مقایسه روش‌های مختلف انددازه‌گیری گچ در برخی خاک‌های اصفهان

نفیسه یغمان‌نیا مهابادی و جواد گیوی

(تاریخ دریافت: 1387/۰۸/۲۲ تاریخ پذیرش: ۰۸/۰۴/۱۰)

چکیده
کاه گچ موجود در خاک یا بسیاری از خصوصیات فیزیکی، شیمیایی و میکروسکوپی خاک و در نتیجه جنبه‌های مکانیکی، طبقه‌بندی و ارزیابی آرایش تأثیر می‌گذارد. برای این منظور دانستن مقدار دقیق آن برای اهداف متعددی مفید است. اصلاح آب‌سوزی و طبقه‌بندی خاک‌ها ضروری می‌باشد. در اغلب آزمایشگاه‌های خاک‌شناسی ایران، روش استاندارد، روش استاندارد و روش استاندارد، انداده‌گیری گچ به‌کار می‌روند. هدف از این تحقیق مقایسه روشهای مختلف انداده‌گیری گچ و انتخاب مناسب‌ترین روش می‌باشد. موانع مورد مطالعه شامل جغرافیا، بربورک و سیاسات شهر می‌باشد. نمونه‌گیری از اعماق مختلف شش پرولف خاک انگش و از بین نمونه‌ها، تعدادی با دامنه وسیعی از مقدار گچ‌ها تا زیادی انتخاب شدند. مقدار گچ خاک‌ها توسط هشت روش استون، کربنات سدمی، رژین، تفاضل کلسیم و منیزیم، سولفات‌های رفیق شده، کربنات آمونیوم، سیدر، اسید کلرید درک انداده‌گیری گچ به‌منظور محاسبه درصد همیوشاتن روش‌ها پس از اضافه شدن مقدار معین گچ به درصد خلوت مشخص به خاک‌ها مجدداً مقدار گچ آنها توسط هشت روش مذکور انداده‌گیری گردید. برای مقایسه دقت روش‌ها از دو شاخص ضریب تغییرات و دیدنی باید و همچنین تزیکبود خطوط رگرسیونی به حالتی ۱ استفاده شد. نتایج به‌دست آمده نشان دادند از بین هشت روش مورد بررسی روش کربنات سدمی، دقیق‌ترین روش انداده‌گیری گچ می‌باشد. پس از آن روش رئین، روش دقت انداده‌گیری میزان گچ در خاک‌های غیر استاندارد گردید. روش‌های سیدر، اسید کلرید درک برای مقدار مختلف گچ و روش کربنات آمونیوم نیز به‌طور اتفاقی انداده‌گیری گچ به‌سوی رفیق‌شده دقت کافی را برمی‌رساند. نتایج حاصل مؤید این مطلب است که عامل اصلی تفاوت در دقت روش‌ها نواع عصاره‌گیری گچ بوده و از بین عصاره‌گیری‌های مورد بررسی کربنات سدنی کارایی بالاتری دارد.

واژه‌های کلیدی: انداده‌گیری گچ، مناسب‌ترین روش، درصد بازابی، شیب خط رگرسیونی، روش کربنات سدیم

مقدمه
نیمه خشک با بارندگی سالانه کمتر از ۴۰۰ میلی‌متر می‌باشد و این در حالیست که حدود ۳۶ درصد از خشک‌کاری سطح

۱. به ترتیب دانشجوی سایق کارشناسی ارشد و دانشیار خاک‌شناسی، دانشکده‌ی کشاورزی، دانشگاه شهید بهشتی
2. مسئول مکاتبات، پست الکترونیکی: yaghmacian.nafise@gmail.com

