ارزش غذایی تغذه مربوط به (لیمو و پرنگال) عمل آوری شده به کار گرفت

Neurospora sitophila

کورش ناظم ۱، میشاف روزبهان ۲ و سید عباس شجاع‌الساداتی ۲

(نمره دریافت: ۸۵/۱۱/۱۱ تاریخ پذیرش: ۴/۶/۸۹۹)

چکیده

در این بررسی ارزش غذایی تغذیه‌ای مربوط به لیمو و پرنگال عمل آوری شده به کار گرفت. نتایج in vitro نشان دهنده تغذیه‌آمیزی ماده خشک و پاتوئیتی خانه به روش تکه‌تنی و تکه‌تنی نشان دهنده جنگلی سلولی دانسته شد. تعداد آنزیم‌های تغذیه‌آمیزی ماده خشک و پاتوئیتی خانه به روش تکه‌تنی و تکه‌تنی نشان دهنده جنگلی سلولی دانسته شد.

خواص نمونه‌های عمل آوری شده به کار گرفت. تغذیه‌آمیزی ماده خشک و پاتوئیتی خانه به روش تکه‌تنی و تکه‌تنی نشان دهنده جنگلی سلولی دانسته شد.

واژه‌های کلیدی: تغذه مربوط به لیمو و پرنگال

۱. به ترتیب دانشجوی سالی کارشناسی ارشد و دانشیار علوم دامی دانشکده کشاورزی، دانشگاه تبریز، مدرس، تهران
۲. استادی دانشکده کشاورزی و مهندسی دانشکده کشاورزی، دانشگاه تبریز، مدرس، تهران
rozbeh_y@modares.ac.ir

* : مسئول مکاتبات، پست الکترونیکی: rozbh_y@modares.ac.ir

495
آزمایش‌های ترارشیدی در صنعت دام و طیور کشور کمیاب‌تر

کارایی آزمایش‌های ترارشیدی در صنعت دام و طیور کشور کمیاب‌تر است. این امر نشان می‌دهد مقدار پیچیدگی و بافت در بیماری‌ها میانه‌هاییست که باید به‌عنوان چنین مشکلاتی در زمینه‌های مختلف به‌عنوان داروهای ترارشیدی استفاده شوند. از جمله این بیماری‌ها، بیماری‌های میانه‌ای و حساسیت‌های عفونی به‌روش‌های ترارشیدی استفاده می‌شود.

ماکده

علم و فنون کشاورزی و منابع طبیعی/سام دواده‌ها/شماره چهل و سوم (پ) / بهار 1387

عمل آزمایش‌های ترارشیدی در جهت افزایش محصولات پروری باعث افزایش کارایی آنها در تغذیه دام‌گردهای می‌گردد. بنظیر تولید مواد خوراکی بهتری از ضایعات زیادی و افزایش محصولات پروری آنها، روش‌های مختلف به‌کار گرفته شده است. افزودن مواد مثل اوره به غذاها، به علت ماهیت ویژه بدن، بهبود می‌یابد. افزودن مواد پروری بالا می‌تواند به‌عنوان یکی از راه‌های جدید استفاده در این بیماری به‌عنوان داروهای ترارشیدی اعمال شود.

495
ارزش‌گذاری تناقل ریزکات (لیمو و پرتقال) عمل آوری شده با فارج.

می‌باشد که این نوع فارج‌های عاشری شسته‌شده، آن‌ها را در شرایط مغذی و سیستم قادر به این‌گونه بوده و تکثیرشاتی‌ی قابل‌گلاژکری، سولو و کاریکاتور را تجربه کنند که از سوء‌موجود در تناقل ریزکات به عنوان منبع کمی از آمونیاک به عنوان منبع آنزیم استفاده کرده و تولید بروتون‌های نیتباخم. در شرایط کامالی استریل با هر شست‌ی یک لوب میلیمیونار فارج تلقیح شد و در دمای 30°C به مدت 24 ساعت گرام‌گذاری شد. پس از آن کشت‌یاه تهیه شده در دمای 40°C درون یکی گرارا شدند. ترکیب محیط کشت نگه‌دارند و مایه تلقیح (در یک لیتر) به شرح زیر بود (21).

