تأثیر شرایط آزمایش‌بندی، مقدار ماده آلی، رس و کربنات کلسیم خاک بر میانگین وزنی قطر

مقاومت کنشی خاک‌های با در برخی از خاک‌های استان همدان

علی خزایی. محمد رضا مصداقی و علی اکبر محبوبی

(تاریخ دریافت: ٥/١١/٨٧؛ تاریخ پذیرش: ٨/٥/٨٧) پژوهش

چکیده

ویژگی‌های فیزیکی و شیمیایی خاک و شرایط آزمایش‌بندی با پایداری ساختن‌های خاک متناسب در کنار ویژگی‌های ذیل به پایداری شکاف‌ها از نظر ساختن‌های استان همدان به‌کمک روش‌های نرم‌افزاری مقاومت کنشی خاک‌های بررسی شد. آمار شیمیایی و میانگین وزنی قطر (MWD) و مقاومت کنشی (R²) با استفاده از یک‌پارامتری مارکوف کرون ارائه گردید. سه روش مقاومت مکانیکی و مکش در آب به‌عنوان عامل تشکیل‌دهنده مکانیکی بود. روش‌های مقاومت قهوه‌ای و مکش ماتریکس ۵۰۰ شربتی قهوه‌ای از استیل‌های نیم‌ضیوف خاک‌های کن‌الک در محدوده ۰.۷ تا ۶.۸ کیلوپاسکال (kPa) و مکش ماتریکس ۵۰۰ را به‌عنوان مدل میزبان گرفت. در این دستگاه‌ها، مقدار خاک با پایداری ساختن‌های خاک‌های استان همدان توصیه می‌گردد.

واژه‌های کلیدی: پایداری ساختن‌های خاک، الکتر، روش بزرگ، مکش ماتریکس، پایداری خاک، ماده آلی، کربنات کلسیم

مقدمه

در تابع علوم زمین‌شناسی ذرات اولیه خاک به یکدیگر گفته می‌شود (٨). در این مقاله، مقایسه ذرات جامد و منافذ بین آلی در کنار یکدیگر گفته می‌شود (٨).

چگونگی هم‌ارایی ذرات، تابعی از عوامل متغیر و تأثیرگذار بر شکل گیری واحدهای اولیه ساختن‌های (عنی خاک‌های است) که موجب تنوع و تفاوت‌های زیادی در ساختن‌های خاک‌های می‌شود (٩)

ساختن‌های خاک در آب تأثیر بی‌بینه توجهی به شرایط قرنطین، داشته‌ایم:

١. به‌عنوان دانشجوی سالی کارشناسی ارشد، استادیار و دانشیار جامع‌شناسی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان

mosaddeghi@basu.ac.ir

* مسئول مکاتبات، پست الکترونیک: mosaddeghi@basu.ac.ir

۱۲۳
در دسته از عوامل بر پایداری خاک‌شناسی از دو گروه اصلی می‌توان نام برد که به این ترتیب ویژگی‌های مولکول‌های خاک‌شناسی (ESPA, SAR, نوع کاتونیس غلظت یونها، رطوبت گریزی، نوع کاتونیس غلظت یونها، pH می‌باشد و غلظت و سولفونات خاک‌شناسی)،

زراعی و خاک‌ورزی ران تام برد (1 و 2).

افزودن رنا به غلظت خاک باعث بهبود رشد و نمو گیاه‌ها می‌شود که این امر در بیشتر مواقع به دلیل بهبود ویژگی‌های فیزیکی و شیمیایی خاک ناشی است. از جمله ویژگی‌های فیزیکی خاک که به شدت تأثیر می‌کند، ساختار خاک است. افزودن گیاه‌هایی نازه به خاک و همچنین ترشحات میکروبی باعث جستجوی دندر به مهدگی شده و به پایداری خاک‌شناسی کمک می‌کند. لینج و برک (2003) نشان دادند که مقدار آلی خاک مهم در تشکیل و هم در پایداری خاک‌شناسی اثر مثبت دارد. به طوری که با افزایش ماده آلی خاک، پایداری مرتبط خاک‌شناسی (Wet aggregate stability) افزایش می‌یابد. سمی‌پر (21) و کوکروب و مورای (28) دریافتند که ماده آلی با ایجاد پوششی آب‌گیر در اطراف خاک‌شناسی باعث کاهش (Hydrophobic coating) سرعت نفوذ آب به درون خاک‌شناسی و افزایش مقاومت آنها در...
تأثیر شرایط آزمایش، مقدار پدیده، روش و کربنات کلسیم خاک بر مناقصه وزنی قطر...
عکس 1. پیل آی در انتقال آب به طرف دارای خاکانه‌ها

