر در اندکی</td>
<td></td>
<td></td>
<td>10</td>
<td>7/3</td>
<td>3/2</td>
<td>7/2</td>
<td>0/26</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>سنتور اباب</td>
<td></td>
<td></td>
<td>11</td>
<td>7/3</td>
<td>3/2</td>
<td>7/2</td>
<td>0/26</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>شهاب‌السین</td>
<td></td>
<td></td>
<td>12</td>
<td>7/3</td>
<td>3/2</td>
<td>7/2</td>
<td>0/26</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 3. فسفر قابل استخراج قبل و پس از اضافه کردن کود و انکوپاسیون در خاک‌های مطالعه‌شده (میلی گرم در کیلوگرم)

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>فسفر قابل استخراج پس از انکوپاسیون</th>
<th>فسفر قابل استخراج اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>بیکرینات آمونیوم- دی</td>
<td>بیکرینات سدیم</td>
</tr>
<tr>
<td>1</td>
<td>90/3</td>
<td>90/3</td>
</tr>
<tr>
<td>2</td>
<td>78/9</td>
<td>78/9</td>
</tr>
<tr>
<td>3</td>
<td>53/8</td>
<td>53/8</td>
</tr>
<tr>
<td>4</td>
<td>15/9</td>
<td>15/9</td>
</tr>
<tr>
<td>5</td>
<td>10/6</td>
<td>10/6</td>
</tr>
<tr>
<td>6</td>
<td>7/5</td>
<td>7/5</td>
</tr>
<tr>
<td>7</td>
<td>9/6</td>
<td>9/6</td>
</tr>
<tr>
<td>8</td>
<td>9/9</td>
<td>9/9</td>
</tr>
<tr>
<td>9</td>
<td>24/3</td>
<td>24/3</td>
</tr>
<tr>
<td>10</td>
<td>24/3</td>
<td>24/3</td>
</tr>
<tr>
<td>11</td>
<td>24/3</td>
<td>24/3</td>
</tr>
<tr>
<td>12</td>
<td>24/3</td>
<td>24/3</td>
</tr>
</tbody>
</table>

۴۷۹
جدول ۲ مقدار آهن و آلومینیوم بلوری و بی‌شکل در خاک های مطالعه‌شده (بی‌گرم در کیلوگرم)

<table>
<thead>
<tr>
<th>آلومینیوم بلوری</th>
<th>آهن بی‌شکل</th>
<th>شماره خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲۰۰/۸</td>
<td>۱۳۴۹/۷</td>
<td>۱</td>
</tr>
<tr>
<td>۹۹۹/۴</td>
<td>۱۱۸۰/۸</td>
<td>۲</td>
</tr>
<tr>
<td>۱۱۸۰/۱</td>
<td>۱۱۴۰/۸</td>
<td>۳</td>
</tr>
<tr>
<td>۱۱۷۰/۳</td>
<td>۱۱۳۰/۸</td>
<td>۴</td>
</tr>
<tr>
<td>۱۰۹۲/۱</td>
<td>۸۹۴۶/۸</td>
<td>۵</td>
</tr>
<tr>
<td>۸۱۵/۱</td>
<td>۸۷۱/۸</td>
<td>۶</td>
</tr>
<tr>
<td>۸۸۸/۱</td>
<td>۸۸۸/۸</td>
<td>۷</td>
</tr>
<tr>
<td>۷۶۵/۱</td>
<td>۸۱۵/۱</td>
<td>۸</td>
</tr>
<tr>
<td>۷۶۵/۴</td>
<td>۸۵۲/۸</td>
<td>۹</td>
</tr>
<tr>
<td>۱۰۸۹/۱</td>
<td>۱۱۸۰/۳</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۰۷۵/۱</td>
<td>۱۰۵۰/۳</td>
<td>۱۱</td>
</tr>
<tr>
<td>۷۸۳/۱</td>
<td>۸۰۱/۸</td>
<td>۱۲</td>
</tr>
</tbody>
</table>