۵۶۵
چهاردهم رجیمی کاتی گچ به عنوان محدودیت عمل می‌کند. روش‌های شیمیایی تر از روش‌های میکروبی و گسترده‌تر
اندازه‌گیری گچ می‌باشد. در این روش‌ها پس از عصاره‌گیری کامل گچ توسط آب و با محصولات الکترونولی، با اندازه‌گیری Ca²⁺ و Mg²⁺ مقدار گچ خاک محاسبه می‌گردد. محدودیت‌های این روش‌ها عبارت‌اند از: وجود متناوب
دیگر دی‌اکسیدل کلسیم و سولفات‌های ژئولوژی و اندام‌های خاکی و متریولوژی خاکی و در نتیجه جنبه‌های طبیعی و
ارزیابی اراضی تأثیر بگذارد. مختصات خاک‌های تلیفا به عنوان
اینک کافی قصد می‌هند با اضافه کردن گچ اصلی می‌شوند
(19 و 20). شاید مقدار گچ خاک با عنوان عکس‌برداری برای
طبقه‌بندی خاک در سطوح مختلف، شامل تحت رده گروه
برگ و قابل توجه به‌جای آمریکایی (21) به کار رفته و با
سطح مختلف زنده‌بوده، بدیه‌های تکنوکسیک و سن خاک
ارتباط دارد (24). خاک‌های گچی تابعی از دما، اندازه‌دریافت و
حفظ سایر نمک‌ها در خاک بوده و بیشترین مقدار آن در
دماهای 35-40 درجه سانتی‌گراد روی می‌دهد (19). سابیک و
همکاران (26) گزارش کردند، خاک‌های گچ‌بردار، گچ بی‌تریت شدن دی‌اکسیدل کلسیم و
افزایش درجه رنگ، افزایش می‌پذیرد و بیشترین حلالیت گچ در
اندازه‌دریافت 370 و درجه رطب 1 به 500 افزایش می‌یابد. برای اندازه‌گیری کمی و کیفی میزان گچ خاک، روش‌های
مختلفی از جمله اندازه‌گیری باعث اصلی حلالیت گچ در
آب و محصولات الکترونولیت، حدف مولکول‌های آب تیتروگ
در اثر حرارت دادن و با نحوه برداشت به‌طور ایکس وجود دارد
که همگام از این روش‌ها محدودیت‌های مربوط به خود را دارا
به عنوان مثال در روش اندازه‌گیری بیعه‌ها بارها
حلالیت گچ، خطط‌های تبادلی و در پرداخت برخی از

566

Downloaded from iutjournals.iut.ac.ir at 11:01 IRDT on Wednesday July 28th 2021
مقایسه روش‌های مختلف اندازه‌گیری گچ در برخی خاک‌های اصفهان

روش‌های مختلف بر خصوصی توسعه، اثرات محیطی و مصرف‌های ناخواسته، از نظر مصرف‌های مناسب گچ در زمین کشاورزی و اقتصادی آن، بسیار مهم و ضروری است. این کار به منظور اطلاع از اثرات مختلف اندازه‌گیری‌های گچ در برخی خاک‌های اصفهان، انجام شده است. این مطالعه به بررسی صفت‌های مختلف گچ در برخی خاک‌های اصفهان در طرح‌های مختلف می‌پردازد.

1. اندازه‌گیری گچ بر روی مکان‌های نمونه‌برداری، اجرای تحقیقات و آزمایشات

برای اندازه‌گیری گچ، ابتدا با توجه به شکل و شکل‌های مختلف برون‌پوش‌های گچ و اندازه‌گیری‌های مختلف گچ در برخی خاک‌های کمی و اندازه‌گیری‌های مختلف گچ در برخی خاک‌های متفاوت، شرایط خاص مطالعه صورت گرفت.

2. مواد و روش‌ها

برای انجام این تحقیق و به منظور داشتن دانست و سپسیعی از مقادار گچ در نمونه‌های خاک، ابتدا با توجه به شکل و شکل‌های مختلف برون‌پوش‌های گچ و اندازه‌گیری‌های مختلف گچ در برخی خاک‌های کمی و اندازه‌گیری‌های مختلف گچ در برخی خاک‌های متفاوت، شرایط خاص مطالعه صورت گرفت.

3. نتایج و بیانات

به منظور بررسی صفت‌های مختلف گچ در برخی خاک‌های اصفهان، نمونه‌برداری انجام شد. این نمونه‌برداری شامل گچ و گچ در برخی خاک‌های کمی و اندازه‌گیری‌های مختلف گچ در برخی خاک‌های متفاوت، صورت گرفت.

4. استفاده از ترکیب‌های مختلف گچ در برخی خاک‌های اصفهان

به منظور بررسی صفت‌های مختلف گچ در برخی خاک‌های اصفهان، نمونه‌برداری انجام شد. این نمونه‌برداری شامل گچ و گچ در برخی خاک‌های کمی و اندازه‌گیری‌های مختلف گچ در برخی خاک‌های متفاوت، صورت گرفت.