ظرف مجاور ریخته شد. برای کنترل رطوبت نمونه‌ها پس از مرطوب کردن آنها، خاکانه‌ها (بیش از آزمایش اکذیر) توزین شدند.

خاکانه‌های پیش – مرطوب شده روی یک سری اکذیر (به ترتیب از بالا به پایین 2.4.7/5/0.5/0 میلی متر) ریخته شدند. سه زمان متفاوت 5، 15 و 30 دقیقه برای اکذیر کردن خاکانه‌ها در آب شهر در نظر گرفته شد. زمان تکان دانه الک‌ها در آب بایان مقدار انرژی وارد به خاکانه‌هاست. پس از پایان زمان تکان دادن، الک‌ها را به آرامی از آب خارج کرده و خاکانه‌های بقای مانده روی هر الک در آوار در مدت 15 دقیقه ساخته خشک و سپس وزن شدند. نهایت میانگین وزنی نقطه‌ای خاکانه‌ها به کمک (Mean weight diameter, MWD) فرمول زیر محاسبه شد:

\[MWD = \frac{\sum_{i=1}^{n} w_i X_i}{\sum_{i=1}^{n} w_i} \]

که در این رابطه \(n \) تعداد دامنه اندازه خاکانه‌ها (در اینجا 6 عدد)، \(w_i \) تعداد دامنه خاکانه‌ها و \(X_i \) میانگین نقطه‌ای خاکانه‌های روی هر الک که \(w_i \) نسبت وزن \(X_i \) خاکانه‌های روی هر الک \(i \) به وزن هسته کل خاکانه‌های خاک (بیش از تصحرش شن و سنگریزه) می‌باشد. هر خاک‌برای سه زمان تکان دادن و در سه تکرار آزمایش شد. جمعاً تعداد آزمایش‌های اکذیر 189×21 (4389) زمان تکان دادن 3 تکرار بود.

وابسته (Indirect Brazilian test) از روش غیرمستقیم برزیلی انجام شد.

\[d_{	ext{eff}} = d_e \left(\frac{M_i}{M_0} \right)^{3/4} \]

که در این رابطه \(d_e \) قطر متوسط خاکانه‌ها، \(M_i \) و \(M_0 \) میانگین جرم متقابل‌گیری مقاومت کششی خاکانه‌ها (9) در رطوبت هوا- خشک و مکش متریک 500 kPa استفاده شد. آزمایش‌های اولیه نشان داد که به دلیل پایداری اندازه خاکانه‌های مورد بررسی، مقاومت کششی خاکانه‌ها در مکش متریک کمتر از 500 ناچیز بود و تغییرات آنها درصدی میراث ماند. می‌باشد که با اتصال روش غیرمستقیم برزیلی می‌گیری دارد. خاکانه‌های با اندام 63-32 mm به روش الک کشش جداشده و 30 عدد از آنها به‌طور تصادفی برای هر آزمایش انتخاب و وزن شدند. برای تعیین مکش متریک 30 عدد از خاکانه‌های مذکور انتخاب شده و مکش متریک آنها با استفاده از 63-32 mm انسداد شدند. خاکانه‌ها بین دو صفحه بارگذاری (با استفاده از دستگاه تک محوری شکستن) شدند و مقاومت کششی آنها به کمک رابطه زیر محاسبه شد:

\[Y = \frac{576F}{d_{	ext{eff}}^2} \]

که در این رابطه \(F \) نیروی فشاری مورد نیاز برای شکستن خاکانه‌ها با قطر مؤثر (Effective diameter) خاکانه‌ها با قطر مؤثر \(d_{	ext{eff}} \) (کششی خاکانه‌ها می‌باشد (9)). قطر مؤثر هر خاکانه (با استفاده از معادله زیر محاسبه شد:

\[d_{	ext{eff}} = d_e \left(\frac{M_i}{M_0} \right)^{3/4} \]

که در این رابطه \(d_e \) قطر متوسط خاکانه‌ها، \(M_i \) و \(M_0 \) میانگین جرم

Downloaded from iutjournals.iut.ac.ir at 2:37 IRST on Wednesday October 7th 2020
تأثیر شاخص آزمایش مقدار ماده آلی، رس و کربنات کلسیم خاک بر میانگین وزنی قطر...