۱۳۷/۱ میلی‌گرم در کیلوگرم بود (جدول ۳). جذب فسفر فراوانی است که سطح محلول در اثر واکنش با ترکیبات آلی و معدنی خاک به شکل کمتر محلول تبدیل و در ترتیبی فسفر قابل جذب گیاه کاهش می‌یابد (۴). فسفر در خاک توسط اجزای مختلف خاک از جمله: کانی‌های رسی، کربنات کلسیم، اکسیدهای آهن و آلومینیوم و مواد آلی، تثبیت شده و از دسترس گیاه خارج می‌شود. تثبیت فسفر باعث افزایش میزان فسفر محلول می‌شود. مقدار فسفر استخراج شده به عنوان ثابت آن‌ها از زمان در هر دو عصاره‌گیر در جدول‌های ۵ و ۶ نشان داده شده است. با توجه به این که جدول‌ها سرعت جذب فسفر در هر دو عصاره‌گیر در ابتدا سریع است و سپس کاهش یافته و مقدار تقریباً ثابت می‌رسد همچنین به سرعت ۹۰٪ فسفر جذب شده در هر دو عصاره‌گیر در طول مدت خواص‌های خوب مربوط به بخش اول (۳۳۷ ساعت پس از شروع آزمایش) است. دامنه تغییرات مقدار فسفر جذب شده (اختلاف فسفر قابل جذب اولیه و فسفر قابل جذب پس از ۲۵۲ ساعت) بین ۳۰۰ به ۱۰۰۰ میلی‌گرم در کیلوگرم می‌باشد.
جدول ٥. فسفر استخراج شده با روش اولین در زمان‌های مختلف پس از اضافه کردن کود (میلی گرم بر کیلوگرم)

<table>
<thead>
<tr>
<th>زمان (ساعت)</th>
<th>١</th>
<th>٢</th>
<th>٣</th>
<th>٤</th>
<th>٥</th>
<th>٦</th>
<th>٧</th>
<th>٨</th>
<th>٩</th>
<th>١٠</th>
</tr>
</thead>
<tbody>
<tr>
<td>ورود</td>
<td>١٢٤/٩</td>
<td>١٨٣/٩</td>
<td>١٦٥/٩</td>
<td>١٣٠/٩</td>
<td>١٢٠/٩</td>
<td>١١١/٩</td>
<td>١٠٩/٩</td>
<td>٩٩/٩</td>
<td>٨٠/٩</td>
<td>٧٠/٩</td>
</tr>
<tr>
<td>بیرون</td>
<td>٢٠٣/٩</td>
</tr>
<tr>
<td>ورود</td>
<td>١١٠/٩</td>
</tr>
<tr>
<td>بیرون</td>
<td>٢٠٣/٩</td>
</tr>
<tr>
<td>ورود</td>
<td>١١٠/٩</td>
</tr>
<tr>
<td>بیرون</td>
<td>٢٠٣/٩</td>
</tr>
<tr>
<td>ورود</td>
<td>١٣٠/٩</td>
</tr>
<tr>
<td>بیرون</td>
<td>٢٠٣/٩</td>
</tr>
<tr>
<td>ورود</td>
<td>١٣٠/٩</td>
</tr>
<tr>
<td>بیرون</td>
<td>٢٠٣/٩</td>
</tr>
</tbody>
</table>

شامل تعدادی از اضافه کردن کود به روش بافت ویژه
جدول ۶ سفر استخراج شده با روش بکرینت آمونیوم- دی تی پی ای در زمان‌های مختلف پس از اضافه کردن کود