5. استفاده از ترکیب‌های مختلف گچ در برخی خاک‌های اصفهان

به منظور بررسی صفت‌های مختلف گچ در برخی خاک‌های اصفهان، نمونه‌برداری انجام شد. این نمونه‌برداری شامل گچ و گچ در برخی خاک‌های کمی و اندازه‌گیری‌های مختلف گچ در برخی خاک‌های متفاوت، صورت گرفت.

6. استفاده از ترکیب‌های مختلف گچ در برخی خاک‌های اصفهان

به منظور بررسی صفت‌های مختلف گچ در برخی خاک‌های اصفهان، نمونه‌برداری انجام شد. این نمونه‌برداری شامل گچ و گچ در برخی خاک‌های کمی و اندازه‌گیری‌های مختلف گچ در برخی خاک‌های متفاوت، صورت گرفت.
جدول 1. خصوصیات فیزیکی و شیمیایی نمونه‌های خاک

<table>
<thead>
<tr>
<th>کانیونهای محلول (meq/L)</th>
<th>pH عصاره اشاع</th>
<th>OM (٪)</th>
<th>رس (٪)</th>
<th>سایت (٪)</th>
<th>انق</th>
<th>عمق (cm)</th>
<th>نمونه‌های خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca²⁺</td>
<td>Mg²⁺</td>
<td>Na⁺</td>
<td>K⁺</td>
<td>(dS/m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1000</td>
<td>300</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>800</td>
<td>200</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>600</td>
<td>150</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>400</td>
<td>100</td>
<td>15</td>
<td>7.5</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>50</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
<td>5</td>
<td>2.5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

در واقع کربنات سدیم‌های اندازه‌گیری شده است.

1. بزرگ‌ترین جیب‌سکد و خاک‌های 2 و 7 به ترتیب در گروه بزرگ‌ترین کلسیم‌سکد و هایازول جیب‌سکد قرار گرفته‌اند. طرح آزمایشی به صورت آزمایش‌های فاکتوریل و در قالب طرح پایه کاملاً تصادفی با استفاده از نرم‌افزار گرایش سایت‌های شرکت‌های شرکت نمونه‌های خاک‌ها و خاک 2 از کوپن‌ها، دیزل به کمیت‌ها می‌باشد. سپس از کوپن‌ها به شرکت نمونه‌های خاک‌ها سایت‌های داده شده. قابل ذکر است که در هنگام کوپن‌سازی نمونه‌ها سعی می‌شود تهیه شده شناخت‌های شرکت نمونه‌ها و شرکت‌های کلینیک‌های خونریزی و شمایی خاک‌های خاک در جدول 1 نشان داده شده است.

اندازه‌گیری گچ در نمونه‌های خاک توسط روش‌های استاندارد (114).

رژن اسیدی (14)، کربنات سدیم (9)، سولفات‌های عصاره رقیق Ca²⁺+Mg²⁺ خاک‌های اشباع و عصاره رقیق شده (21)، تغییر عصاره اشباع و عصاره رقیق شده (18)، کربنات آمونیوم، سیرت سدیم و اسید کلسیم‌نیترات (20) اندازه‌گیری شد. عصاره‌گیری گچ در وسایل حاوی فورم به ترتیب آب، روز اسیدی، کربنات سدیم، آب، آب، کربنات آمونیوم، سیرت سدیم و اسید کلسیم‌نیترات از اندازه‌گیری گچ به ترتیب هدایت سنجی الکتریکی، تیتراسیون اسیدی، کودهای سنجی سولفات، تیتراسیون کلیم و نیترات، کودهای سنجی سولفات و بای سه روش آخر وزن سنجی سولفات به در روش‌های که از

568
مقایسه روش‌های مختلف انداده‌گیری گچ در برخی خاک‌های اصفهان

اهتماماتیک خاک و کربنات‌سیمی محلول کریستالاریم اضافه شد. رسوبی تشكیل نشد. در صورت تشكیل رسوب عصاره‌گیری باید ادامه یابد. پس از کامل شدن مرحله عصاره‌گیری، مقدار بیون سوائلات در عصاره جمع آوری شده بوسیله روش کدرون شش زمان‌گیری عصاره‌گیری گچ.