<table>
<thead>
<tr>
<th>عدد خاک‌دانه و</th>
<th>برای هر خاک</th>
<th>۶۰ عدد خاک‌دانه با دو شرایط رطوبت آزمایش</th>
<th>جمع‌اکلید</th>
<th>آزمایش مقاومت کششی خاک‌دانه انجام شد (۱۱ خاک × ۲ رطوبت = ۳۳ خاک‌دانه).</th>
</tr>
</thead>
</table>

برای ساختار و بررسی عوامل مهم مؤثر بر پایداری ساختاران خاک وارد بررسی مانند مکاناطیس‌های درونی رس و کربنات کلسیم خاک استفاده از نرم‌افزار Minitab و بررسی رسم شده.

نتایج و بحث

در جدول ۱ مکان نمونه‌برداری، رده‌بندی طول و عرض جغرافیایی مقادیر ماده آلی، رس و کربنات کلسیم خاک‌های مورد بررسی به‌عنوان مقادیر شاخص‌های پایداری ساختاران (MWD) و آنها و انحراف معیار و ضریب تغییرات هر کدام آورده شده است. خاک‌های مورد بررسی دامنه نسبتاً وسیعی از پایداری ساختاران (Y و MWD) دارند.

اثر اندازه وارده در روش الکترپی یا پایداری خاک‌های دامنه تغییرات در خاک‌های مورد بررسی در MWD خاک‌های نکان دان ۱۰.۵ و ۱۵ دقیقه به ترتیب در زمان‌های دامنه دان ۱۰.۵ و ۱۵ دقیقه به ترتیب ۲۲.۳۸ mm و ۲۶.۳۵ mm مقداری به دست آمده در این روش (مترولب کردن آسمه) متقابل با مقادیر MWD ناشی از روش مرطوب کردن سریع (نتایج ارائه نشده است) به‌صورت میانگین.

با افزایش زمان نکان دان دقت که در آب (افراشنش‌های مکانیکی-آبی) مقادیر MWD کاهش یافته (جدول ۱). مقادیر MWD میانگین به ترتیب برای زمان‌های ۱۰ و ۱۵ دقیقه افزایش می‌یابد. به توجه به مقادیر انحراف معیار به دست آمده برای زمان‌های ۱۰ و ۱۵ دقیقه به ترتیب ۱۸.۷گرفته و ۰.۶۳۷ mm می‌تواند که زمان ۵.۵

MWD۲ (mm)	۲/۱۸ ± ۰/۳٪ مول.	۰/۰۱۱	R² = ۰/۵۵	[۴]
MWD۱، (mm)	۲/۳± ۰/۰۲	۰/۰۸	R² = ۰/۴۴	[۵]
MWD۱، (mm)	۱/۹۹ ± ۰/۲۳	۰/۰۱	R² = ۰/۴۴	[۶]

هر ۱ درصد معنی‌دار می‌باشد.
جدول 1. بررسی از وزن‌گیری و پایداری خاک‌های خاک‌های مورد بررسی