<table>
<thead>
<tr>
<th>زمان (ساعت)</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
<th>۱۱</th>
<th>۱۲</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>۹/۸</td>
<td>۹۹/۳</td>
<td>۸۷/۵</td>
<td>۷۵/۵</td>
<td>۶۳/۵</td>
<td>۵۱/۵</td>
<td>۴۹/۵</td>
<td>۳۷/۵</td>
<td>۲۵/۵</td>
<td>۱۳/۵</td>
<td>۴/۵</td>
<td>۲/۵</td>
<td>۱/۵</td>
</tr>
<tr>
<td>۹/۲</td>
<td>۸۸/۵</td>
<td>۷۶/۵</td>
<td>۶۴/۵</td>
<td>۵۲/۵</td>
<td>۴۰/۵</td>
<td>۲۸/۵</td>
<td>۱۶/۵</td>
<td>۶/۵</td>
<td>۴/۵</td>
<td>۲/۵</td>
<td>۱/۵</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۹/۱</td>
<td>۷۷/۵</td>
<td>۶۵/۵</td>
<td>۵۳/۵</td>
<td>۴۱/۵</td>
<td>۲۹/۵</td>
<td>۱۷/۵</td>
<td>۶/۵</td>
<td>۴/۵</td>
<td>۲/۵</td>
<td>۱/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۸/۸</td>
<td>۶۶/۵</td>
<td>۵۴/۵</td>
<td>۴۲/۵</td>
<td>۳۰/۵</td>
<td>۱۸/۵</td>
<td>۶/۵</td>
<td>۴/۵</td>
<td>۲/۵</td>
<td>۱/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۸/۷</td>
<td>۵۵/۵</td>
<td>۴۳/۵</td>
<td>۳۱/۵</td>
<td>۲۹/۵</td>
<td>۱۸/۵</td>
<td>۶/۵</td>
<td>۴/۵</td>
<td>۲/۵</td>
<td>۱/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۸/۴</td>
<td>۴۴/۵</td>
<td>۳۲/۵</td>
<td>۲۰/۵</td>
<td>۱۸/۵</td>
<td>۱۶/۵</td>
<td>۶/۵</td>
<td>۴/۵</td>
<td>۲/۵</td>
<td>۱/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۸/۱</td>
<td>۳۳/۵</td>
<td>۲۱/۵</td>
<td>۱۹/۵</td>
<td>۱۷/۵</td>
<td>۱۵/۵</td>
<td>۶/۵</td>
<td>۴/۵</td>
<td>۲/۵</td>
<td>۱/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۷/۸</td>
<td>۲۲/۵</td>
<td>۱۰/۵</td>
<td>۱۰/۵</td>
<td>۸/۵</td>
<td>۶/۵</td>
<td>۴/۵</td>
<td>۲/۵</td>
<td>۱/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۷/۷</td>
<td>۱۱/۵</td>
<td>۹/۵</td>
<td>۷/۵</td>
<td>۵/۵</td>
<td>۳/۵</td>
<td>۱/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۷/۴</td>
<td>۱۰/۵</td>
<td>۸/۵</td>
<td>۶/۵</td>
<td>۴/۵</td>
<td>۲/۵</td>
<td>۱/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
</tr>
<tr>
<td>۷/۱</td>
<td>۹/۵</td>
<td>۷/۵</td>
<td>۵/۵</td>
<td>۳/۵</td>
<td>۱/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
</tr>
</tbody>
</table>

آکتیوین و تنس (۳) در مطالعه خود دریافتند که جذب فسفر در ابتدا سریع و سپس کاهش و بعد از ۵۰ روز جذب فسفر به حالت پایداری رسید. احتمال و عامل (۴) نیز در مطالعه خود دریافتند که با افزایش زمان خواص این فیبرهای نشان و سنتزی فسفر در هر دو میزبان فسفر آلی و معده در خاک به تدریج کاهش یافت. که در این خاک‌ها به دلیل عدم رسیدن به شرایط تعادل در تریکول و چلانیان، شرایط لازم برای انجام واکنش‌های ترکیبات فسفر و تبدیل آنها به ترکیبات خاص و وجود داشته است. در برخی از این خاک‌ها علاوه بر فسفر افزوده شده، مقداری از فسفر اولیه موجود در آنها نیز جذب شده است.

242
جدول 7. ضرایب تشخیص و خطای استاندارد برآورد معادلات سیستمی در روش اولین

<table>
<thead>
<tr>
<th>شماره</th>
<th>معادله متغیرهای اول</th>
<th>معادله متغیرهای اول</th>
<th>معادله متغیرهای اول</th>
<th>شماره</th>
<th>معادله متغیرهای اول</th>
<th>معادله متغیرهای اول</th>
<th>معادله متغیرهای اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>2</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>3</td>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>4</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>5</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>6</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>7</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
<td>8</td>
<td>0.30</td>
<td>0.31</td>
<td>0.32</td>
</tr>
<tr>
<td>9</td>
<td>0.34</td>
<td>0.35</td>
<td>0.36</td>
<td>10</td>
<td>0.38</td>
<td>0.39</td>
<td>0.40</td>
</tr>
</tbody>
</table>

جدول 8. ضرایب تشخیص و خطای استاندارد برآورد معادلات سیستمی در روش بیکربنات آمونیوم-دی یپی ای

