مدیریت بهینه در مصرف آب و الکتریکی کشت در شرایط استفاده تلفیقی از منابع سطحی و زیرزمینی

مهدی محمد کاظمی شعبانی، تورج هر" و مصور زیبایی

(تاریخ دریافت: 1:1/0/7، تاریخ پذیرش: 12/7/0)

چکیده

کمی بارندگی و محدودیت منابع آب سطحی باعث شده کشاورزان برای تأمین آب لازم جهت کشت گیاهان مختلف از منابع آب سطحی و زیرزمینی به صورت تلفیقی استفاده کنند. تحقیق حاضر مدیریت بهینه در مصرف آب و الکتریکی کشت در شرایط استفاده تلفیقی از منابع سطحی و زیرزمینی در سطح مزرعه را مورد مطالعه قرار داد و همچنین انرژی درصدی از کاهش آب مصرفی در دوره‌های مختلف رشد به‌عنوان راه‌کارهای آبیاری الگویی کشت گلاب (گندم، جو، برنج، چغندر) قدرت داشت. در هر دوی عوامل، در فصل سیسم از تأمین فصل مورد نیاز بررسی قرار گرفت که تاکید بیشتری نسبت به بهره‌برداری به منظور مصرف در بین سیستم‌ها و راه‌کارهای مختلف ذکر شده، محدود کردن گیاهان بر مصرف در نتیجه بهره‌برداری و کارآمدترین سیستم جهت تعیین تقاضای آب باشد.

واژه‌های کلیدی: راه‌کارهای آبیاری، منابع آب سطحی و زیرزمینی، الگوی بهینه کشت، کم‌آبیاری

مقدمه

ایران در جنوب منطقه معتدله شمایی واقع شده و به علت موقعیت خاص جغرافیایی و ناحیه‌های بی‌سیارا پراکندگی و تأثیر دیگر عوامل (مانند نوحه‌های هواوی) از مناطق خشک، جهان به شمار می‌رود. میزان متوسط بارندگی سالانه ایران (250 میلی‌متر) کمتر از این سوم حد متوسط باران سالانه کره زمین (4000 میلی‌متر) می‌باشد (5). لذا کمی بارندگی باعث شده در میزان آب‌های سطحی نوسانات شدید مشاهده شود و طیروکه که

با فرا رسیدن فصل گرم، به ویژه تابستان، آب‌های سطحی غلبه کاهش پیدا می‌کند. در این شرایط کشاورزان برای تأمین آب مورد نیاز خود کشت گیاهان مختلف علاوه بر آب‌های سطحی از آب‌های زیرزمینی نیز استفاده می‌کنند. از طرف دیگر در این شرایط کشاورزان برای رسیدن به سود بیشتر با توجه به اختیار داشتن آب کافی (آب سطحی و زیرزمینی)، به کشت گیاهانی با تأمین آب زیاد از جمله برنج و ذرت و روی آوردهان در صورتی که با توجه به شرایط اقلیمی کشور، برداشت‌پس‌رویه

1. به ترتیب دانشجوی سابق کارشناس ارشد و استادیار مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز
2. استادیار افتخار کشاورزی، دانشکده کشاورزی، دانشگاه شیراز
3. مسئول مکاتبات، پست الکترونیکی: toorajhonar@yahoo.com

۵۳
داده‌های آپ و هوک، تایز آپ روزنامه گیاه‌نگاری شیب‌سازی کردن. همچنین عملکرد این روش از نظر گیاه‌شناسی و عملکرد آوردنی تاثیر جهت سطح زیر کشت در استان فارس نشان می‌دهد که گیاه کشت در ماهه‌های نیمه‌بهاری به عملکرد بهینه‌تر و در نهایت گیاه هر یک از این متغیرهای تأثیرگذار طرح

در این تحقیق، ضمن اینکه هدف بهینه کردن گیاه کشت در شرایط استفاده از منابع سطحی و زیرزمینی‌های بی‌پروری در راهکارهای نیز جهت جلوگیری از مصرف بی‌رویه آب از این‌ها گردیده است.