بررسی دقت روش‌ها

پس از انداده‌گیری به ۱۰۰ کم در هر خاک ۱۰ گرم گچ آزمایشگاهی با دارم خروج مشخص اضافه شد. پس از آن مجیداً مقدار گچ هر نمونه، دقیقاً مانند نمونه‌های اولیه و توسط همان روش انداده‌گیری گچ شد. نسبت گچ انداده‌گیری گچ در مرحله دوم به مقدار گچ موجود در خاک (مقدار گچ) به‌دست آمده از مرحله اول به علایه مقدار گچ اضافه شده به بازیابی (Recovery) (۱) تا در هر روش و برای هر نمونه خاک نشان می‌دهد. بطوطسی که هر چه درصد بازیابی روش به ۱۰۰ نتیجه‌گیری تابش و به عبارتی که چه میانگین قدرت‌العمل اختلاف درصد بازیابی روش با ۱۰۰ کمتر تابش، دقت آن روش بیشتر است. اضافه کردن مقدار مشخص گچ به نمونه‌ها خاک و محیط دارد بازیابی به منظور ارزیابی دقت روش‌های مختلف انداده‌گیری گچ توسط برگزاری و نتایج است. (۱۸) انجام شده است. اگر و طبیبی (۱۸) نیز در مقایسه روش‌های مختلف انداده‌گیری سوائلات خاک برای بررسی دقت روش، مقدار معنی‌زا از نمودن حایوی سوائلات را به خاک اضافه نمودند. ضریب تغییرات (Coefficient of variation)، انجام داده‌گیری برای رسوب دقت روش‌های مورد بررسی می‌باشد. هر چه میانگین ضریب تغییرات روش کمتر باشد، دقت روش بالاتر است (۵ و ۹).

\[ RC = \frac{G^+_c}{G^- c} \times 100 \]

درصد بازیابی RC
<table>
<thead>
<tr>
<th>کلمه‌ی 1</th>
<th>کلمه‌ی 2</th>
<th>کلمه‌ی 3</th>
<th>کلمه‌ی 4</th>
<th>کلمه‌ی 5</th>
<th>کلمه‌ی 6</th>
<th>کلمه‌ی 7</th>
<th>کلمه‌ی 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلمه‌ی 9</td>
<td>کلمه‌ی 10</td>
<td>کلمه‌ی 11</td>
<td>کلمه‌ی 12</td>
<td>کلمه‌ی 13</td>
<td>کلمه‌ی 14</td>
<td>کلمه‌ی 15</td>
<td>کلمه‌ی 16</td>
</tr>
<tr>
<td>کلمه‌ی 17</td>
<td>کلمه‌ی 18</td>
<td>کلمه‌ی 19</td>
<td>کلمه‌ی 20</td>
<td>کلمه‌ی 21</td>
<td>کلمه‌ی 22</td>
<td>کلمه‌ی 23</td>
<td>کلمه‌ی 24</td>
</tr>
<tr>
<td>کلمه‌ی 25</td>
<td>کلمه‌ی 26</td>
<td>کلمه‌ی 27</td>
<td>کلمه‌ی 28</td>
<td>کلمه‌ی 29</td>
<td>کلمه‌ی 30</td>
<td>کلمه‌ی 31</td>
<td>کلمه‌ی 32</td>
</tr>
<tr>
<td>کلمه‌ی 33</td>
<td>کلمه‌ی 34</td>
<td>کلمه‌ی 35</td>
<td>کلمه‌ی 36</td>
<td>کلمه‌ی 37</td>
<td>کلمه‌ی 38</td>
<td>کلمه‌ی 39</td>
<td>کلمه‌ی 40</td>
</tr>
</tbody>
</table>

**توجه:** در واقعیت، نمایش واضحی از صفحهٔ متنی نداریم بنابراین نمی‌توانیم متن به طور طبیعی بیان کنیم. این محدودیت اغلب از نتایج صفحه‌سازی می‌دهد که برای بررسی دقیق‌تر متن، نیاز به نمایش صحیح صفحه‌ای داریم.
جدول 3. نوع شوری خاک بر اساس رده‌بندی بازیلیوگی و پاتلکا (8)، و اختلاف روش استون با دو روش کربنات سدیم و رژین