<table>
<thead>
<tr>
<th>شماره</th>
<th>معادله متغیرهای اول</th>
<th>معادله متغیرهای اول</th>
<th>معادله متغیرهای اول</th>
<th>شماره</th>
<th>معادله متغیرهای اول</th>
<th>معادله متغیرهای اول</th>
<th>معادله متغیرهای اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>2</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>3</td>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>4</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>5</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>6</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>7</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
<td>8</td>
<td>0.30</td>
<td>0.31</td>
<td>0.32</td>
</tr>
<tr>
<td>9</td>
<td>0.34</td>
<td>0.35</td>
<td>0.36</td>
<td>10</td>
<td>0.38</td>
<td>0.39</td>
<td>0.40</td>
</tr>
</tbody>
</table>

سرعت جذب فسفر از 5 مدل سیستمی استفاده شد (جدول 1). ضرایب تشخیص و خطای استاندارد برآورد معادله‌های سیستمی در توصیف سرعت جذب فسفر توسط روش‌های اولین و بیکربنات آمونیوم-دی‌یپی ای به ترتیب در جدول‌های 7 و 8 آورده شده است. معادله‌های طبقه‌بندی که ضریب تشخیص بالا و خطای استاندارد برآورد پایین‌تر دارند به عنوان معادله‌ی با هم‌چنین بارو (5) در بررسی‌های خود نشان داد که جذب فسفر از 1 الی 3 روز شدیداً افزایش اما از 3 الی 91 روز تغییرات چندانی نشان نماده است. بیماری و فوق‌شی (7) مشاهده کرده که در یک خاک الیوت بالایی با افزایش در زمان و دمای خلوت‌بانیدن بازیافت فسفر اضافه شده کاهش یافته. چنانچه در بخش مواد و روش‌ها گفته شد، برای تشخیص
جدول 9 ضرایب سرعت معادله‌های ال‌وی‌جی و تابع نمایی در خاک‌های مطالعه‌شده (میلی‌گرم در کیلوگرم بر ساعت)

<table>
<thead>
<tr>
<th>شماره</th>
<th>روش اولسن</th>
<th>مدتی تابع نمایی</th>
<th>معادله ال‌وی‌جی</th>
<th>روش کریبنت آمونیوم - دی‌تی‌پی ای</th>
<th>مدتی تابع نمایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/244</td>
<td>12/14</td>
<td>0/373</td>
<td>0/522</td>
<td>18/41</td>
</tr>
<tr>
<td>2</td>
<td>0/244</td>
<td>12/14</td>
<td>0/373</td>
<td>0/522</td>
<td>18/41</td>
</tr>
<tr>
<td>3</td>
<td>0/244</td>
<td>12/14</td>
<td>0/373</td>
<td>0/522</td>
<td>18/41</td>
</tr>
<tr>
<td>4</td>
<td>0/244</td>
<td>12/14</td>
<td>0/373</td>
<td>0/522</td>
<td>18/41</td>
</tr>
<tr>
<td>5</td>
<td>0/244</td>
<td>12/14</td>
<td>0/373</td>
<td>0/522</td>
<td>18/41</td>
</tr>
<tr>
<td>6</td>
<td>0/244</td>
<td>12/14</td>
<td>0/373</td>
<td>0/522</td>
<td>18/41</td>
</tr>
<tr>
<td>7</td>
<td>0/244</td>
<td>12/14</td>
<td>0/373</td>
<td>0/522</td>
<td>18/41</td>
</tr>
<tr>
<td>8</td>
<td>0/244</td>
<td>12/14</td>
<td>0/373</td>
<td>0/522</td>
<td>18/41</td>
</tr>
<tr>
<td>9</td>
<td>0/244</td>
<td>12/14</td>
<td>0/373</td>
<td>0/522</td>
<td>18/41</td>
</tr>
<tr>
<td>10</td>
<td>0/244</td>
<td>12/14</td>
<td>0/373</td>
<td>0/522</td>
<td>18/41</td>
</tr>
</tbody>
</table>

جدول 10 ضرایب همبستگی بین ویژگی‌های خاک با تابعهای سرعت معادلات ال‌وی‌جی و تابع نمایی

<table>
<thead>
<tr>
<th>ویژگی‌های خاک‌ها</th>
<th>تابع نمایی</th>
<th>پ-هاش</th>
<th>گنجایش تبادل کاتیونی</th>
<th>نسبت الکسیم معادل</th>
<th>درصد رس</th>
<th>آلومینیوم بلوی</th>
<th>آهن بالوری</th>
<th>تابع نمایی ال‌وی‌جی</th>
</tr>
</thead>
<tbody>
<tr>
<td>ب-هاش</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
</tr>
<tr>
<td>گنجایش تبادل کاتیونی</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
</tr>
<tr>
<td>نسبت الکسیم معادل</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
</tr>
<tr>
<td>درصد رس</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
</tr>
<tr>
<td>آلومینیوم بلوی</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
</tr>
<tr>
<td>آهن بالوری</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
<td>0/54**</td>
</tr>
</tbody>
</table>