مواد و روش‌ها

منطقه مورد مطالعه این ایمن تحقیق اراضی زیر دست نیاز از جمله کالان دار و کارخانه‌های زیر است که عملکرد محصولات، هزینه تولید، هزینه بهره‌وری، قیمت محصولات، تاریخ کارکردهای مختلف از جمله کارکردهای دار، جهت آبیاری گیاهان مختلف در سطح زیر کشت و حداکثر امکانات آبی بهره‌وری داران مختلف و حال استفاده بهره‌وری از آب سطحی و زیرزمینی به طریق مختلف از جمله، تکنیک بهره‌وری نام‌های جهت زارویه و همچنین از ایجاد و سازمان‌های روابط به‌منظور استفاده فارس به‌ترین گردید. همچنین اطلاعات بیشتر به شرکت‌های از یک نمونه مشتق دفتر آتشبیانی مبتنی بر درک سطح مزرعه بهره‌وری داران مختلف در زیر سطح‌های آبیاری عمده بین ۲۱ تا ۱۵ هکتار می‌باشد. در این تحقیق جهت بررسی تأثیر سطح مختلف کم‌آبیاری در سطح مزرعه (راک‌گیاه آبیاری) از یک بهره‌وری نام‌بند ۷ هکتاری که در ماهه‌های اول‌های مورد بررسی بود، به‌عنوان بهره‌وری نام‌بند جهت بررسی سطح مختلف کم‌آبیاری (راک‌گیاه آبیاری)
موادی به‌هیچ‌گونه مصرف آب و الگوی کشت در شرایط استفاده می‌شود.

شکل 1. موقعیت منطقه مورد مطالعه (کانال اردبیشت و سطح زیر کشت کانال‌های فرعی ان)
\[
\frac{Y}{Y_p} = \left(1 - K \right) + \left(1 - \frac{W}{W_p} \right)
\]

where:
- \(W \) is the current biomass accumulation rate,
- \(W_p \) is the maximum biomass accumulation rate, and
- \(K \) is the yield coefficient.

\[
W = (1 - 10^k) \times M_p
\]

where:
- \(M_p \) is the maximum biomass accumulation rate.

Establishment (Establishment) (Early vegetation) (Late vegetation) (Yield formation) (Flowering) (Bloom) (Reapening)

\[
Z = \frac{P(Y_{1} - C)}{P_{1} - P_{R}} = \frac{P}{P_{1} - P_{R}}
\]

is the flowering rate (Yield formation), where:
- \(P \) is the price per unit of biomass,
- \(P_{1} \) is the price at the time of establishment,
- \(P_{R} \) is the price at the time of reapening.
جدول 1. درصد بهره‌برداران زیر کاتال ارگه‌نشت که ازمانع آب سطحی و زیرزمینی استفاده می‌کنند.

<table>
<thead>
<tr>
<th>کاتال‌های درجه ۳ (کاتال ارگه‌نشت)</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱۵</td>
<td>۴۶</td>
</tr>
<tr>
<td>۱۱۶</td>
<td>۲۹</td>
</tr>
<tr>
<td>۱۱۷</td>
<td>۷۰</td>
</tr>
<tr>
<td>۱۱۸</td>
<td>۱۸</td>
</tr>
<tr>
<td>۱۱۹</td>
<td>۳۰</td>
</tr>
<tr>
<td>۱۲۰</td>
<td>۱۵</td>
</tr>
<tr>
<td>۱۲۱</td>
<td>۵۰</td>
</tr>
<tr>
<td>۱۲۲</td>
<td>۶</td>
</tr>
<tr>
<td>۱۲۳</td>
<td>۴۰</td>
</tr>
<tr>
<td>۱۲۴</td>
<td>۴۰</td>
</tr>
</tbody>
</table>

نتایج پرداختنامه

جدول 2. تاریخ کشت گیاهان مختلف در منطقه براساس تاریخ‌های آب‌یاری

<table>
<thead>
<tr>
<th>نام گیاه</th>
<th>آب‌یاری</th>
<th>آذر</th>
<th>دی</th>
<th>بهمن</th>
<th>اسفند</th>
<th>فروردین</th>
<th>اردیبهشت</th>
<th>خرداد</th>
<th>تیر</th>
<th>مهر</th>
<th>شرک‌ناپایه</th>
<th>بین الاقوامی</th>
<th>درخت دلخواه</th>
<th>درخت ملی</th>
<th>پرینج</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

ام (m³/ha-10day) می‌باشد که از طریق رابطه زیر به‌دست می‌آید:

\[q_j = \frac{W_{aq}}{Ea} \times A_j \times 10 \]

که در آن، \(W_{aq} \) مقدار آب خالص مورد نیاز گیاه (m³) ه و Ea (mm/10day) واحد راندمان کاربرد آب در مزرعه (اعشار)، عدد \(A_j \) برای تبدیل میلی‌متر به مترکعب در هكتار (m³/ha) و \(10 \) به توجه به رابطه ۷ به‌دست می‌آید.