<table>
<thead>
<tr>
<th>Ys50</th>
<th>Ysn</th>
<th>MWD<sub>15</sub></th>
<th>MWD<sub>10</sub></th>
<th>MWD<sub>5</sub></th>
<th>EC</th>
<th>pH</th>
<th>رس</th>
<th>کرمین</th>
<th>کلسیم</th>
<th>جغرافیایی</th>
<th>عمدی</th>
<th>محل</th>
<th>نمونه‌برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>89</td>
<td>230</td>
<td>2/60</td>
<td>0/85</td>
<td>7/3</td>
<td>31/5</td>
<td>31/5</td>
<td>28/0</td>
<td>24/0</td>
<td>27/0</td>
<td>2/0</td>
<td>1</td>
<td>Veric Calcierepts</td>
</tr>
<tr>
<td>26</td>
<td>88</td>
<td>2/67</td>
<td>2/80</td>
<td>1/87</td>
<td>17/5</td>
<td>18/0</td>
<td>18/0</td>
<td>25/0</td>
<td>27/0</td>
<td>25/0</td>
<td>2/0</td>
<td>2</td>
<td>Vertic Xerochrepts</td>
</tr>
<tr>
<td>30</td>
<td>128</td>
<td>2/54</td>
<td>3/10</td>
<td>0/87</td>
<td>3/6</td>
<td>3/4</td>
<td>3/4</td>
<td>28/0</td>
<td>25/0</td>
<td>28/0</td>
<td>2/0</td>
<td>3</td>
<td>Typic Halaqupts</td>
</tr>
<tr>
<td>36</td>
<td>89</td>
<td>2/82</td>
<td>2/97</td>
<td>0/69</td>
<td>1/6</td>
<td>1/2</td>
<td>1/2</td>
<td>26/0</td>
<td>25/0</td>
<td>26/0</td>
<td>2/0</td>
<td>4</td>
<td>Typic Haploxeralfs</td>
</tr>
<tr>
<td>38</td>
<td>123</td>
<td>2/90</td>
<td>2/94</td>
<td>0/66</td>
<td>2/4</td>
<td>2/0</td>
<td>2/0</td>
<td>30/0</td>
<td>28/0</td>
<td>30/0</td>
<td>2/0</td>
<td>5</td>
<td>Typic Calcierepts</td>
</tr>
<tr>
<td>50</td>
<td>105</td>
<td>2/91</td>
<td>3/10</td>
<td>0/87</td>
<td>1/6</td>
<td>1/2</td>
<td>1/2</td>
<td>28/0</td>
<td>25/0</td>
<td>28/0</td>
<td>2/0</td>
<td>6</td>
<td>Typic Haploxeralfs</td>
</tr>
<tr>
<td>32</td>
<td>93</td>
<td>2/82</td>
<td>2/60</td>
<td>0/54</td>
<td>2/0</td>
<td>1/0</td>
<td>1/0</td>
<td>28/0</td>
<td>25/0</td>
<td>28/0</td>
<td>2/0</td>
<td>7</td>
<td>Aeric Haplaquepts</td>
</tr>
<tr>
<td>59</td>
<td>87</td>
<td>2/54</td>
<td>3/10</td>
<td>0/87</td>
<td>2/0</td>
<td>1/2</td>
<td>1/2</td>
<td>30/0</td>
<td>28/0</td>
<td>30/0</td>
<td>2/0</td>
<td>8</td>
<td>Aeric Halaquents</td>
</tr>
<tr>
<td>30</td>
<td>124</td>
<td>2/65</td>
<td>3/25</td>
<td>0/88</td>
<td>2/3</td>
<td>21/0</td>
<td>21/0</td>
<td>28/0</td>
<td>25/0</td>
<td>28/0</td>
<td>2/0</td>
<td>9</td>
<td>Aeric Haplaquepts</td>
</tr>
<tr>
<td>40</td>
<td>155</td>
<td>2/48</td>
<td>3/30</td>
<td>0/74</td>
<td>3/1</td>
<td>1/0</td>
<td>1/0</td>
<td>30/0</td>
<td>28/0</td>
<td>30/0</td>
<td>2/0</td>
<td>10</td>
<td>Typic Calcixerepts</td>
</tr>
<tr>
<td>31</td>
<td>123</td>
<td>3/04</td>
<td>3/20</td>
