مدل‌سازی واکنش کلزا به شوری طی دوره‌های رشد زایشی

وحیدرضا جلالی*، مهدی هماوی و سیدخلقت میرنیا¹

(تاریخ دریافت: ۸/۸/۹۸، تاریخ پذیرش: ۸/۱۲/۹۸)

چکیده
گیاه کلزا در پاسخ به تنش شوری، مقاومت‌های متغیر تی از مراحل مختلف رشد از خود پذیر می‌دهد. اغلب گیاهان از جمله کلزا، در مراحل نخستین رشد به شوری حساس می‌تروده و با افزایش سن، مقاومت آنها به شوری افزایش می‌یابد. در مراحل رشد زایشی، حساسیت رشد این گیاه می‌پا دهند. اگر در این دوره تحت تنش قرار گیرد، با وجود داشتن ظاهری سالم، عملکرد چندانی نخواهد داشت. هدف از این پژوهش کپی‌کردن مدل کلزا (مقداری از (Option500) توسط یک مقامی به روش رشد زایشی به کمک منبع کلزا بوده. برای بررسی اثر شوری آب آب ایرانی بر ترکیب گیاه در مرحله گلدهی و عملکرد دانه، آزمایش‌های مدل کسنسی در سال ۱۳۸۴ در دانشکده کشاورزی دانشگاه تربیت مدرس، شمار یک شبیه‌سازی و ۸ تیمار با شوری‌های ۳، ۷، ۱۱، ۱۵ و ۱۷ دیسی‌پرسی بر اساس کار برای شبیه‌سازی دریافت شد و چون بخش هفتم منبع آب شوری طبیعی دریافت‌شده در مدل سطحی تشکیل شده بود. در یک خاک آبیاری زمینی بوده و بخش بمانده برای رشد مدل نظر به گردیده‌ای از مدل شوری گازی‌های رشدی و مدل‌های تی‌اف‌ای (TTF) و عملکرد نسبی دانه (T/S) در دوره‌های مختلف کلزا، به استفاده از مدل‌های هوش آمیزی و هافمن، ونگ‌خوتن و هافمن، در کستون مدل‌های مختلف بر ممایی انتخاب گردیده، به نحوی که این مدل رشدی نسبی است. مقایسه مدل‌ها به استفاده از آزمایش‌ها معنی‌دار است. شامل آنکه برای مدل بی‌کرس و مدل هماوی و همکاران توانست بر اثر بهتری نسبت به سایر مدل‌ها ارائه دهد.

واژه‌های کلیدی: شوری آستانه، ترکیب نسبی، عملکرد نسبی، مدل ونگ‌خوتن و هافمن، مدل هماوی و همکاران

پژوهش‌های پرمارم اثر شوری بر گیاهان مختلف

ارتباط به کلزا، ویل‌نامه بیشتر به تولیدات کشاورزی

مقدمه
رشد فرآینده جمعیت ژنی و نیاز بیشتر به تولیدات کشاورزی

از مسئولی مهیاب انرژی و توانایی آب و خاک معیار اصلی

تولیدات کشاورزی تلفات بیشتری دارد و پیروی اصلی

منابع آب موجود و آب‌های نوشته و با کمیت نامناسب در

سرلصاح فعالیت‌های کشاورزی مختلف قرار دارد (۱۵).

* ۱. به ترتیب دانشجو دکتری دانشیار خاک‌شناسی دانشگاه کشاورزی دانشگاه تربیت مدرس تهران
V_Jalali@modares.ac.ir