تاپ نمایی در جدول‌های 9 و 10 ارزش است. ضرایب سرعت در معادله ال‌وی‌جی در عصاره‌های اولسن و به کریبنت آمونیوم - دی‌تی‌پی ای به ترتیب 0/244 و 0/244 و 0/244 در معادله نمایی در عصاره‌های اولسن و به کریبنت آمونیوم - دی‌تی‌پی ای به ترتیب 0/244 و 0/244 و 0/244 میلی‌گرم در کیلوگرم بر ساعت بود. ضرایب سرعت جذب فسفر در معادله نمایی در عصاره‌های اولسن و به کریبنت آمونیوم - دی‌تی‌پی ای به ترتیب 0/244 و 0/244 و 0/244 میلی‌گرم در کیلوگرم بر ساعت بود. در روش اولسن در معادله
جدول 11. ضرایب تشخیص و خطای استاندارد برآورد معادلات سیتیکی در بخش اول در روش یکپارچه اسید آمونیم دی تی پی ای

<table>
<thead>
<tr>
<th>شماره</th>
<th>معادله مربوطه</th>
<th>معادله مربوطه</th>
<th>معادله مربوطه</th>
<th>معادله مربوطه</th>
<th>معادله مربوطه</th>
<th>معادله مربوطه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SE</td>
<td>r^2</td>
<td>SE</td>
<td>r^2</td>
<td>SE</td>
<td>r^2</td>
</tr>
<tr>
<td>1</td>
<td>0.252</td>
<td>0.072</td>
<td>0.252</td>
<td>0.072</td>
<td>0.252</td>
<td>0.072</td>
</tr>
<tr>
<td>2</td>
<td>0.218</td>
<td>0.051</td>
<td>0.218</td>
<td>0.051</td>
<td>0.218</td>
<td>0.051</td>
</tr>
<tr>
<td>3</td>
<td>0.310</td>
<td>0.068</td>
<td>0.310</td>
<td>0.068</td>
<td>0.310</td>
<td>0.068</td>
</tr>
<tr>
<td>4</td>
<td>0.236</td>
<td>0.059</td>
<td>0.236</td>
<td>0.059</td>
<td>0.236</td>
<td>0.059</td>
</tr>
<tr>
<td>5</td>
<td>0.322</td>
<td>0.09</td>
<td>0.322</td>
<td>0.09</td>
<td>0.322</td>
<td>0.09</td>
</tr>
<tr>
<td>6</td>
<td>0.185</td>
<td>0.08</td>
<td>0.185</td>
<td>0.08</td>
<td>0.185</td>
<td>0.08</td>
</tr>
<tr>
<td>7</td>
<td>0.185</td>
<td>0.08</td>
<td>0.185</td>
<td>0.08</td>
<td>0.185</td>
<td>0.08</td>
</tr>
<tr>
<td>8</td>
<td>0.285</td>
<td>0.10</td>
<td>0.285</td>
<td>0.10</td>
<td>0.285</td>
<td>0.10</td>
</tr>
<tr>
<td>9</td>
<td>0.301</td>
<td>0.08</td>
<td>0.301</td>
<td>0.08</td>
<td>0.301</td>
<td>0.08</td>
</tr>
<tr>
<td>10</td>
<td>0.185</td>
<td>0.08</td>
<td>0.185</td>
<td>0.08</td>
<td>0.185</td>
<td>0.08</td>
</tr>
<tr>
<td>11</td>
<td>0.185</td>
<td>0.08</td>
<td>0.185</td>
<td>0.08</td>
<td>0.185</td>
<td>0.08</td>
</tr>
<tr>
<td>12</td>
<td>0.175</td>
<td>0.09</td>
<td>0.175</td>
<td>0.09</td>
<td>0.175</td>
<td>0.09</td>
</tr>
</tbody>
</table>

جدول 12. ضرایب تشخیص و خطای استاندارد برآورد معادلات سیتیکی در بخش اول در روش یکپارچه اسید آمونیم دی تی پی ای