گلاژکر 100 گرم، عصارهتخیر بی‌حمض 2 گرم، فسفات هیدروژن پتاسیم (KH2PO4) 0/87 گرم، اوره 8/8 گرم، سولفاهیت آمونیوم (MgSO4) 7H2O 0/34 گرم، سولفات منگنز (NH4)2SO4 0/2 گرم، کربن الکسیم (ZnSO4. 7H2O) 2/4 گرم، اسید بوریک (H3BO3) 0/05 گرم، مولیبدنات (FeCl3) 0/08 گرام، سولفات مس (NH4)6 Mo7O24. 4H2O 0/78 گرام، کربن دی‌الکسیز (CuSO4. 5H2O) 0/144 گرام، کربن آهن (FeCl3) 0/2 گرام.

برای تهیه کشت به‌کار برده شده در 100 گرم یک لیتر مایعی کشت با ترکیب فوق تهیه و در یک ارنل 3/3 گرمی ریخته شد. پس از 15 psi منظوم و در دمای 211°C به pH 14 دفعه استریل گردید. در شرایط کامالی استریل چند لوب از میلیمیونی فارج روی کشت به دوبل ارنل محیط محیط کشت نگه‌دارند تلقیح شد و در دمای 35°C به مدت 24 ساعت روی همون به شدت 200 دور در دقیقه گرام‌گذاری شد و کشت تلقیحی به دست آمده بجای نگه‌دارن به یکچند با دمای 40°C متقلینت شد.

(ب) آماده سازی نمونه‌ها

ایندا مقداری از تناقل ریزکات دهنده در پیچ برای آزمایشگاه آسیب‌پذیر شده و با 12 در 12 ارنل کرایکدند. مقدار 5 گرم از تناقل ریزکات آسیب‌پذیر شده برای تعیین مقدار ماده

دما 121°C قرارداده شد.

(ج) تلقیح فارج و عمل آوری

پس از استریل شدن ارزش‌های مجوزتی آنها، عمل تلقیح اینی بر
جدول 1: مقدار پروتئین خام نمونه‌ها

<table>
<thead>
<tr>
<th>نوع عمل‌آری</th>
<th>مقدار تناهی در هر اثر (گرم)</th>
<th>درصد رطوبت</th>
<th>درصد پروتئین</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدن عمل‌آری</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>بدن عمل‌آری</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>بدن عمل‌آری</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>عمل‌آری</td>
<td>20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>عمل‌آری</td>
<td>40</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>عمل‌آری</td>
<td>60</td>
<td>10</td>
<td>60</td>
</tr>
</tbody>
</table>

روی تناهی‌ها (به ازای هر 10 گرم از تناهی‌ها مقدار 1 میلی لیتر از محیط کشت قارچ) در زیر هود و در شرایط استریل انجماد شد. سپس، اثر ها به دستگاه اکسپانسور متصل شد و به مدت 2 کیلوگرم ساعت در دمای 35°C قرار گرفتند. پس از گذاشته 120 ساعت اثر از اکسپانسور خارج شده و نمونه‌های داخل هر کدام به تطر جدایی کرده بود. این نمونه‌ها داخل آن در دمای 5°C قرار داده شد تا کاملاً خشک شوند. پس از خشک شدن کامل، نمونه‌ها به تطر جدایی آسیبی شدند و میزان پروتئین آنها تعیین شد تا به‌صورت شرایط جهت عمل آری تعیین گردد. از آنجایی که ممکن است با کلک، اثر تناهی‌ها درصد پروتئین آنها تغییر کند، با پاک‌کردن مقداری از تناهی‌ها با الک به کهی‌ها 20 مشکل کشیده و مقدار پروتئین آنها تعیین گردد. مقدار پروتئین خام نمونه‌ها جدول 1 ارائه داده شد.

شده، آزمایش‌های لازم روز آنها انجام شد. برای تهیه نمونه پرتنغال ابتدا تناهی‌ها تهیه شده در آزمایشگاه در برای اتفاق خشک شده و سپس آسیب و با پاک‌کردن pH نمونه‌های لیمو، ابتدا pH که برای 24 ساعت 5/5 از آنرها استفاده شد و به معنای منفی و پس از ترپی مقدار از سولفات‌های تربیتی استفاده شد. در هر اثر 250 میلی لیتری مقدار 2 گرم نمونه ریخته شد و برای 20 رساندن pH به ازای 2/1 میلی لیتر آمونیاک به ازای هر 20 گرم نمونه اسکاغ و به معنی تری‌میلی‌متر فاصله تری‌میلی‌متری افزایش pH به هر اثر اضافه شد و برای رساندن رطوبت به هر میلی‌متر به به هر اثر اضافه شد. در نهایت اثری ها به مدت 15 دقیقه در اوتکلاور قرار گرفتند تا استریل شوند. پس از استریل شدن به هر اثر مقدار 2 میلی‌لیتر از محلول تلفیق اضافه شد و از اول آنها درون انکوپانسور در دمای 35°C به مدت 120 ساعت قرار گرفتند.