* مسئول مکاتبات، پست الکترونیکی: ir
در تحقیقاتی که توسط ولسون و همکاران (۱۸) انجام گرفت، واکنش دو گونه گیاهی خاص از استفاده و تمرکز نسبت به سطوح مختلف شوری‌های زمین‌های گوناگون مورد بررسی قرار گرفت. نتایجی که دست‌آمده نشان داد که این دو گونه در اولین قابل رشد بودند. ویژه‌ای به تعیین آفات‌های اعمال شوری می‌پرداخت و آنها را به تنش افزایش می‌زاید. فرانسه (۱۸) در آزمایش‌هایی به بررسی رشد بودن، عملکرد دانه و محصول روش یافت که در نتیجه، سه گونه از جمله کلاهی و اینکه یک گونه روانگی کلی در مراحل گیاهی به این دلیل در بهتر به رشد بودند و نسبت به حساسیت به شرایط بی‌سیبی کاسته ماند. سپس در زمینه آنها به تنش نسبت به زمین‌های موادی که در این مدل‌ها و سطوح (Microscopic models) و مدل‌های خرید (Macroscopic models) مدل‌هایی (Models) وجود دارد که می‌توان آنها را به دو گروه تقسیم کرد. مدل‌های خرید بدلیل فرض‌های نمایی غیرواقعی و نمای غیرواقعی انسان‌گیری بودن پارامترهای آن، تأثیر واکنش‌گذاری گل‌شنده آن‌ها در آن به همین خاطر گروه دیگری از مدل‌ها به مدل‌های کلان شهرت دارند. طراحی و ارتقاء گرددند. در مدل‌های کلان مقدار آب جذب شده توسط گیاه برابر با تعریق واقعی (Actual transpiration, \(T_p\)) و در شرایط که هیچ گونه محصولات آبی در خاک وجود نداشته باشند، برای بای تعریق پنالتیل (Potential transpiration, \(T_p\)) در نظر گرفته شده و معادله کلی آن به صورت زیر است:

\[
S = S_{\text{max}} = \frac{T_p}{Z_t}
\]

که در آن \(S_{\text{max}}\) مقدار آب جذب شده به وسیله ریشه ای جای در واحده حجم خاک و زمین (LT۵۰T۲۴) است. اکثر حاصل توانا (LT۲۴) و Tp و Tp تعریق پنالتیل (Potential transpiration, \(T_p\)) فراهم آورده، به انتها آب گیاهی را یا حداقل تعریق \(T_p\) فراهم آورده، به انتها آب گیاهی را یا حداقل تعریق (Reduction Function) که به آن نسبت کاهش می‌شود:

\[
S = aS_{\text{max}} = a\left(\frac{T_p}{Z_t}\right)
\]

معمولاً تابعی از پنالتیل ماتریک خاک بوده و آن را به صورت نشان می‌دهند. معادله ۳ شکل عمومی مدل‌های کلان است \(a(h)\):
\[\alpha(h_\nu) = \frac{1}{\frac{h_{\nu}^*-h_{\nu}}{h_{\nu}^*-h_{\nu}\text{max}}} \]

توبعی که برای \(\alpha(h_\nu) \) پیشنهاد شده‌اند مختص به روابط هستند که توسط ماس و هالفمان (22)، ونگوختن و هالفمان (27)، درکسن و همکاران (6) و همایی و همکاران (13، 14) و ارائه‌گرده‌آمده‌اند و به شرح زیر می‌باشند:

\[S = \frac{\alpha(h_\nu)S_{\text{max}}}{\alpha(h_\nu)T_p} = \frac{\alpha(h_\nu)T_p}{Z_r} \]

توپعی که برای \(\alpha(h_\nu) \) پیشنهاد شده‌اند مختص به روابط هستند که توسط ماس و هالفمان (22)، ونگوختن و هالفمان (27)، درکسن و همکاران (6) و همایی و همکاران (13، 14) و ارائه‌گرده‌آمده‌اند و به شرح زیر می‌باشند:

\[\alpha(h_\nu) = \frac{a(h_\nu)S_{\text{max}}}{a(h_\nu)T_p} = \frac{\alpha(h_\nu)T_p}{Z_r} \]

که توسط فیض و همکاران (7) ارائه شده است. در شرایط شور، \(\alpha \) تابعی از پتانسیل اسپرم محلول خشک بوده و مقدار جذب آب توسط کاهش در این شرایط به صورت زیر تعیین می‌شود:

\[\alpha(h_\nu) = 1 - \frac{a(h_\nu)S_{\text{max}}}{a(h_\nu)T_p} = \frac{\alpha(h_\nu)T_p}{Z_r} \]