<td>0/47</td>
<td>8/5</td>
<td>1/0</td>
<td>1/0</td>
<td>26/0</td>
<td>24/0</td>
<td>26/0</td>
<td>2/0</td>
<td>11</td>
<td>Aeric Haplaquepts</td>
</tr>
<tr>
<td>31</td>
<td>134</td>
<td>3/17</td>
<td>3/20</td>
<td>0/89</td>
<td>2/0</td>
<td>1/2</td>
<td>1/2</td>
<td>30/0</td>
<td>28/0</td>
<td>30/0</td>
<td>2/0</td>
<td>12</td>
<td>Typic Calcierepts</td>
</tr>
<tr>
<td>ادامه جدول 1</td>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>اطاعه</td>
<td>حجم</td>
<td>ارتفاع</td>
<td>نرخ</td>
<td>شفافیت</td>
<td>نرخ</td>
<td>شفافیت</td>
<td>نرخ</td>
<td>شفافیت</td>
<td>نرخ</td>
<td>شفافیت</td>
<td>نرخ</td>
<td>شفافیت</td>
<td>نرخ</td>
</tr>
<tr>
<td>30</td>
<td>122</td>
<td>7/86</td>
<td>3/12</td>
<td>3/84</td>
<td>0/49</td>
<td>5/12</td>
<td>1/8</td>
<td>31/0</td>
<td>58/0</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
</tr>
<tr>
<td>30</td>
<td>123</td>
<td>7/81</td>
<td>3/12</td>
<td>3/84</td>
<td>0/49</td>
<td>5/12</td>
<td>1/8</td>
<td>31/0</td>
<td>58/0</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
</tr>
<tr>
<td>30</td>
<td>124</td>
<td>7/81</td>
<td>3/12</td>
<td>3/84</td>
<td>0/49</td>
<td>5/12</td>
<td>1/8</td>
<td>31/0</td>
<td>58/0</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
</tr>
<tr>
<td>30</td>
<td>125</td>
<td>7/81</td>
<td>3/12</td>
<td>3/84</td>
<td>0/49</td>
<td>5/12</td>
<td>1/8</td>
<td>31/0</td>
<td>58/0</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
</tr>
<tr>
<td>30</td>
<td>126</td>
<td>7/81</td>
<td>3/12</td>
<td>3/84</td>
<td>0/49</td>
<td>5/12</td>
<td>1/8</td>
<td>31/0</td>
<td>58/0</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
</tr>
<tr>
<td>30</td>
<td>127</td>
<td>7/81</td>
<td>3/12</td>
<td>3/84</td>
<td>0/49</td>
<td>5/12</td>
<td>1/8</td>
<td>31/0</td>
<td>58/0</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
</tr>
<tr>
<td>30</td>
<td>128</td>
<td>7/81</td>
<td>3/12</td>
<td>3/84</td>
<td>0/49</td>
<td>5/12</td>
<td>1/8</td>
<td>31/0</td>
<td>58/0</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
</tr>
<tr>
<td>30</td>
<td>129</td>
<td>7/81</td>
<td>3/12</td>
<td>3/84</td>
<td>0/49</td>
<td>5/12</td>
<td>1/8</td>
<td>31/0</td>
<td>58/0</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
</tr>
<tr>
<td>30</td>
<td>1210</td>
<td>7/81</td>
<td>3/12</td>
<td>3/84</td>
<td>0/49</td>
<td>5/12</td>
<td>1/8</td>
<td>31/0</td>
<td>58/0</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
<td>12/4</td>
</tr>
</tbody>
</table>