3. تعیین ضرایب هضمی

Dry Matter (DMD) یا میزان مایع‌های خشک (Digestibility Organic Matter) (OMD) و مایع آئی (Digestibility) و میزان مایع‌های خشک (Digestibility Organic Matter) (OMD) و میزان مایع‌های خشک (Digestibility)
جدول ۲. نتایج حاصل از تجزیه شیمیایی (برحسب درصد ماده خشک)

<table>
<thead>
<tr>
<th>تغذیه برقدال</th>
<th>تغذیه لیمو</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار عمل آوری شده</td>
<td>مقدار خام</td>
</tr>
<tr>
<td>۷۸/۲۴</td>
<td>۳/۷۵</td>
</tr>
<tr>
<td>۲۰/۵۵</td>
<td>۹۱/۹۹</td>
</tr>
<tr>
<td>۸/۱</td>
<td>۳/۷۵</td>
</tr>
<tr>
<td>۸/۵</td>
<td>۲۴/۱</td>
</tr>
<tr>
<td>۱۸/۵</td>
<td>۱۸/۵۹</td>
</tr>
<tr>
<td>۱۸/۵</td>
<td>۲۰/۵۱</td>
</tr>
</tbody>
</table>

حرفوی مختلف در هر رنگ نشان‌دهنده تفاوت تغذیه‌های مورد آزمایش در صفت مذکور می‌باشد (P<۰/۰۱). (1)

خام نمونه‌ها از نرم افزار Neway استفاده شد.

روش آماری

اختلاف بین میانگین تیمارهای (هتر تیمار ۴ نکرار) عمل آوری شده و عمل آوری شده در می‌باشد (لیمو و برقدال) با استفاده از آزمون t و بر اساس مدل آماری زیر مقایسه شد:

\[
Y_{ij} = \mu + T_i + e_{ij}
\]

که آنالیزهای آماری با استفاده از نرم‌افزار SPSS انجام شد.

نتایج

نتایج به‌مدت آمدند در جدول ۲ نا ۶ آورده شده است. همان‌طور که در جدول ۲ مشاهده می‌شود میانگین خاکستر خام و پروتئین خام در تغذیه‌های لیمو و برقدال پس از عمل آوری به‌طور معنی‌داری افزایش یافته (P<۰/۰۱). اما میزان افزایش ایجاد شده در محصولات خاکستر خام تغذیه برقدال نسبت به تغذیه لیمو کمتر بود. میزان ماده آلی، NDF و ADF پس از عمل آوری در هر دو نوع تغذیه به‌طور معنی‌داری کاهش یافته (P<۰/۰۱) بود.

(1) (Degridebility Organic Matter Digestibility) DOMD استفاده از روش نلی و تری (2۳) انجام گرفت. به‌دنبال ترتیب که با استفاده از محصول روده و شیروانی شکم پرده در دمای ۲۹ درجه سانتی‌گراد نمونه‌ها به مدت ۲۸ ساعت تحت اکوپسیون یوزر و حفره پر شده و بعد (دکمه‌بندی) به مدت ۲۸ ساعت و در دمای ۳۹ درجه سانتی‌گراد انجام شد (۲۳). انرژی قابل متابولیسم به‌مدت برای انرژی خشک (DOMD) ME (MJ/Kg DM) = 0.0157 × DOMD (g/Kg DM) ماده آمی قابل هضم در ماده خشک (DOMD) = انرژی قابل متابولیسم (ME)

۴. تعيين تجهيز پذيري

تعیین میزان تجهیزبندی ماده خشک و پروتئین نمونه‌ها با استفاده از روش کیسه‌های نابی‌شوند انجام شد (۶). نمونه‌ها پس از توروزن در داخل کیسه‌های داکتون قرار گرفته و از طریق مسیولا وارد شکم دام گردیدند. میزان نابی‌شوند شده نمونه‌ها در فاصله زمانی مختلف، به‌عنوان پخش تجهیزهای خشک در نظر گرفته شد (۶) و (۱۸) برای انجام آزمایش‌های مربوط به تجهیزبندی و ضرابی پشمی از سه راس گان نر تالشی اختم شده استفاده گردید. به‌منظور پیآوردن مشخصات تجهیزبندی ماده خشک و پروتئین
جدول ۳. میزان ماده خشک (درصد)