که در آن \(a \) شبیه‌جا مقدار کاهش عمکبرد به ازا یک واحد افزایش شوری پس از آستانه شوری می‌باشد. از آنجا که منحنی دقیق بایستی گیاه به شوری، شکل‌سیگمودی، و نه خطی دارد، به همین دلیل ونگوختن و هالفمان (27) معادله‌ای غیر خطی به صورت زیر پیشنهاد کردند:

\[\alpha(h_\nu) = \frac{1}{\frac{1}{h_{\nu}^* - h_{\nu}} + \frac{(1-\alpha)/(\alpha(h_\nu^* - h_{\nu}^{\text{max}}))}{h_{\nu}^* - h_{\nu}^{\text{max}}}} \]

که در آن \(h_{\nu}^* \) مقدار افزایش اسپرمی است که در آن جذب آب توسط گیاه 50 درصد کاهش می‌یابد. \(P \) نیز ضریبی تجربی است که وابسته به گیاه، {	ext{کاشت}} و {	ext{فیلم}} می‌باشد (12).

\[\alpha(h_\nu) = \frac{1}{\frac{1}{h_{\nu}^* - h_{\nu}} + \frac{(1-\alpha)/(\alpha(h_\nu^* - h_{\nu}^{\text{max}}))}{h_{\nu}^* - h_{\nu}^{\text{max}}}} \]

که در آن \(h_{\nu}^* \) مقدار افزایش اسپرمی است که در آن جذب آب توسط گیاه 50 درصد کاهش می‌یابد. \(P \) نیز ضریبی تجربی است که وابسته به گیاه، {	ext{کاشت}} و {	ext{فیلم}} می‌باشد (12).
مواد و روش‌ها

آزمایش در یک خاک شور زراعی با بافت لوم شنی و در گلچینه به‌اشتغال ۳۶ و ۲۴ قرار داده شده در سطح ۸ ساختی‌ست (Typic Torrithent). از منطقه سفره‌ای استان قم (۴۷° و ۵۹° طول شرقی و ۲۳° و ۴۲° عرض شمالي) بهره‌مندی و به درشت ساخته شده. بر اساس ارگانیک و شیمیایی خاک، می‌تواند به آزمایش‌های مورد شوری و/or NaCl ترکیبی از CaCl۲ و NaCl در اثر پرورش کاهش می‌دهد. در اثر پرورش کاهش می‌دهد در اثر آزمایش. حجم و EC رئوس راه‌اندازی گیری
جدول 1. برخی ویژگی‌های شیمیایی و فیزیکی خاک مورد استفاده

<table>
<thead>
<tr>
<th>سند</th>
<th>رس</th>
<th>آمیزه</th>
<th>فنر</th>
<th>نیترات</th>
<th>کلسیم</th>
<th>موسیم</th>
<th>منیزیم</th>
<th>فوسفور</th>
<th>تنا</th>
<th>اکسیژن</th>
<th>ECw</th>
<th>سیل</th>
<th>فزاین</th>
<th>pH</th>
<th>فسفر</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/kg)</td>
<td>(mg/kg)</td>
<td>(meq/l)</td>
<td>(meq/l)</td>
<td>(mg/kg)</td>
<td>(mg/kg)</td>
<td>(mg/kg)</td>
<td>(mg/kg)</td>
<td>(mg/kg)</td>
<td>(dS.m⁻¹)</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>124</td>
<td>44</td>
<td>4</td>
<td>0.20</td>
<td>0.05</td>
<td>1.0</td>
<td>0.9</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. نتایج تجربه شیمیایی مدل آب دریاچه حوض سلطان

