Abstract: (37524 Views)
In tea plantation regions of northern part of the country, application of supplemental irrigation during dry periods (lacking rainfalls) in conjuction with proper nitrogen fertilizer application can significantly improve tea yield per unit of plantation area. In order to quantify the effectiveness of proper irrigation and nitrogen management on tea, the response of tea to various levels of irrigation and nitrogen applications was studied in Fouman suburb of Guilan province. Tea crop production function and its crop coefficient (KC) were determined. A line source sprinkler irrigation was used for creatiating a variable irrigation application and a split-split-plot statistical design was used. Irrigation treatments consisted of full irrigation (I4), deficit irrigation (I3, I2 and I1) and no irrigation(I0). Nitrogen application treatments were N1, N2 and N3 (100, 180 and 360 kg/ha) in three replications randomly arranged as main plots, while irrigation treatments as sub plots were not randomized. During the growing period, soil moisture up to the depth of 90 cm was determined gravimetrically and actual crop water use was calculated from mass balance equation weekly. Reference evapotranspiration (ETo) was estimated by Penman-Montieth equation and was used to estimate tea crop coefficient. During growing period, the actual tea water use of I4 and I0 were computed to be 457 and 256 mm. Tea crop coefficient during dry period (June, July and Augest) ranged from 0.8 to 0.9. Crop resistance factor (Ky) for tea was found to be 1.37. Results indicated that optimum rate of nitrogen (180 kg/ha) along with supplemental irrigation, increased yield and water use efficiency (WUE). Futhermore, supplemental irrigation increased yield and WUE more than nitrogen application. In I0 and I1 treatments, application of 100 kg/ha nitrogen resulted the highest yield and WUE.
Type of Study:
Research |
Subject:
Ggeneral Received: 2009/02/24 | Published: 2008/07/15