<table>
<thead>
<tr>
<th>ماده خشک</th>
<th>پرتقال عمل آوری شده</th>
<th>لیمویی شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد کاهش وزن</td>
<td>۲۱/۹</td>
<td>۲۷</td>
</tr>
<tr>
<td>ماده خشک</td>
<td>۱۳/۳</td>
<td></td>
</tr>
</tbody>
</table>

۱: اختلاف بین ماده خشک تفاله شده و تفاله عمل آوری شده

(MJ/Kg DM)

جدول ۴. قابلیت هضم ماده خشک، ماده آلبی در ماده خشک و انرژی قابل متابولیسم (MJ/Kg DM)

<table>
<thead>
<tr>
<th>قابلیت هضم</th>
<th>تفاله پرتقال</th>
<th>تفاله لیمو</th>
<th>مقدار t</th>
<th>عمل آوری شده t</th>
<th>لیمویی شده t</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده خشک</td>
<td>۲/۵/۹</td>
<td>۲/۵/۹</td>
<td>۲/۵/۹</td>
<td>۲/۵/۹</td>
<td>۲/۵/۹</td>
</tr>
<tr>
<td>ماده آلبی در ماده خشک</td>
<td>۲/۵/۹</td>
<td>۲/۵/۹</td>
<td>۲/۵/۹</td>
<td>۲/۵/۹</td>
<td>۲/۵/۹</td>
</tr>
<tr>
<td>انرژی قابل متابولیسم</td>
<td>۲/۵/۹</td>
<td>۲/۵/۹</td>
<td>۲/۵/۹</td>
<td>۲/۵/۹</td>
<td>۲/۵/۹</td>
</tr>
</tbody>
</table>

احتمال مختلف در هر روز دیدر نشان دهنده تفاوت تقلیل‌های مورد آزمایش در صف می‌باشد (P<۰/۰۱).

جدول ۵: توان داده‌شده است. ضرایب تجربی بی‌پرتوی ماده خشک هر دو نمونه پس از عمل آوری به‌طور معنی‌داری افزایش یافته. میزان مواد محلول در آب (a), افزایش یافته (b) به‌طور معنی‌داری (P<۰/۰۱) در تحاله لیمو و b) و c) نداشت.

مقدار مربوط به تجربی بی‌پرتوی مؤثر در شکم از ۲۸ ساعت قرار گرفتن در شکم به‌طور معنی‌داری افزایش یافته. (P<۰/۰۱). میزان مواد محلول در آب (a) به‌طور معنی‌داری افزایش یافته (P<۰/۰۱) مقدار ۰ و c) در تحاله پرتقال و عمل آوری شده افزایش یافته (b) را نشان داد (P<۰/۰۱). اما در تحاله لیمویی عمل آوری شده نسبت به تحاله لیمویی خام افزایش معنی‌داری در بخش‌های b و c مشاهده نشد.

نتیجه‌گیری‌هایی مربوط به تجربی بی‌پرتوی ماده خشک نمونه‌ها در وزن ماده خشک نمونه اولیه = (٪) کاهش وزن

وزن ماده خشک نمونه اولیه/ وزن ماده خشک نمونه نهایی -

مطلق جدول ۴ پس از عمل آوری، ضرایب قابلیت هضم ماده تفاوت هضم ماده خشک و ماده آلبی در ماده خشک و انرژی قابل متابولیسم به‌ازای هر کیلوگرم ماده خشک در هر دو نمونه افزایش یافته (P<۰/۰۱).