محدودیت امکانات آب برای کشت گیاهان مختلف در دوره‌های زمانی مختلف نیز به صورت زیر در داده‌های اعمال گردید:

\[\sum_{j=1}^{nacrop} q_j \leq q_{Total}^s + q_{Total}^g \]

که در آن، \(q_{Total}^s \) حداکثر امکانات آب سطحی موجود (m³/ha-10day) \(q_{Total}^g \) حداکثر امکانات آب زیرزمینی موجود (m³/ha-10day) و \(nacrop \) مقدار آب آبیاری مورد نیاز گیاه
جدول 3. ضریب باکش عملکرد به آب

<table>
<thead>
<tr>
<th>مرحله رشد</th>
<th>شکل کبیر عملکرد محصول</th>
<th>واوخر</th>
<th>کلیه</th>
<th>اولین رشد</th>
<th>رویشی</th>
<th>میانه مورد استفاده</th>
<th>استقرار</th>
<th>گیاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>آفتاب و پیش‌سازه</td>
<td>0/17</td>
<td>0/33</td>
<td>0/15</td>
<td>0/12</td>
<td>0/15</td>
<td>0/12</td>
<td>1/42</td>
<td>0/91</td>
</tr>
<tr>
<td>گندم</td>
<td>0/14</td>
<td>0/4</td>
<td>0/12</td>
<td>0/15</td>
<td>0/12</td>
<td>0/15</td>
<td>0/12</td>
<td>0/36</td>
</tr>
<tr>
<td>گیاه</td>
<td>0/15</td>
<td>0/6</td>
<td>0/12</td>
<td>0/15</td>
<td>0/12</td>
<td>0/15</td>
<td>0/12</td>
<td>0/36</td>
</tr>
</tbody>
</table>

جدول 4. حداکثر مقدار کاهش آب مصرفی نسبت به آب‌یاری کامل

<table>
<thead>
<tr>
<th>درصد کاهش آب مصرفی</th>
<th>میانه مورد استفاده</th>
<th>گیاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>حسینی (3)</td>
<td>گندم</td>
</tr>
<tr>
<td>40</td>
<td>حسینی (3)</td>
<td>گیاه</td>
</tr>
<tr>
<td>36</td>
<td>پیرمرادیان (2)</td>
<td>گندم</td>
</tr>
<tr>
<td>30</td>
<td>سیاسخوا و پرند (19)</td>
<td>جو</td>
</tr>
<tr>
<td>30</td>
<td>سیاسخوا و پرند (19)</td>
<td>برنج</td>
</tr>
<tr>
<td>20</td>
<td>سیاسخوا و کامگار (18)</td>
<td>چغندر</td>
</tr>
</tbody>
</table>

که در آن، ET0: تبخیر- تعرق بالقوه سطوح گیاهی مرجع

که در آن، P: بارندگی مؤثر در ماه قام، مقدار آن با استفاده از ترم اخبار و از روش USDA برای ماههای که در US P Wcrop اتفاق می‌افتند، تعیین گردیده است.

آب یا تبخیر - تعرق گیاه (mm/10day) از طریق رابطه

W_{aj} = ET_{crop} - P_e

که در آن، ET_{crop}: تبخیر - تعرق گیاهی (mm/10day) محاسبه می‌گردد:

ET_{crop} = k_c \cdot ET_c
نتایج و بحث
متعارف‌های تکمیل در مدل به‌صورت جدول 5 می‌باشد. همان‌طور که مشاهده می‌شود مقدار آن در بالای روز دسته‌های مختلف
کاهش آپ مصرفی راهکارهای آبیاری (متعارف‌های تکمیل) مختلف
برای گیاه تعیین گردیده است (به‌طور مثال 42 راهکار آبیاری
برای گیاه گندم). پس از این راهکارهای گیاه تعیین مختل
سود داخلی برای هر کدام از آنها محاسبه و در تابع هدف وارد
گردید.
شکل 2 فلورچارد مدل را نشان می‌دهد. همان‌طور که
مشاهده می‌شود مدل می‌تواند با استفاده از عملکرد
هداکتر گیاهان مختلف، فیلتر محصولات، فیلتر آپ مصرفی,
هژینه کشت گیاهان مختلف در هدایات و هدایات امکانات آبی
سطحی و زیرزمینی را در دوره‌های زمانی مختلف را به عنوان
ورودی بگیرد و گیاههای بهینه را برای کانال‌های مختلف انتخاب
بنزد.
جدول 6 گیاه بهینه کشت حاصل از اجرای مدل را
نشان می‌دهد. مشاهده می‌شود که، مدل X1 با سطح
7 هکتار (گذشته شده آب‌گذاری کامل)، X58 با سطح
3 هکتار (برنده شده آب‌گذاری کامل) و X131 با سطح
4 هکتار (برنده شده آب‌گذاری کامل) وارده گیاهی کشت
شده‌اند و در نهایت بازه برنامه‌ای کل به‌دست آمده از
گیاه بهینه 20200000 بیل می‌باشد. همچنین
نتایج نشان می‌دهد با توجه به اینکه کیفیت آب گیاه با توجه
به منابع سطحی و زیرزمینی کاملاً تأمین شده مدل
راه‌گذاری آبیاری کامل برای گیاهان مختلف انتخاب
کرده است.
جدول 7 گیاه فعالی به‌هم‌بودار نیاینده را نشان
می‌دهد. مشاهده می‌شود که بهره‌بردار نماینده نیز در
شرایط استفاده تلفیقی از منابع آب سطحی و زیرزمینی
قسمت اعظم زمین خود را در فصل اول به گندم و در فصل
دوم به برنج و ذرت دانه‌ای اختصاص می‌دهد. همچنین در
این حالت به‌هم‌بودار به دلیل اختیار داشتن امکانات آبی
اولین سیاست که برای تعیید اندازه‌گیری آب در این تحقیق

بیشتر تمام سطح زمین خود را در فصل دوم زیر کشت
گیاهان مختلف می‌برد. البته این سطح زیر کشت بیشتر به
گیاه بردن به دلیل مشاهده در سطح بیشتر اختصاص می‌یابد.
شکل 3 مقادیر آپ مصرفی از به راه‌کشی برای دسته‌های مختلف
نیاز می‌دهد. در حقیقت این مقادیر نیاز حاصل از اجرای مدل
می‌باشد زیرا مدل به گونه‌ای طراحی شده است که این مقادیر
را نیاز نمی‌دهد. همان‌طور که، دیده می‌شود بیشترین میزان
آپ زیرزمینی مورد استفاده در دسته‌های اول تیر، دوم تیر و
سوم تیر به ترتیب به مقدار 3276، 2468 و 2598 متر مکعب
می‌باشد. همچنین در ماه تاریخ نیز مربوط به سایر بیشتر
از آپ زیرزمینی استفاده شده است. بنابراین می‌توان فکت
محدودیت آب بیشتری از این ماهها وجود دارد. شایان ذکر
است ترتیب بیشتری از کشاورزی نیز نیاز می‌دهد بیشترین
محدودیت آب، مربوط به همه ماهها می‌باشد. در دوره اول
(الاین تا آخرین‌سیند) مقادیر آپ زیرزمینی مورد استفاده
صرف می‌باشد عنوان امر این است که در این دوره بازنشستگی و
آب سطحی منابع زیر کشت آب برطرف می‌سازد و دیگر توزیع
به استفاده از منابع زیرزمینی می‌باشد. در ماه تاریخ نیز
این مقادیر صفر می‌باشد عنوان امر این است که در کلم
برنامه بهینه شده است و تمام توزیع گذشته از طریق منابع سطحی
تأمل می‌شود. همچنین تئوری این شکل نشان می‌دهد که در
کدام دوره‌ها محدودیت آب وجود دارد و منابع زیرزمینی
می‌تواند این محدودیت را برطرف سازد. نکته دیگر این که در
این تحقیق دیگر چاپ 10 بار تا ثانیه و میزان سطحی
به‌هم‌بوداری از چاپ 30 ساعت در نظر گرفته شده است که با
توجه به این مقادیر کشانی در هر دهه 2700 متر مکعب آب
در اختیار دارد که جز در دوره اول که کشانی از چاپ
استفاده نمی‌کند در بقیه دوره‌ها می‌تواند به میزان بیشتر از
نیاز گیاه آبیاری ارائه دهد و این حالت با در نظر گرفتن
راه‌گذاری آبیاری کامل می‌باشد. بنابراین مقادیر زیادی از آب
به‌هم‌بودار.
جدول ۵ تعیین منگرهای تصمیم و درصد کاهش آب مصرفی در دوره‌های مختلف