<table>
<thead>
<tr>
<th>NO₃</th>
<th>Na⁺</th>
<th>Mg²⁺</th>
<th>Ca⁴⁺</th>
<th>B</th>
<th>SO₄²⁻</th>
<th>Cl⁻</th>
<th>HCO₃⁻</th>
<th>EC</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg.l⁻¹)</td>
<td>(g.l⁻¹)</td>
<td>(g.l⁻¹)</td>
<td>(g.l⁻¹)</td>
<td>(mg.l⁻¹)</td>
<td>(g.l⁻¹)</td>
<td>(g.l⁻¹)</td>
<td>(g.l⁻¹)</td>
<td>(dS.m⁻¹)</td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>115</td>
<td>23/4</td>
<td>52/6</td>
<td>321/5</td>
<td>49/7</td>
<td>6/8</td>
<td>7/25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

می‌شود تا از صحبت اعمال L.F. اطیافان حاصل شود. در مرحله گلال‌دهی، گلدان‌ها به صورت روزانه توزین و تعریق هر کدام از گلدان‌ها محاسبه و ثبت گردید و بر اساس رابطه دیوست

(2)، عملکرد نسبی در این مرحله شامل تعرق گیاه در هر سطح شوری نسبت به تیمار شاهد (آب معمولی) در نظر گرفته شد. در مرحله بلوغ، عملکرد نسبی شامل وزن دانه در هر سطح شوری نسبت به شاهد (آب شهر) در نظر گرفته می شد. به مبنای کنترل تیمار آبی گل‌دهی بر زمین و عملکرد کل در دوره زایشی عملکرد نسبی با استفاده از مدل‌های ماس و هاوانم (22), و نگتوختن و هافمان (27), دیرکس و همکاران (2) و همچنین همان‌کاران (24)، محاصله و شاهد. مدل‌های باند شر

همه‌ای و همکاران (24) محاصله شد. مدل‌های ماس و هاوانم

که در آنها مقادیر پرآور شده و CD و RMSE معاینگر بندتین حالت پرآور شد. مقادیر مداد ME تعادل نمونه است. کمترین مقادیر برای n صفر است. مقادیر مداد ME تعادل نمونه است. در حالت که مقادیر (Overestimate) با کم‌پرآور شده، همچنین مقدار کم مدل‌ها بر آب‌ریز داده شده. عملکرد نسبی به مدل‌های ماس و هاوانم

اشکال رسمی مدل‌ها متفاوت می‌باشد. مقادیر ME (Maximum Error)، ریشه میانگین خطای دریاچه (RMSE)، ضریب ضعیف (R2)، Coefficient of Determination)، کارایی مدل

و ضریب خوشه‌بندی مدل (EF) (Efficiency of model) برا مدل کدام از CRM (Coefficient of Residual Mass)
منظوم مكانه و هاوان (21). برآزاد بهتری بر داده‌های انداده‌گیری شده دانست. بنابراین برای انتخاب مناسب‌ترین مدل برای مدل تولید تعبیری CRM بهترین مدل تعبیری که در این مقاله با استفاده از SPSS و Excel نهایت انتخاب داده‌های برآورده شده و انداده‌گیری شده را انتخاب کرده و از CRM بسته CRM مدل تولید مدل برای بهترین برآورده انداده‌گیری شده می‌دان. اگر تمامی داده‌های برآورده شده و انداده‌گیری شده در نهایت تجربه و SPSS و Excel تحلیل آماری و کاراکترهای گرافیکی با تمرین انتخاب و انجام پذیرفته.

تایپ و بیان
مرحله گل‌دهی

تعریق نسبی کلزا در مرحله گل‌دهی در سطوح مختلف شوری (ECe) است. در ناحیه باعث خاک و در مرحله‌های مختلف شوری (ECe) براساس این شکل، تعریق نسبی کلزا به شوری 7، ارتفاع بر متر کاهش نشانه‌ای به این سبب شد که اگر این مرحله در بین مدل‌های مختلف، مناسب‌ترین مدل شناخته شد.