1 به ترتیب نشان دهنده میانگین و الگوی قطر خاک‌کنها (متوسط به نکار) در زمان‌های 0.5 و 15 دقیقه نکار دانه‌ای که در روش الکتریکی می‌باشد.

2 به ترتیب بیانگر مقاومت کششی خاک‌کنها در شرایط رطوبتی 80-90% در مکان‌های مانند 500 kPa است. CV% بیانگر درصد تغییرات می‌باشد.
در جدول ۱ اروره شده است. دامنه تغییرات Y در خاک‌های مورد بررسی بین ۷۶ تا ۲۰۸ کیلوپاسکال (۰/۷۶ تا ۲/۰۸ پاسکال) است. در مدل‌های پخش خیاطه‌ای، کاهش خاک‌های آنلاین (۱) مقدار میانگین Y در رطوبت‌های خشک بسیار از ۵۰۰ کیلوپاسکال زیر آن ۵ خاک‌های آنتاژوماتیک k_P، نیز در خاک‌های آنتاژوماتیک k_P و k_F در شرایط رطوبت‌های خشک بسیار از ۵۰۰ کیلوپاسکال زیر آن ۵ خاک‌های آنتاژوماتیک k_P، نیز در خاک‌های آنتاژوماتیک k_P و k_F در شرایط رطوبت‌های خشک بسیار از ۵۰۰ کیلوپاسکال زیر آن ۵ خاک‌های آنتاژوماتیک k_P، نیز در خاک‌های آنتاژوماتیک k_P و k_F در شرایط رطوبت‌های خشک بسیار از ۵۰۰ کیلوپاسکال زیر آن ۵ خاک‌های آنتاژوماتیک k_P، نیز در خاک‌های آنتاژوماتیک k_P و k_F در شرایط رطوبت‌های خشک بسیار از ۵۰۰ کیلوپاسکال زیر آن ۵ خاک‌های آنتاژوماتیک k_P، نیز در خاک‌های آنتاژوماتیک k_P و k_F در شرایط رطوبت‌های خشک بسیار از ۵۰۰ کیلوپاسکال زیر آن ۵ خاک‌های آنتاژوماتیک k_P، نیز در خاک‌های آنتاژوماتیک k_P و k_F در شرایط رطوبت‌های خشک بسیار از ۵۰۰ کیلوپاسکال زیر آن ۵ خاک‌های آنتاژوماتیک k_P، نیز در خاک‌های آنتاژوماتیک k_P و k_F در شرایط رطوبت‌های خشک بسیار از ۵۰۰ کیلوپاسکال زیر آن ۵ خاک‌های آنتاژوماتیک k_P، نیز در خاک‌های آنتاژوماتیک k_P و k_F در شرایط رطوبت‌های خشک بسیار از ۵۰۰ کیلوپاسکال زیر آن ۵ خاک‌های آنتاژوماتیک k_P، نیز در خاک‌های آنتاژوماتیک k_P و k_F در شرایط رطوبت‌های خشک بسیار از ۵۰۰ کیلوپاسکال زیر آن ۵ خاک‌های آنتاژوماتیک k_P، نیز در خاک‌های آنتاژوماتیک k_P و k_F در شرایط رطوبت‌های خشک بسیار از ۵۰۰ کیلوپاسکال زیر آن ۵ خاک‌های آنتاژوماتیک k_P، نیز در خاک‌های آنتاژوماتیک k_P و k_F در شرایط رطوبت‌های خشک بسیار از ۵۰۰ کیلوپاسکال زیر آن ۵ خاک‌های آنتاژوماتیک k_P، نیز در خاک‌های آنتاژوماتیک k_P و k_F در شرایط رطوبت‌های خشک بسیار از ۵۰۰ کیلوپاسکال زیر آن
تأثیر شرایط آزمایش، مقدار ماده آلفا، رس و کربنات کلسیم خاک بر میانگین وزنی قطر

 imagen de la página del documento, así como el contenido textual extraído. Deben devolverse las representaciones de texto planas, como si estuvieran leyendo el documento de manera natural. No hay necesidad de hacer suposiciones o interpolaciones fuera del contenido visible.

RAWTEXT_START

[الگوی مانند: نمودار (ب) نشان می‌دهد که MWD یا = 2.58 + 0.29OM% R² = 0.44**] (الف) نشان می‌دهد که MWD یا = 2.67 + 0.41OM% R² = 0.39**

شکل 2. رابطه بین پایداری خاک‌های (OM%) برای زمان‌های مختلف در آب:
الف) 5 دقیقه. ب) 10 دقیقه و ج) 15 دقیقه.

مکس ماتریکس 500 kPa کشی خاک‌های در حالی هوا-خشک و مکس ماتریکس 500 kPa است. مشاهده می‌شود که بالاترین ضریب نسبت (R²) مکس ماتریکس 500 kPa مربوط است. در واقع بهترین قویت رابطه مقاومت کشی خاک‌هایی با ویژگی‌های ذاتی خاک‌های مورد بررسی برای مکس ماتریکس 500 kPa به دست آمده است.