<table>
<thead>
<tr>
<th>درصد درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵</td>
</tr>
<tr>
<td>۳۰</td>
</tr>
<tr>
<td>۴۵</td>
</tr>
<tr>
<td>۶۰</td>
</tr>
<tr>
<td>۷۵</td>
</tr>
<tr>
<td>۹۰</td>
</tr>
<tr>
<td>۱۰۵</td>
</tr>
<tr>
<td>۱۲۰</td>
</tr>
<tr>
<td>۱۳۵</td>
</tr>
<tr>
<td>۱۵۰</td>
</tr>
<tr>
<td>۱۶۵</td>
</tr>
<tr>
<td>۱۸۰</td>
</tr>
<tr>
<td>۱۹۵</td>
</tr>
<tr>
<td>۲۱۰</td>
</tr>
<tr>
<td>۲۲۵</td>
</tr>
<tr>
<td>۲۴۰</td>
</tr>
<tr>
<td>۲۵۵</td>
</tr>
<tr>
<td>۲۷۰</td>
</tr>
<tr>
<td>۲۸۵</td>
</tr>
<tr>
<td>۳۰۰</td>
</tr>
</tbody>
</table>

让您参考这份表格，它是关于不同阶段的水消耗量和相应降低的百分比的。
دیده‌بانی اقتصادی و الگوی کشت
(همزمان تولید هر هکتار محصول،
قيمته‌های واحد محصول، قیمت آب)

اتّریش اطلاعات بررسی‌شده

تبلور و تعریف گیاهان مختلف

ET_{crop}

حداکثر امکانات آب موجود به‌صورت دامنه

Q^G_{Total} و Q^F_{Total}

برنامه‌ریزی آبیاری (محاسبه $W_a \text{ و } Y_n$

برنامه‌ریزی خطی (LP)

نتایج، جداول و گراف‌ها

شکل ۲. فلورچارت مدل برنامه‌ریزی آبیاری
جدول ۶: الگوی بهره‌کننده کشت حاصل از مدل

<table>
<thead>
<tr>
<th>کیه</th>
<th>سطح زیر کشت (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>کندم (X)</td>
</tr>
<tr>
<td>۲</td>
<td>گیوه</td>
</tr>
<tr>
<td>۳</td>
<td>ذرت دانه‌ای (X)</td>
</tr>
<tr>
<td>۴</td>
<td>ذرت علوفه‌ای</td>
</tr>
<tr>
<td>۵</td>
<td>چغندر قند</td>
</tr>
<tr>
<td>۶</td>
<td>برق (X)</td>
</tr>
</tbody>
</table>

مقدار آب مصرفی (m³)

<table>
<thead>
<tr>
<th>نیازهای برنامه (ریال)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۹۶۲۴۵/۵</td>
</tr>
<tr>
<td>۱۰۸۰۰۰۰۰</td>
</tr>
</tbody>
</table>

جدول ۷: الگوی فعلی بهره‌برداری نماینده

<table>
<thead>
<tr>
<th>کیه</th>
<th>سطح زیر کشت (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶</td>
<td>کندم</td>
</tr>
<tr>
<td>۵</td>
<td>ذرت دانه‌ای</td>
</tr>
<tr>
<td>۴</td>
<td>ذرت علوفه‌ای</td>
</tr>
<tr>
<td>۳</td>
<td>چغندر قند</td>
</tr>
<tr>
<td>۲</td>
<td>برق</td>
</tr>
</tbody>
</table>

نتایج پرسشنامه:

شکل ۳: مقدار آب مصرفی از چاه در دهمه‌ای مختلف
جدول ۸. تأثیر تغییر قیمت بر اکوگی بهینه