نتایج مربوط به تجربی بی‌پرتوی ماده خشک نمونه‌ها در
جدول 1. تجزیه‌پذیری و مشخصات‌های تجزیه‌پذیری ماده خشک

<table>
<thead>
<tr>
<th>تغذیه پرفتن</th>
<th>نمونه‌های عملکردی</th>
<th>مقدار در برابر 1.7$M</th>
<th>کیفیت‌های تجزیه‌پذیری</th>
<th>ضریب تجزیه‌پذیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>الارو</td>
<td>10/5</td>
<td>89.5</td>
<td>4/8</td>
<td>2/3</td>
</tr>
<tr>
<td>الارو</td>
<td>17/5</td>
<td>75.5</td>
<td>4/8</td>
<td>2/3</td>
</tr>
<tr>
<td>الارو</td>
<td>15/5</td>
<td>69.5</td>
<td>4/8</td>
<td>2/3</td>
</tr>
<tr>
<td>الارو</td>
<td>9/5</td>
<td>74.5</td>
<td>4/8</td>
<td>2/3</td>
</tr>
<tr>
<td>بیسبال</td>
<td>8/5</td>
<td>74.5</td>
<td>4/8</td>
<td>2/3</td>
</tr>
</tbody>
</table>

بحث

تکیه شیمیایی

بر اساس نتایج آنالیز دچار 1 به درصد پروتئین خام نمونه‌های عملکردی نشده و نمونه‌های عملکردی شده تفاوت معنی‌داری (P<0.01) مشاهده شد. دلیل آن افزایش بالای درصد پروتئین نمونه‌ها بعد از عملکردی می‌باشد. به‌نحوی که پس از عملکردی، درصد پروتئین خام تغذیه لیمبو 4 درصد در درصد پروتئین خام تغذیه لیمبو در این آزمایش بیشتر از عملکردی رشد کرد. زیرا فارلی و همکاران (20) در تغذیه را توسط انرژی‌های خارج سلولی مصرف کردند و تولید انرژی پروتئین به اکسیدنده می‌نمایند (21). بنابراین از سلول موجود در تغذیه مركبات به عنوان منبع کربنی و از منابع افزوده شده به تغذیه استفاده کرد. و تولید پروتئین ممکن است. بنابراین درصد پروتئین خام تغذیه عملکردی شده می‌گردد (20). یکی از دلایل افزایش

پروتئین خام، متابع افزوده مدیریت شده به تغذیه‌ها در زمان عملکردی است (از جمله آموزش‌گرایی). از طرف دیگر، قارچ تربیت‌نوروزورا سیتونیالی افزوده شده به تغذیه، حاوی سلول بالایی از پروتئین (25) است (17). علاوه بر این، یافته‌ها موجب کاهش کل ماده خشک می‌گردد. از این بر نظر نیز میزان پروتئین خام براساس ماده خشک تا حدودی افزایش می‌یابد. درصد پروتئین خام تغذیه نسبت به مقدار افزایش در این آزمایش آغاز شده و توسط ایکس و ایکس (7) کمتر بود که دلیل آن نشان داده که در نوع نمونه‌های مورد استفاده ایست. در مقایسه با آزمایش شجاع بالادستی و همکاران (21) میزان افزایش درصد پروتئین خام پس از عملکردی در این تحقیق بیشتر بود (16/8 در مقایسه با 16/8 در برای تغذیه الارو و 33/2 در مقایسه با 18/2 در برای تغذیه پرفتن) و در مقایسه با آزمایش بارتوتز و همکاران (8) میزان افزایش درصد پروتئین خام کمتر بود.
جدول ۶: تغییرات ضریب تجزیه‌پذیری و مشخصه‌های تجزیه‌پذیری پروتئین

<table>
<thead>
<tr>
<th>ضریب تجزیه‌پذیری</th>
<th>تغییرات پرتقال</th>
<th>تغییرات لیمو</th>
<th>مقدار</th>
<th>شده</th>
<th>مقدار</th>
<th>شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰/۴</td>
<td>۴۰/۶</td>
<td>۱۸/۷</td>
<td>۳۵/۸</td>
<td>۲۰/۶</td>
<td>۱۸/۵</td>
<td>۱۱/۳</td>
</tr>
<tr>
<td>۱۹/۷</td>
<td>۳۸/۱</td>
<td>۱۳/۷</td>
<td>۷۴/۵</td>
<td>۱۹/۶</td>
<td>۷۸/۴</td>
<td>۱۲/۹</td>
</tr>
<tr>
<td>۲۱/۱</td>
<td>۳۷/۴</td>
<td>۱۷/۹</td>
<td>۸۸/۴</td>
<td>۱۲/۱</td>
<td>۷۴/۵</td>
<td>۱۱/۴</td>
</tr>
</tbody>
</table>

۱. میزان عبور مواد خوراکی از شکم به روده در سطح دهنده (بخش ساعت).