مرحله بلور

شکل 3 روند تغییرات حملکرد نسبی دانه کلزا را با افزایش شوری محول خاک نشان می‌دهد. حملکرد نسبی دانه کلزا تا شوری حدود 5 دیسی‌زینم بر متر کاهش نشان داده است. لیکن از آن پس با افزایش شوری عملکرد کلزا کاهش یافته و در شوری حدود 18 دسی‌زینم بر متر به تصفیه رسیده است.

شکل 4 برآزاد مدل‌ها بر داده‌های انداده‌گیری شده در مرحله بلور با نشان می‌دهد. این شکل نشان می‌دهد که مقدار برآزاد شده حملکرد نسبی به رشد نیست. از مدل‌های مختلف به ویژه در مدل‌های غیرخطی، با مقادیر انداده‌گیری شده مطابقت بیشتری دارید. با برآزاد مدل‌های مورد بررسی بر داده‌های حذف آزمایش داده‌ها در مرحله گل‌دهی را نشان می‌دهد. حرف P و O چهار نسبت یافتگر داده‌ها مشاهده شده (Observed) به (Predicted) به بینی شده توسط مدل بینی شده توسط مدل مشاهده شده برآزاد (Predicted) مدل‌های مختلف بر داده‌های انداده‌گیری شده با آمار‌های مختلف در مدل‌ها، برآورده و در جدول 3 ارائه شده است.

همانطور که از شکل 2 و ضرایب تنبیهی (R² ارائه شده در جدول 3 بر می‌آید، مدل‌های غیرخطی نسبت به مدل ساده و
شکل 1. تعریق نسبی گیاه کلزا در مرحله گلدهی بعنوان تابعی از شوری عصاره

دیده‌های تعریق نسبی گیاه کلزا در مرحله گلدهی به عنوان تابعی از شوری عصاره اشباع خاک میزان کارایی هر مدل دست‌پایت و مناسب‌ترین مدل را انتخاب نمود. جدول 6 مقدار این آماره را برای مدل‌های مختلف نشان می‌دهد. با توجه به اینکه آماره‌های ضریب تبعیض (R^2) ریشه

منابع: کارایی (RMSE) و کارایی (EF) مدل‌های Dirksen et al. و Maas and Hoffman و Homaei et al. و van Genukten and Hoffman.
جدول 3. پارامترهای مدل‌های ماس و هافمن، ونگوختن و هافمن، دیرکسن و همکاران و همایی و همکاران برای برآورد پاسخ گیاه کلزا به شوری عصاره اشباع خاک در مرحله گل‌دهی

<table>
<thead>
<tr>
<th>مدل</th>
<th>EC<sub>c</sub></th>
<th>EC<sub>50</sub></th>
<th>EC<sub>max</sub></th>
<th>b</th>
<th>α</th>
<th>p</th>
<th>R<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maas & Hoffman</td>
<td>γ / μ</td>
<td></td>
<td>110</td>
<td></td>
<td></td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>van Genuchten</td>
<td>19 / μ</td>
<td></td>
<td>315</td>
<td>0.2</td>
<td>0.7</td>
<td>0.5</td>
<td>0.52</td>
</tr>
<tr>
<td>Dirksen et al</td>
<td>γ / μ</td>
<td></td>
<td>115</td>
<td></td>
<td></td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>Homae et al</td>
<td>γ / μ</td>
<td></td>
<td>21</td>
<td>0.2</td>
<td>0.7</td>
<td>0.87</td>
<td>0.87</td>
</tr>
</tbody>
</table>

جدول 4. امکان‌های محاسبه شده برای مقایسه مدل‌های برآورد پاسخ گیاه کلزا به شوری عصاره اشباع خاک در مرحله گل‌دهی