<table>
<thead>
<tr>
<th>اختلاف روش کربنات سدیم و رژین</th>
<th>نسبت کاتیونها (meq/L)</th>
<th>نسبت آنیونها (meq/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>روشهای مختلف</td>
<td>Mg²⁺/Ca²⁺</td>
<td>Na⁺/Ca²⁺</td>
</tr>
<tr>
<td>شاهراه</td>
<td>سولفات</td>
<td>کلسیم-کلسیم</td>
</tr>
<tr>
<td>روش زیستوس</td>
<td>۱/۱۲</td>
<td>۰/۳۲</td>
</tr>
<tr>
<td>روش زیستوس و استون</td>
<td>۰/۶۷</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>روش زیستوس و استون و استون</td>
<td>۰/۵۷</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>روش زیستوس و استون</td>
<td>۰/۵۷</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>روش زیستوس و استون و استون</td>
<td>۰/۵۷</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نتایج نشان دادند که مقادیر گچ به‌دست آمده توسط دو روش رژین و کربنات سدیم همواره بیش از مقادیر گچ اندازه‌گیری شده توسط روش استون می‌باشد. که دلیل آن، معادله (۷) را تأثیر حلالیت گچ را تحت حضور پوسته‌های موجود در محلول خاک‌های شور گزارش کردند.

ارزیابی دفت روش‌ها

از میان روش‌های مورد بررسی حداکثر میانگین ضریب تغییرات مربوط به روش کربنات سدیم و بیشترین مقدار آن مربوط به روش تفاصل کلسیم و میکرومیکس (جدول ۴)، بیشترین میانگین قدر مطلق تفاصل درصد بازیابی بیا ۱۰۰ مربوط به روش استون و کمترین مقدار آن مربوط به روش کربنات سدیم می‌باشد.

(جدول ۱). مقایسه میانگین مطلق اختلاف درصد بازیابی با ۱۰۰ (جدول ۴) نشان داد که روش کربنات سدیم با روش رژین اختلاف معنی‌داری نداشته و هر دو در یک گروه آماری قرار می‌گرفت. نتایج روش کربنات سدیم با کمترین میانگین قدر مطلق اختلاف درصد بازیابی بیا ۱۰۰ مجدداً دانسته و کمترین میانگین ضریب تغییرات از دقت کافی برخوردار می‌باشد. این روش در مقایسه با روش رژین ساده‌تر، سریع‌تر و کم هزینه‌تر بوده و لذا به عنوان مناسب‌ترین روش پیشنهاد می‌شود.

به منظور ارزیابی دفت سایر روش‌ها، روش کربنات سدیم با هفت روش دیگر از طریق روابط رگرسیونی و آزمون آماری SAR و EC محلول و آرسنال و دات
جدول ۴. ضرایب تغییرات روش‌های مختلف

<table>
<thead>
<tr>
<th>شماره</th>
<th>نمونه خاک</th>
<th>کربنات آمونیم</th>
<th>رزین</th>
<th>سولفات عصاره</th>
<th>رئیق شده</th>
<th>تفاضل کلسیم و مننیزم</th>
<th>استون</th>
<th>آب‌دریز</th>
<th>اسیدکلریدریک</th>
<th>سدریم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۳/۲</td>
<td>۴/۲/۳</td>
<td>۳/۲</td>
<td>۶/۵</td>
<td>۱۱/۴</td>
<td>۷/۷</td>
<td>۲/۳</td>
<td>۱/۳</td>
<td>۳/۴</td>
<td>۴/۳</td>
</tr>
<tr>
<td>۲</td>
<td>۳/۱</td>
<td>۷/۷</td>
<td>۵/۱</td>
<td>۳/۴</td>
<td>۶/۲</td>
<td>۸/۰</td>
<td>۱/۱</td>
<td>۱/۷</td>
<td>۳/۹</td>
<td>۵/۷</td>
</tr>
<tr>
<td>۳</td>
<td>۳/۶</td>
<td>۶/۳</td>
<td>۶/۲</td>
<td>۴/۵</td>
<td>۹/۴</td>
<td>۱/۴</td>
<td>۱/۳</td>
<td>۱/۷</td>
<td>۵/۶</td>
<td>۷/۷</td>
</tr>
<tr>
<td>۴</td>
<td>۷/۵</td>
<td>۳/۲</td>
<td>۱/۳</td>
<td>۵/۵</td>
<td>۷/۹</td>
<td>۳/۹</td>
<td>۵/۶</td>
<td>۱/۷</td>
<td>۵/۶</td>
<td>۳/۹</td>
</tr>
<tr>
<td>۵</td>
<td>۹/۴</td>
<td>۱/۳</td>
<td>۵/۵</td>
<td>۴/۵</td>
<td>۴/۹</td>
<td>۵/۶</td>
<td>۵/۶</td>
<td>۱/۷</td>
<td>۵/۵</td>
<td>۴/۹</td>
</tr>
<tr>
<td>۶</td>
<td>۱/۷</td>
<td>۵/۶</td>
<td>۴/۵</td>
<td>۴/۹</td>
<td>۵/۲</td>
<td>۴/۹</td>
<td>۵/۵</td>
<td>۱/۷</td>
<td>۵/۵</td>
<td>۴/۹</td>
</tr>
<tr>
<td>۷</td>
<td>۱/۹</td>
<td>۴/۵</td>
<td>۵/۶</td>
<td>۴/۹</td>
<td>۴/۵</td>
<td>۴/۹</td>
<td>۵/۵</td>
<td>۱/۷</td>
<td>۵/۵</td>
<td>۴/۹</td>
</tr>
<tr>
<td>۸</td>
<td>۱/۷</td>
<td>۴/۵</td>
<td>۵/۶</td>
<td>۴/۹</td>
<td>۴/۵</td>
<td>۴/۹</td>
<td>۵/۵</td>
<td>۱/۷</td>
<td>۵/۵</td>
<td>۴/۹</td>
</tr>
<tr>
<td>۹</td>
<td>۱/۷</td>
<td>۴/۵</td>
<td>۵/۶</td>
<td>۴/۹</td>
<td>۴/۵</td>
<td>۴/۹</td>
<td>۵/۵</td>
<td>۱/۷</td>
<td>۵/۵</td>
<td>۴/۹</td>
</tr>
</tbody>
</table>