<table>
<thead>
<tr>
<th>شماره</th>
<th>معادله مربوطه</th>
<th>معادله مربوطه</th>
<th>معادله مربوطه</th>
<th>معادله مربوطه</th>
<th>معادله مربوطه</th>
<th>معادله مربوطه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SE</td>
<td>r^2</td>
<td>SE</td>
<td>r^2</td>
<td>SE</td>
<td>r^2</td>
</tr>
<tr>
<td>1</td>
<td>0.09</td>
<td>0.01</td>
<td>0.09</td>
<td>0.01</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.08</td>
<td>0.01</td>
<td>0.08</td>
<td>0.01</td>
<td>0.08</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>0.07</td>
<td>0.01</td>
<td>0.07</td>
<td>0.01</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>0.06</td>
<td>0.01</td>
<td>0.06</td>
<td>0.01</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>0.01</td>
<td>0.05</td>
<td>0.01</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>6</td>
<td>0.04</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>7</td>
<td>0.03</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>8</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>9</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

نسخه پیشترین و کمترین ضرب سرعت به ترتیب در

dو 2. تابع مطالعات همبستگی (داده‌ها نشان داده شده است) بین ویژگی‌های خاک و ضرایب سرعت

معادله‌های سیتیکی در دو عصاره‌گر نشان داد که همبستگی

معنی‌داری میان تابع سرعت معادله‌های روند و تابع تمایل به آمن

و آلومینوم بلوری و بسیاری از عصاره‌گر اولین و ثالث

دو نمونه به ترتیب در

و 7. و در معادله‌های نام‌های به ترتیب در

خاک‌های 8 و 2. تابع مطالعات همبستگی (داده‌ها نشان

dو 1 و در معادله‌های تابع تمایل به ترتیب در خاک‌های

4 و 11. و در روش یکپارچه اسید آمونیم دی تی پی ای در معادله

نسخه پیشترین و کمترین ضرب سرعت به ترتیب در

خاک‌های 12 و 7. و در معادله‌های تابع تمایل به ترتیب در

485
جدول 13. ضرایب سرعت معادله‌های سیستمی در بخش اول در فاصله‌های مطابق شده

| بیکاری‌های آمونیوم - ذی‌تی‌پی‌ای | بیکاری‌های سدیم | وزن‌های
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع</td>
<td>تابع ت מעادله</td>
<td>انویه</td>
</tr>
<tr>
<td>0/7</td>
<td>0/17</td>
<td>0/199</td>
</tr>
<tr>
<td>0/11</td>
<td>0/16</td>
<td>0/139</td>
</tr>
<tr>
<td>0/10</td>
<td>0/8</td>
<td>0/53</td>
</tr>
<tr>
<td>0/14</td>
<td>0/13</td>
<td>0/248</td>
</tr>
<tr>
<td>0/15</td>
<td>0/26</td>
<td>0/19</td>
</tr>
<tr>
<td>0/12</td>
<td>0/22</td>
<td>0/125</td>
</tr>
<tr>
<td>0/22</td>
<td>0/8</td>
<td>0/194</td>
</tr>
<tr>
<td>0/21</td>
<td>0/8</td>
<td>0/123</td>
</tr>
<tr>
<td>0/20</td>
<td>0/8</td>
<td>0/39</td>
</tr>
<tr>
<td>0/33</td>
<td>0/5</td>
<td>0/115</td>
</tr>
<tr>
<td>0/28</td>
<td>0/5</td>
<td>0/218</td>
</tr>
</tbody>
</table>

نشره است. با توجه به جدول‌ها 5 و 6، فاصله زمانی 336 ساعت در اکثر خاکها انزیم‌های فسفر قابل جذب یا به عبارتی رهازایی نشان دهنده می‌شود که احتمال می‌توان این رهازایی را به فعالیت ریز‌جانداران خاک نسبت داد. محدوده و بار وکثر در مطالعه خود روي 5 خاک در آزمایشین یک کاهش اولیه خاک مطابق با توجه به جدول مشاهده شد. به‌طور کلی افزایش در خاک‌ها و فعالیت ریز‌جانداران خاک، سرعت معادله تابع نمایی با کمیتهای کل‌سیم در عصاره‌گیری بی‌کاری‌های آمونیوم- ذی‌تی‌پی‌ای وجود داشته. 24

ضرایب سرعت برابر است. نتایج در مطالعه‌های یک‌شیهدگی

بی‌کاری‌های آمونیوم و اولین و نهایی در بخش اول در جدول 13 آورده شده است. در این مطالعه سرعت جذب به روش اولین