مقدار ضریب مکس ماتریکس 500 kPa به محض بیشترین نقص در Y خاک‌هایی را ماده آلفا خاک ایفا می‌کند. با کاهش مکس ماتریکس خاک، مقدار ضریب نقص ماده آلفا در مقاومت کشی (پایداری) خاک‌هایی به شدت کاهش می‌یابد.

MWD₁₀ = 2.58 + 0.29OM% R² = 0.44**

MWD₁₀ = 2.67 + 0.41OM% R² = 0.39**

MWD₁₅ = 2.36 + 0.32OM% R² = 0.39**

MWD₁₀ (mm) (OM%)

MWD₁₅ (mm) (OM%)

MWD₁₀ (mm) (OM%)

kPa

Yₘₐₜ₉ (kPa) = 3/12 + 3/22/ OM% + */83+

Clay% + */84 CaCO₃% R² = */76

Yₗ₅₀ₕ₉ (kPa) = 2/1 + 2/72/ OM% + */63

Clay% + */84 CaCO₃% R² = */84

در این روابط Yₘₜ₉ و Yₗ₅₀ₕ₉ به ترتیب نشان دهنده مقاومت MWD₁₀ و MWD₁₅ در 5 و 10 دقیقه شدند.

131
شکل ۳ رابطه بین مقاومت کششی خاکانه‌ها (OM%) و درصد ماده آلی خاک (Y) در شرایط رطوبتی:

رفته‌های خاک‌نشین و رطوبت‌های مختلف را بررسی کرده و نتایج کن. میزان آلی‌های این (شبیه رابطه براش) بر مقاومت کششی خاکانه‌ها (Y) در افراشیم مقاومت‌ها افزایش می‌یابد. چنان‌که خاک‌هایی با مدل‌های مختلف R بررسی کرده و نشان داده که ماده آلی تأثیر مثبتی در افزایش مقاومت کششی خاکانه‌ها دارد. همچنین کاربردی (۵) نیز به این ترتیب رسیده که مقدار ماده آلی خاک تشکیل می‌شود. در مقایسه کششی خاکانه‌ها دارد. او نشان داد که خاکانه‌های خاک‌نشین روبیس با ماده آلی زیاد نسبت به خاکانه‌های خاک‌نشین افراشیم مقاومت کششی بالاتری دارند. این می‌تواند از دلایل افزایش درصد آلی خاک‌نشین کلیسیم، می‌تواند یکی از دلایل افزایشی اهمیت آن با افراشیم رطوبت خاکانه‌ها باشد.

نتیجه‌گیری

نتایج این پژوهش نشان داد که استفاده از پیش‌بینی مطرح کردن آب‌های در اندازه‌گیری‌های پایداری ساختمان خاک نسبت به پیش‌بینی مطرح کردن سریع، باعث از هم گسترشگی کمتر خاکانه‌ها در مدت کل کردن می‌شود. همچنین نتایج نشان داد این تأثیر کننده در مقایسه کششی خاکانه‌ها ارزیابی شد. مهم‌ترین ویژگی ماده آلی خاک بود که به‌طور جدایی آن بر ۳ خاکانه‌ها بررسی شد. در شکل ۳ روابط براش خصوصی خاکانه‌ها در برابر مقادیر ماده آلی خاک ترسیم شده است. مقادیر ماده آلی خاک به ترتیب ۵۰۰ کیلوپیکسل. تابع تتاب‌گذاری ماده آلی به روش کاکش‌بایت می‌باشد. در مورد کلیسیم، نسبت تالیب‌گذاری ماده آلی به کلیسیم ۵ خاکانه‌ها بیش از ۳ برابر کاهش یافته می‌باشد. به‌طور می‌رسد که با افزایش رطوبت خاک، کلیسیم که در حالی هوا خاک به صورت غیرفعال در خاک وجود دارد، می‌تواند شرط بیشتر را پیش‌بینه از حالت‌هوا-خاک نشان می‌دهد. هم‌اکنون این کانال تولید پیون هم‌اکنون کلیسیم، می‌تواند یکی از دلایل افزایشی اهمیت آن با افراشیم رطوبت خاکانه‌ها باشد.
تأثیر شرایط آزمایش، مقدار ماده آلی، رس و کربنات کلسیم خاک بر مانگیژ و زنی قطر...