جدول ۵. قدرمطلق اختلاف درصد بازیابی با ۱۰۰ در روش‌های مختلف

<table>
<thead>
<tr>
<th>شماره</th>
<th>نمونه خاک</th>
<th>کربنات آمونیم</th>
<th>رزین</th>
<th>سولفات عصاره</th>
<th>رئیق شده</th>
<th>تفاضل کلسیم و مننیزم</th>
<th>استون</th>
<th>آب‌دریز</th>
<th>اسیدکلریدریک</th>
<th>سدریم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۳/۲</td>
<td>۴/۲/۳</td>
<td>۳/۲</td>
<td>۶/۵</td>
<td>۱۱/۴</td>
<td>۷/۷</td>
<td>۲/۳</td>
<td>۱/۳</td>
<td>۳/۴</td>
<td>۴/۳</td>
</tr>
<tr>
<td>۲</td>
<td>۳/۱</td>
<td>۷/۷</td>
<td>۵/۱</td>
<td>۳/۴</td>
<td>۶/۲</td>
<td>۸/۰</td>
<td>۳/۱</td>
<td>۱/۷</td>
<td>۳/۴</td>
<td>۴/۵</td>
</tr>
<tr>
<td>۳</td>
<td>۳/۶</td>
<td>۶/۳</td>
<td>۶/۲</td>
<td>۴/۵</td>
<td>۹/۴</td>
<td>۱/۴</td>
<td>۵/۱</td>
<td>۱/۷</td>
<td>۵/۶</td>
<td>۷/۷</td>
</tr>
<tr>
<td>۴</td>
<td>۷/۵</td>
<td>۳/۲</td>
<td>۱/۳</td>
<td>۵/۵</td>
<td>۷/۹</td>
<td>۴/۵</td>
<td>۵/۶</td>
<td>۱/۷</td>
<td>۵/۵</td>
<td>۷/۷</td>
</tr>
<tr>
<td>۵</td>
<td>۹/۴</td>
<td>۱/۳</td>
<td>۵/۵</td>
<td>۴/۹</td>
<td>۴/۹</td>
<td>۴/۵</td>
<td>۵/۵</td>
<td>۱/۷</td>
<td>۵/۵</td>
<td>۴/۹</td>
</tr>
<tr>
<td>۶</td>
<td>۱/۷</td>
<td>۵/۶</td>
<td>۴/۵</td>
<td>۴/۹</td>
<td>۴/۹</td>
<td>۴/۹</td>
<td>۵/۵</td>
<td>۱/۷</td>
<td>۵/۵</td>
<td>۴/۹</td>
</tr>
<tr>
<td>۷</td>
<td>۱/۷</td>
<td>۴/۵</td>
<td>۵/۶</td>
<td>۴/۹</td>
<td>۴/۵</td>
<td>۴/۹</td>
<td>۵/۵</td>
<td>۱/۷</td>
<td>۵/۵</td>
<td>۴/۹</td>
</tr>
<tr>
<td>۸</td>
<td>۱/۷</td>
<td>۴/۵</td>
<td>۵/۶</td>
<td>۴/۹</td>
<td>۴/۵</td>
<td>۴/۹</td>
<td>۵/۵</td>
<td>۱/۷</td>
<td>۵/۵</td>
<td>۴/۹</td>
</tr>
<tr>
<td>۹</td>
<td>۱/۷</td>
<td>۴/۵</td>
<td>۵/۶</td>
<td>۴/۹</td>
<td>۴/۵</td>
<td>۴/۹</td>
<td>۵/۵</td>
<td>۱/۷</td>
<td>۵/۵</td>
<td>۴/۹</td>
</tr>
</tbody>
</table>