۲. میزان عبور مواد خوراکی از شکم به روده در سطح دهنده و در برای سطح دهنده (بخش ساعت).

۳. میزان عبور مواد خوراکی از شکم به روده در سطح دهنده و در برای سطح دهنده (بخش ساعت).

* ضریب تجزیه‌پذیری مولت پروتئین (7/6)。

جروف مختلف در هر روز دین مناسب همراه با تفاوت تغییرات مورد آزمایش در صفت مذکور می‌باشد (۴/۰۰>پ).

راستکاری ماده خشک نمونه‌ها پس از عمل آوری با قارچ کاهش یافته (جدول ۳). دلیل کاهش ماده خشک پس از عمل آوری، استفاده قارچ از سوسیتو باعث نمک مواد خوراکی می‌باشد که بیشتر نمک قارچ، مقداری از کربن موجود در تغییرات به صورت دی‌اکسید کربن وارد محیط شده و به این ترتیب پس از عمل آوری، میزان ماده خشک نمونه‌ها کاهش می‌یابد. فرآیند کاهش توسط سایر محققین نیز گزارش شده‌است (۲۰).

پس از عمل آوری، مقدار خاکستر خام افزایش و مقدار ماده آماده توزیع شدن و مقدار ماده نمونه‌ها پس از عمل آوری (۴/۰۰>پ). (در طی عمل آوری، برخی منابع مواد معدنی از جمله فسفر و نیترات به تغییرات اولیه افزوده شد که احتمالاً این عامل باعث افزایش مقدار خاکستر خام در
تجلیه‌ذپیری (in sacco) ماده خشک
بر اساس نتایج بدست‌آمده (جدول 5) میزان مواد محلول در آب (بخش 8) در تناولهای عامل آوری شده نسبت به تناولهای خام به ترتیب 1/2 و 1/11 برابر شده است. افزایش میزان مواد محلول در آب از عمل آوری افزایش چاپ عامل آوری با ترتیب 1/36 و در مورد تناول پرفالنت به سطح 0/5 وضعیت است. تغییرات در آن است که احتمالاً قرار با استفاده از آنزیم‌های خوردن دیواره سلولی تناولهای خام را که در آب محلول است تجزیه کرده و با تبدیل آن به ترکیبات ساده‌تر و قابل حل در آب سبب افزایش میزان مواد محلول در آب شده است. با افزایش میزان مواد محلول در آب، افزایش چاپ عامل آوری میکروگالکسیمیا شکم‌های فراهم شده و در نتیجه رشد و فعالیت میکروگالکسیمیا شکم‌های موجب شود. میکروگالکسیمیا شکم‌های مواد محلول‌ها و وجود در شکم‌های شده که می‌تواند در مورد نمونه‌های عامل آوری شده به دلیل مشاهده است (16). میزان مواد محلول غیر قابل حل در آم افزایش نسبت به شکم‌های (بخش 5) در تناولهای عامل آوری شده به میزان اندکی افزایش یافته، اما این افزایش از لحاظ آماری معنی‌دار نیست. همچنین بین نمونه‌های خام و نمونه‌های عامل آوری شده از نظر سرعت تجزیه‌بیشتر (بخش 6) تفاوت معنی‌داری مشاهده نشد. این مسئله نشان می‌دهد که علیرغم افزایش میزان مواد محلول در آگرتوی (7) تقریباً برای است. کاهش پیشرفت دیواره سلولی در مقایسه با دیواره سلولی بدون همی سلول به دلیل وجود همی سلول در ترکیب دیواره سلولی می‌باشد که همی سلول به‌خوبی توسط پارتره‌های موجود استفاده شده و قرار را تجربه شده که (20) مقدار دیواره سلولی و دیواره سلولی بدون همی سلول نمونه‌ها در تحقیق حاصل با مقدار ارایه شده توسط AFRC (4) متفاوت است. که در صدای این تفاوت موجود بین نمونه‌های مورد استفاده است. بر خلاف تجربه نشان می‌دهد که سرا و همکاران (20) انجام داده، درصد دیواره سلولی و دیواره سلولی بدون همی سلول از عمل آوری افزایش یافته (به ترتیب 1/26 و از 1/11 برابر تا 1/36 و از 1/11 برابر تا 1/155 به 1/115 و از 1/11 برابر تا 1/19 برابر تا تحقیق استفاده براز عمل آوری نمونه‌های استفاده شده در مطالعه آن‌ها از قرار پنی سیلیوم (Penicillium roqueforti) (20).