<table>
<thead>
<tr>
<th>مدل</th>
<th>RMSE</th>
<th>CD</th>
<th>EF</th>
<th>ME</th>
<th>CRM</th>
<th>R<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maas & Hoffman</td>
<td>0.3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>0.12</td>
<td>0.87</td>
</tr>
<tr>
<td>van Genuchten</td>
<td>0.25</td>
<td>1/2</td>
<td>0.95</td>
<td>0.1</td>
<td>0.26</td>
<td>0.84</td>
</tr>
<tr>
<td>Dirksen et al</td>
<td>0.24</td>
<td>1/3</td>
<td>0.95</td>
<td>0.1</td>
<td>0.26</td>
<td>0.84</td>
</tr>
<tr>
<td>Homae et al</td>
<td>0.3</td>
<td>1/3</td>
<td>0.95</td>
<td>0.1</td>
<td>0.26</td>
<td>0.84</td>
</tr>
</tbody>
</table>

شکل 3. علل نسبی پذیر کلزا در مرحله بلع در جدول نشان داده شده‌اند. در هر شوری عصاره اشباع خاک

جدول 5. پارامترهای مدل‌های ماس و هافمن، ونگوختن و هافمن، دیرکسن و همکاران و همایی و همکاران برای برآورد پاسخ گیاه کلزا به شوری عصاره اشباع خاک در مرحله بلع

<table>
<thead>
<tr>
<th>مدل</th>
<th>EC<sub>c</sub></th>
<th>EC<sub>50</sub></th>
<th>EC<sub>max</sub></th>
<th>b</th>
<th>α</th>
<th>p</th>
<th>R<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maas & Hoffman</td>
<td>1/5</td>
<td></td>
<td>115</td>
<td></td>
<td></td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>van Genuchten</td>
<td>18.5</td>
<td></td>
<td>315</td>
<td>0.2</td>
<td>0.7</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>Dirksen et al</td>
<td>18.2</td>
<td></td>
<td>315</td>
<td>0.2</td>
<td>0.7</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>Homae et al</td>
<td>21</td>
<td></td>
<td>29.9</td>
<td>0.2</td>
<td>0.7</td>
<td>0.87</td>
<td>0.87</td>
</tr>
</tbody>
</table>

118
شکل ۳. مقایسه کارآیی مدل‌های ماس و هافمن، ون غوختن و هافمن، دیرکسن و همکاران و همایی و همکاران در برآورد بر داده‌های عملکرد تابش گیاه کلزا در مرحله بلوز به عنوان تابعی از شوری عصاره اشباع خاک.

جدول ۶. آماره‌های محاسبه شده برای مقایسه مدل‌های پراورد پاسخ گیاه کلزا به شوری عصاره اشباع خاک در مرحله بلوز

<table>
<thead>
<tr>
<th>مدل</th>
<th>RMSE</th>
<th>CD</th>
<th>EF</th>
<th>ME</th>
<th>CRM</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵</td>
<td>۸/۹</td>
<td>۱/۰۳</td>
<td>۰/۶۵</td>
<td>۰/۰۸</td>
<td>۰/۰۰۰۰۲۹</td>
<td>۰/۸۷</td>
</tr>
<tr>
<td>۶</td>
<td>۴/۲</td>
<td>۱/۰۳</td>
<td>۰/۹۹</td>
<td>۰/۶۴</td>
<td>۰/۰۰۰۵۴</td>
<td>۰/۹۸</td>
</tr>
<tr>
<td>۷</td>
<td>۳/۷</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۵۴</td>
<td>۰/۰۰۰۳۵</td>
<td>۰/۹۹</td>
</tr>
<tr>
<td>۹</td>
<td>۳/۷</td>
<td>۰/۹۹</td>
<td>۰/۹۹</td>
<td>۰/۴۴</td>
<td>۰/۰۰۰۲۵</td>
<td>۰/۹۹</td>
</tr>
</tbody>
</table>

ویژگی برخورد است. در مرحله بلوز این مدل مناسب‌تر شناخته شد. ولی مدل ماس و هافمن را نیز به لحاظ سادگی و روانی معادله، در این مرحله می‌توان به‌کار برد.

نتیجه‌گیری

نتایج کاربرد شوری‌های مختلف آب بر عملکرد کلزا نشان داد که در مرحله گل‌دهی، تعرق نسبی واقعی گیاه‌های تابش‌های حدود ۷۱.