جدول ۶. مقایسه میانگین قدرمطلق اختلاف درصد بازیابی با ۱۰۰ در هشت روش اندماه‌گیری چگ

<table>
<thead>
<tr>
<th>روش</th>
<th>میانگین قدرمطلق اختلاف درصد بازیابی با ۱۰۰/۲%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca²⁺+Mg²⁺</td>
<td>استون</td>
</tr>
<tr>
<td>سولفات عصاره رئیق شده</td>
<td>تفاضل</td>
</tr>
<tr>
<td>کربنات آمونیم</td>
<td>سیلاته عصاره رئیق شده</td>
</tr>
<tr>
<td>سیرین</td>
<td>کربنات آمونیم</td>
</tr>
<tr>
<td>اسیدکلریدریک</td>
<td>سیرین</td>
</tr>
<tr>
<td>رزین</td>
<td>کربنات آمونیم</td>
</tr>
<tr>
<td>کربنات آمونیم</td>
<td>استون</td>
</tr>
</tbody>
</table>

صفحه ۵۷۲
جدول ۷ مقایسه روش کربنات سدیم با سایر روش‌های اندازه‌گیری گچ در برخی خواص‌های اصفهان

<table>
<thead>
<tr>
<th>شماره</th>
<th>روش نمونه‌گیری</th>
<th>شماره</th>
<th>کربنات اسیدکاربدریک (%)</th>
<th>تفاوت‌های سولفات عصاره</th>
<th>کربنات اسیدکاربدریک (%)</th>
<th>تفاوت‌های سولفات عصاره</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0/16</td>
<td>0/8**</td>
<td>0/9**</td>
<td>0/8**</td>
<td>0/9**</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1/02</td>
<td>1/0**</td>
<td>1/0**</td>
<td>1/0**</td>
<td>1/0**</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2/01</td>
<td>2/01**</td>
<td>2/01**</td>
<td>2/01**</td>
<td>2/01**</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3/04</td>
<td>2/04**</td>
<td>2/04**</td>
<td>2/04**</td>
<td>2/04**</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>4/02</td>
<td>3/02**</td>
<td>3/02**</td>
<td>3/02**</td>
<td>3/02**</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5/08</td>
<td>4/08**</td>
<td>4/08**</td>
<td>4/08**</td>
<td>4/08**</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>6/11</td>
<td>5/11**</td>
<td>5/11**</td>
<td>5/11**</td>
<td>5/11**</td>
</tr>
</tbody>
</table>

شکل ۱ رابطه رگرسیونی روش کربنات سدیم و سایر روش‌های مورد بررسی

از معنی‌دار نشان اختلاف میانگین مقدار گچ به‌دست آمده از دو روش کربنات سدیم و رزین (جدول ۷) و نتیجه‌گیری بسیار زیاد خط رگرسیونی آنها به خط ۱/۱ (شکل ۱). عدم وجود اختلاف معنی‌دار آنها نشان دهنده همبستگی میانگین‌ها است. برای تعیین خط ریگرسیونی مورد استفاده، نتایج نشان می‌دهد که کمترین اختلاف خط رگرسیونی با شیب خط ۱:۱ اخترین مربوط به دو روش رزین و کربنات سدیم بود. پس از آن شیب یکپارچگی خط رگرسیونی روش‌های میانگین سدیم و اسید کلریدریک در بررسی روش کربنات سدیم با شیب خط ۱:۱ نشان داد. روش کربنات اسیدترین در مقایسه با سایر روش‌ها بیشترین اختلاف شیب را با خط ۱:۱ دارد (شکل ۱).
جدول 8: مقایسه میانگین مقدار گچ توسط روش‌های کربنات آمونیوم، دیترات سدیم و اسید کلریدریک