<table>
<thead>
<tr>
<th>فعالیت (مکار)</th>
<th>قیمت (تونوم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P⁰<sub>w</sub>: ۰-۰۵/۰۵۷۹</td>
<td>X۱</td>
</tr>
<tr>
<td>P⁰<sub>w</sub>: ۰-۰۴/۰۵۷۹</td>
<td>v/*****</td>
</tr>
<tr>
<td>P⁰<sub>w</sub>: ۰۵/۰۵۷۹-۰۵/۰۵۵۶</td>
<td>X۱</td>
</tr>
<tr>
<td>P⁰<sub>w</sub>: ۰۵/۰۵۷۹-۰۶/۰۵۳۸</td>
<td>v/*****</td>
</tr>
<tr>
<td>P⁰<sub>w</sub>: ۰۶/۰۵۷۹-۰۶/۰۵۰۶</td>
<td>X۱</td>
</tr>
<tr>
<td>P⁰<sub>w</sub>: ۰۶/۰۵۷۹-۰۶/۰۵۰۱</td>
<td>v/*****</td>
</tr>
<tr>
<td>P⁰<sub>w</sub>: ۰۶/۰۵۷۹-۰۶/۰۵۰۱</td>
<td>X۱</td>
</tr>
<tr>
<td>P⁰<sub>w</sub>: ۰۹/۰۵۰۵-۰۹/۰۵۰۱</td>
<td>v/*****</td>
</tr>
<tr>
<td>P⁰<sub>w</sub>: ۰۳/۰۵۸۵-۱۲/۰۵۰۱</td>
<td>X۱</td>
</tr>
<tr>
<td>P⁰<sub>w</sub>: ۰۷/۱۵۵۳-۱۲/۱۵۵۲</td>
<td>v/*****</td>
</tr>
<tr>
<td>P⁰<sub>w</sub>: ۰۸/۱۲۰۲-۰۸/۱۲۰۲</td>
<td>X۱</td>
</tr>
<tr>
<td>P⁰<sub>w</sub>: ۱۲/۰۵۰۱-۱۲/۱۵۵۰</td>
<td>v/*****</td>
</tr>
<tr>
<td>P⁰<sub>w</sub>: ۲۲/۱۲۰۲-۱۲۱/۱۲۰۲</td>
<td>X۱</td>
</tr>
<tr>
<td>P⁰<sub>w</sub>: ۸۸/۱۲۰۲-۰۹/۱۲۰۲</td>
<td>X۱۷</td>
</tr>
</tbody>
</table>

همچنین اکوگی بهینه به سمت گیاهان با میزان آب مصرفی کمتر پیش می‌رود (ارکارهای آبیاری). به عنوان مثال مطالعه جدول ۸ خلاصه شده است. نتایج این جدول نشان می‌دهد که با افزایش قیمت آب از سطح زیر کشت فعالیت‌های بهینه کاسته شده و

مورد بررسی قرار گرفت تغییر قیمت آب، و اثر آن بر اکوگی کشت و میزان آب مصرفی بود که نتایج آن به‌صورت جدول ۸ خلاصه شده است. نتایج این جدول نشان می‌دهد که با افزایش قیمت آب از سطح زیر کشت فعالیت‌های بهینه کاسته شده و
جدول 9: الگوی بهینه کشت حاصل از حذف گیاه برنج

<table>
<thead>
<tr>
<th>کیفیت</th>
<th>سطح زیر کشت (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>گندم آبیاری کامل (X1)</td>
</tr>
<tr>
<td>6</td>
<td>چو</td>
</tr>
<tr>
<td>5</td>
<td>حریر دانهای آبیاری کامل (X58)</td>
</tr>
<tr>
<td>4</td>
<td>حریر علفهای</td>
</tr>
<tr>
<td>3</td>
<td>چغندر قند</td>
</tr>
<tr>
<td>مقدار آب مصرفی (m³)</td>
<td></td>
</tr>
<tr>
<td>15430/50</td>
<td></td>
</tr>
<tr>
<td>164288/000</td>
<td></td>
</tr>
</tbody>
</table>

جدول 10: الگوی بهینه کشت حاصل از کاهش بهره‌برداری از چاه

<table>
<thead>
<tr>
<th>کیفیت</th>
<th>سطح زیر کشت (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>گندم آبیاری کامل (X1)</td>
</tr>
<tr>
<td>6</td>
<td>چو</td>
</tr>
<tr>
<td>5</td>
<td>حریر دانهای آبیاری کامل (X59)</td>
</tr>
<tr>
<td>4</td>
<td>حریر علفهای</td>
</tr>
<tr>
<td>3</td>
<td>چغندر قند</td>
</tr>
<tr>
<td>مقدار آب مصرفی (m³)</td>
<td></td>
</tr>
<tr>
<td>18542/62</td>
<td></td>
</tr>
<tr>
<td>1894288/000</td>
<td></td>
</tr>
</tbody>
</table>