در معادله‌های پایداری‌گذاری به ترتیب در دامنه 0/33-0/155 با سرعت به توان 3-1 ری خاک و ضرایب سرعت در معادله

الویه در دامنه 0/20-0/20 میلی‌گرم بر کیلومتر بر ساعت بود. در این مطالعه نتایج تابع ت و اولین در دامنه 0/33-0/155 و 0/38-0/077 و 0/0-0/557 میلی‌گرم بر کیلومتر بر ساعت بود.
نتیجه‌گیری
تابع این پژوهش نشان داد که جذب فسفر در دو مرحله انجام شد. مرحله اول 336 ساعت پس از اضافه کردن فسفر که در این مرحله سرعت جذب فسفر سریع بود، مرحله دوم 250 ساعت که در این مرحله سرعت جذب فسفر کند بود. در مرحله احتمالاً جذب فسفر با دو سازوکار متفاوت انجام می‌شود. در بخش دوم به دلیل کمبود ضریب تشخیص هیچ کدام از مدل‌ها قادر به توصیف غیرقابل جذب شدن فسفر نبودند. شاید بتوان علم توآنتایی مدل‌های西宁یکی در توصیف جذب فسفر در بخش دوم را ناشی از فعالیت برجای‌ماند که در معمل نشان داد که افزایش فسفر قابل استخراج نقط دارنده با توجه به نتایج مطالعات西宁یکی، در این خاک‌ها آلی و آلومینیوم بلویوری و شبکه و کربنات کلسیم بر جذب فسفر تأثیر دارند. در پایان پیشنهاد می‌شود:
چنین مطالعاتی با محلول‌های عصاره‌گیر کبیر انجام و ضرایب سرعت جذب فسفر در محلول‌های مختلف مقاومه شود. می‌توان توصیه کرد ضرایب سرعت جذب فسفر که به روش‌های شیمیایی در آزمایش‌گاه‌های مختلف می‌شود با شاخص‌های گیاهی و سرعت جذب فسفر توسط گیاه مقایسه شود.

با توجه به نتایج، هم‌بستگی معنی‌داری بین تاپس سرعت معادله‌های رویچ در بخش اول در عصاره‌گیر اولسن با آهن و آلومینیوم پلیوری و بی‌شک وجود دارد (ضرایب هم‌بستگی به ترتیب 0.85 در 0.60 و 0.40). این نتیجه حاکی از نقض اکسیدهای آلی و آلومینیوم پی و بلوی در جذب فسفر در خاک‌ها است. همچنین هم‌بستگی معنی‌داری، میزان تابع سرعت معادله‌های رویچ در بخش اول در عصاره‌گیر بی‌کربنات آمونیوم-۵ در تاپس یا کربنات کلسیم معادل وجود داشت (r=۰.۳۵) که نشان دهنده نقص کربنات کلسیم از درایش جذب و تثبیت فسفر در خاک‌ها است. لندسی و همکاران (۱۸) گزارش نمودند که در خاک‌های اوهکی فسفر در اثر ترکیب کربنات کلسیم سریع با ترکیب‌های فسفات که حلالیت کم دارند بیشتر شده و قابلیت جذب آنها کاهش می‌یابد. شارپی و اسمیت (۲۶) مشاهده کردند که غلظت فسفر قابل استفاده در خاک‌های آلی بعد از کاربرد مقادیر کم کود با مقادیر کاهش آلی و بعد از کاربرد مقادیر بالای کود با مقادیر کربنات آلی آلی و بعد از کاربرد مقادیر بالای کود با مقادیر کربنات آلی آلی.
کربنات کلسیم خاک هم هم‌بستگی معنی‌داری داشت.
همچنین هم‌بستگی مثبت معنی‌داری که بین تاپس سرعت معادله‌های تابع نمایی در بخش اول در عصاره‌گیر بی‌کربنات آمونیوم-۵ در تاپس یا و درصد کربنات کلسیم وجود دارد (r=۰.۳۵) تأیید کننده نقص این کاکی در جذب فسفر در خاک
می‌باشد (نتایج هم‌بستگی نشان داده شده است).

منابع مورد استفاده
1. پارساوار، غ. و ب. نجفی. ۱۳۷۴. تئوری فیزیک: نتایج طبیعی و ترمودینامیک آماری، انتشارات دانشگاه صنعتی اصفهان.