<table>
<thead>
<tr>
<th>شماره نمونه خاک</th>
<th>دیترات سدیم</th>
<th>کربنات آمونیوم</th>
<th>اسید کلریدریک</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/84 ab</td>
<td>0/55 ab</td>
<td>0/53 ab</td>
</tr>
<tr>
<td>2</td>
<td>0/84 ab</td>
<td>0/55 ab</td>
<td>0/53 ab</td>
</tr>
<tr>
<td>3</td>
<td>1/39 ab</td>
<td>2/31 ab</td>
<td>2/31 ab</td>
</tr>
<tr>
<td>4</td>
<td>2/47 ab</td>
<td>2/50 ab</td>
<td>2/50 ab</td>
</tr>
<tr>
<td>5</td>
<td>2/31 ab</td>
<td>2/31 ab</td>
<td>2/31 ab</td>
</tr>
<tr>
<td>6</td>
<td>2/47 ab</td>
<td>2/50 ab</td>
<td>2/50 ab</td>
</tr>
<tr>
<td>7</td>
<td>2/47 ab</td>
<td>2/50 ab</td>
<td>2/50 ab</td>
</tr>
</tbody>
</table>

شکل 2: رابطه رگرسیونی دو روش کربنات آمونیوم و دیترات سدیم

ویک مقادیر گچ اندازه‌گیری شده توسط این دو روش را با یکدیگر مقایسه کرده‌ایم. نتایج نشان می‌دهد که مقادیر گچ اندازه‌گیری شده توسط این دو روش به‌صورت معنی‌داری تفاوت نداشتند. بنابراین، این دو روش می‌توانند به‌عنوان روش‌های جایگزین یکدیگر در تحلیل میزان گچ استفاده شوند.

تاثیر نوع عصاره گچ بر اختلاف روش‌های اندازه‌گیری

به‌منظور بررسی تأثیر نوع عصاره گچ سه روش کربنات آمونیوم، دیترات سدیم و اسید کلریدریک با یکدیگر مقایسه شدند. نتایج نشان داد که این روش‌ها در توانایی اندازه‌گیری مقدار گچ با توجه به شرایط محیطی مختلف و همچنین به‌عنوان روش‌های جایگزین یکدیگر در تحلیل میزان گچ استفاده شوند.

574
مقایسه روش‌های مختلف اندازه‌گیری گچ در برخی خاک‌های اصفهان

آمده می‌توان استنباط کرد روش کریت‌نت اموزنم برای خاک‌های
با مقدار زیاد گچ از دقت کافی برخوردار نمی‌باشد اما در
خاک‌های با حدود ۳۰٪ کمی‌توان به عنوان روشی معیتی
تنظیم شود. دلیل اصلی عصر‌مگی کریت‌نت اموزنم یا دو
عصر‌مگی دیگری می‌تواند مشکلی کلسیم حاصل از
واکنش کلسیم کنی و عصر‌مگی کلاستیت با کلسیم حاصل از
حلال‌های گچ باشد که در مقایسه زیادی گچ توانسته به
پوششاندن سطح ذرات گچ باعث برآورد کمتر گچ نسبت به هوا
عصر‌مگی دیگر شود.

نتیجه گیری

۱. از میان هشت روش بررسی شده، روش کریت‌نت سدیم با
کمترین مشاهده نتایج قالی بالایی با ۱۰۰ یکمین
ضرب تغییرات و کمترین معیار خطای احتمالی به عنوان
مناسب‌ترین روش تیعت گچ عبارت می‌شد.

مباحث مورد استفاده

۱. تومانیان، ن. ۱۳۷۴. منشأ گچ و چگونگی تشکیل و تکامل خاک‌های گچی منطقه شمال غربی استان اصفهان. پایان نامه کارشناسی
ارشد خاک‌شناسی، دانشگاه صنعتی اصفهان.
۲. فریبورگ، م. ه. ۱۳۸۱. رابطه بین زنومورفولژی و تکامل خاک‌های گچی در منطقه رفسنجان. پایان نامه دکتری خاک‌شناسی
دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
۳. محمودی، ش. ۱۳۷۲. خصوصیات و مدیریت خاک‌های گچی. مجموعه مقالات چهارمین کنگره علوم خاک ایران. دانشگاه صنعتی
اصفهان.
۴. محمودی، ش. ۱۳۶۵. اندازه‌گیری گچ با روش رژین هیدروژن و مقایسه آن با روش استاندارد. مجله علوم کشاورزی ایران