جدول 11: الگوی بهینه کشت حاصل از حذف نقایص یا بهینه

<table>
<thead>
<tr>
<th>کیفیت</th>
<th>سطح زیر کشت (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>گندم آبیاری کامل (X1)</td>
</tr>
<tr>
<td>6</td>
<td>چو</td>
</tr>
<tr>
<td>5</td>
<td>حریر دانهای آبیاری کامل (X59)</td>
</tr>
<tr>
<td>4</td>
<td>حریر علفهای</td>
</tr>
<tr>
<td>3</td>
<td>چغندر قند</td>
</tr>
<tr>
<td>مقدار آب مصرفی (m³)</td>
<td></td>
</tr>
<tr>
<td>15430/50</td>
<td></td>
</tr>
<tr>
<td>164288/000</td>
<td></td>
</tr>
</tbody>
</table>

در عرض مقدار آب مصرفی به میزان 21/30 درصد کاهش یافته است. با بازیابی حذف برنج از الگوی کشت زراعت و به‌صورت کلی محدود کردن کشت گیاهان در فصل دوم در تعویض مقدار آب مؤثر می‌باشد.

آیینه بالا می‌باشد یک سیاست دیگر جهت تعیین نقایص آب حذف گیاه برنج از الگوی کشت می‌باشد که نتایج آن در جدول 9 آورده شده است. همانطور که مشاهده می‌شود بازه برنامه‌ای نسبت به جدول 6 به میزان 17/62 درصد کاهش یافته است و لی...
در این تحقیق ساعت‌های بی‌هربرداری از چهار ساعت در شبانه‌روز نظر گرفته شد که کاهش ساعت‌های بی‌هربرداری نیز غیر از اثرات مثبت بررسی قرار گرفت. محدود ۱۰ ساعت بهبودی کرده در مدل کاهش یافته و مدل راهکارهای دیگری غیر از آب‌باری کامل را انتخاب می‌کند. همچنین آب مصرفی نیز به میزان ۸۰٪ درصد کاهش یافته است. اینکه به دلیل اینکه به‌هربرداری از آب سطحی (کتالیز) نیز استفاده می‌کند این میزان کاهش در مقایسه کاهش ساعت به‌هربرداری از چهار ناچیز می‌باشد. این سیاست به دلیل اینکه اکثر جاهای منطقه دیلی می‌باشد از دیوان رهگشا نمتی باشد.

سیاست دیگری که می‌تواند در تقلیل تعداد آب مورد استفاده این است که راهکارهای آبیاری کامل از برداشت بهینه حذف شود. جدول ۱۱ نتایج این تغییر را نشان می‌دهد. مشاهده می‌شود میزان آب مصرفی به میزان ۲۰/۷ درصد کاهش می‌یابد و مدل می‌تواند راهکارهای دیگری غیر از آب‌باری کامل را انتخاب کند.

نتیجه‌گیری

در محصول پروزه‌های پزشک آبیاری (نظیر شبیه آبیاری و

مراجع مورد استفاده

1. آرین، ا. ع. ر. سیاست‌های ۱۳۷۶، معرفی و بررسی صنعتی شیب‌سازی محصولات زراعی و مکعبی آب و خاک (CRPSM) نیک‌مالیان، چهارمی‌سیبایی آبیاری و چهره‌سازی، دانشگاه کرمان، ایران.
2. پیرمرادیان، د. ۱۳۶۸، سیاست‌های کم‌آبیاری و مصرف كود تپوروزن در محصول بررسی، در دانشگاه کوشک (استان فارس). پایان‌نامه دکتری آبیاری و آب‌هایی. دانشگاه شیراز.
3. حسینی، ن. ۱۳۸۴، تاثیر آبیاری جویه‌ای یک در میان بسته‌های مختلف تپوروزن بر اکتشافات گیاهی، و نهایتاً کود به مورد بررسی دانشگاه شیراز.
4. پایان‌نامه کارشناسی استاد آبیاری و زهکش، دانشگاه شیراز.
6. هنر، و. ر. سیاست‌های ۱۳۷۵، اصلاح مدل CRPSM برای نخستین محصول و مکعبی آبیاری دو، هنرمند سیبایی آبیاری و