قابلیت هضم
قابلیت هضم ماده خشک و ماده آلی هر دو تناولهای پس از عمل آوری با قرار به‌طور معنی‌داری (P<0/01) افزایش یافته است. افزایش در قابلیت هضم ماده خشک تناولهای لیمو و پرفالنت به ترتیب 1/52 و 2/64 درصد و افزایش قابلیت هضم ماده آلی به ترتیب 1/52 و 14/12 درصد بود. افزایش قابلیت هضم در تناولهای عمل آوری شده به دلیل کاهش دیواره سلولی و دیواره سلولی بدون همی سلول نمونه‌ها (جدول 2) و افزایش مواد محلول در آب (جدول 5) بود (11). کاهش دیواره سلولی و دیواره سلولی بدون همی سلول و افزایش مواد محلول موجب افزایش فعالیت میکروگالکسیمیا شکم‌های و هضم پیشرفت مواد خوراکی شده و این امر نشان دهنده تأثیر قرار بر فعالیت میکروگالکسیمیا شکم‌های و در نتیجه بر قابلیت هضم مواد خوراکی است (11). به طور کلی، خوراک تیتره شده قابلیت هضم بهتری دارد که دلیل آن وجود میکروگالکسیمیا‌های مختلف و...
آب در نمونه‌های عمل اوری شده، به‌خاطر تخمیر آن‌ها، این نمونه‌ها با سرعتی مشابه به‌نمونه‌های خام تجزیه شده است. بین میزان موارد محلول در آب و میزان موارد محلول تخمیر در شکم‌های در نمونه‌های مورد استفاده در این آزمایش و مقدار ارایه شده توسط AFRC (4) تفاوت وجود دارد که دلیل آن احتمالاً تفاوت بین نمونه‌های استفاده شده در دو آزمایش است. سرعت تجزیه بخش 5 در هر دو آزمایش یکسان بوده است.

همان‌گونه که در جدول 2 مشاهده می‌شود، تجزیه‌پذیری نمونه‌های لیمو و پرتقال عمل اوری شده نسبت به قطعات خام افزایش یافته است. دلیل افزایش تجزیه‌پذیری می‌باشد که در نمونه‌های پرتقال عمل اوری شده مقادیر تجویز یافته و مصرف کننده کاهش می‌یابد. در نمونه‌های پرتقال عمل اوری شده میزان موارد محلول در آب (بخش a) است که باعث ثابت گیری می‌شود که در نمونه‌های عمل اوری شده، این نمونه‌ها به دلیل آب‌سنجاق و تغییرات در شکم‌های سطحی و میکروگرم‌های شکم‌های سطحی و تجزیه پذیری بروتین تجویز می‌شود. در نمونه‌های پرتقال عمل اوری شده به دلیل افزایش میزان تجویز پذیری می‌باشد که در نمونه‌های پرتقال عمل اوری شده، نمونه‌های پرتقال عمل اوری شده به دلیل افزایش میزان تجویز پذیری می‌باشد که در نمونه‌های عمل اوری شده میزان تجویز پذیری بروتین تجویز می‌شود.

نتایج مشابه با نتایج فوق گزارش گردیده است.

نتایج

به‌طور کلی، عمل اوری تقابل‌های نسبت به فاز نوروسپوریا سنتیفیلا باعث بهبود غلظت بروتین‌های خام و افزایش ضرایب هضمی ماهی خشک و ماه آلی می‌گردد، لذا پیشنهاد می‌شود از این نکات‌های عمل اوری شده بر عملکرد ماه بررسی شود.

504
مراجع مورد استفاده

1. دشتی، م. ۱۳۸۰. تغییرات غذایی تغذیه چغندری از عمل آوری شده‌ای با فارچ جنرال تروریست‌پورا سیوگاری‌ها با استفاده از گاهویی طالشی. جراحی شده. پایان نامه کارشناسی ارشد. دانشگاه تربیت مدرس. تهران.

2. محمدپور، ا. ۱۳۸۷. غذایی پروتوئین‌های تغذیه افزایش حالات جاده. پایان نامه کارشناسی ارشد. دانشگاه تربیت مدرس. تهران.

3. معاونت امور دام جهاد سازنده. ۱۳۷۸. فراورده‌های دامی از واردات نا‌خودکار. پیام جهاد سازنده ۸ (۳): ۲۴-۳۰.

