مديريت تفاضلي آب آپارالي: كاربرد روشي مطلوبیت چند معياري

جواهر تركمانی و شاهرخ شجري

(تاريخ دریافت: 24/10/1385; تاريخ پذيرش: 8/6/1386)

چکیده
هدف اصلی این مقاله تجزیه و تحلیل اثر سیاست قیمت‌گذاری آب آپارالی بر میزان تفاوتی میزان مصرف آب و همچنین تغییرات شیمیایی است. به‌دین منظر، از روشهای موجود در مطالعات چند معياري بهره برداری شده است. این مقاله در مورد این سیاست، بررسی داده‌ها می‌باشد که به‌طور گروهی کشاورزان در ایران انجام شده است. نتایج حاصل نشان می‌دهد که سیاست قیمت‌گذاری چند معياري می‌تواند به ابزاری برای کاهش مصرف آب به عنوان یک استراتژی اقتصادی به‌شمار آید.

واژه‌های کلیدی: تفاوتی آب آپارالی، قیمت‌گذاری آب، مصرف آب، شیمیایی

مقدمه
مدیریت ضعیف آب آپارالی در ایران منجر به افزایش تفاوتی برای
این نهاده حیاتی و همچنین هدف رفتن مقادیر کاهش مصرف آب است. این سیاست به‌طور گروهی می‌تواند به‌عنوان آب آپارالی برای کاهش مصرف آب و همچنین کاهش تفاوتی هزینه تأمین آب، تعریم و
کاهش مصرف آب در کشاورزی ارائه شود.

در بخش پایانی مقاله به کاهش مصرف آب در کشاورزی اشاره
شده است. این سیاست به‌طور گروهی می‌تواند به‌عنوان آب آپارالی
برای کاهش مصرف آب و همچنین کاهش تفاوتی هزینه تأمین آب، تعریم و
کاهش مصرف آب در کشاورزی ارائه شود.

در حقيقة، سیاست قیمت‌گذاری چند معياري می‌تواند به‌عنوان
کاهش مصرف آب به‌عنوان یک استراتژی اقتصادی به‌شمار آید.

* Torkmanijavad@yahoo.com

* مسئول مکاتبات: پست الکترونیکی: Torkmanijavad@yahoo.com

۳۸۷
جرمی وزن دهنده مناسب به اهداف مورد نظر کشاورزان با توجه به تجربیات واقعی آنها را در دارد (۲۰، ۲۱، ۲۲، ۲۳، ۲۴ و ۲۵). در این مقاله برای نویسنده بر این منظره بوده و در بازرسی اساس تجربیات اکثریت (Revealed preferences) ترکیب واقعی محتوای کشت شده توسط کشاورزان مورد مطالعه به منظور تخمین وزن دهی نسبی به معاویه سوخت نظر کشاورزان استفاده شده است. این روش بر پایه برنامه‌ریزی هدف وزنی مطرح شده است. این مطالعه در دشت هزاره از مناطق تحت پوشش آن در مدت سالهای اندازه‌گیری شده است.

مواد و روش‌ها
رویکرد برنامه‌ریزی چند مبهر
(Multi-objective programming approach)

در برنامه‌ریزی چند مبهری، برخی ریکرهای کلاسیک، فرض می‌شود که سطح مطلوبی کشاورزان تنها به‌وسیله سود تعیین نمی‌شود و عوامل دیگری از جمله ریسک و پیچیدگی‌های مدیریت نیز در فرایند تصمیم‌گیری بهره برداران دخالت دارد (۲۲) و (۲۳). در این رابطه، کشاورزان تصمیمات را در حالت انتخاب می‌کنند که بهتر هزمان و محدودیت‌های جزئی از اهداف مستجاب بروند و هستند. لذا، فرضیه مطلوبی چند مبهر (Multi-objective utility theory)

نظریه مناسب برای نوع تصمیم‌گیری پیشنهاد شده است (۵، ۶، ۷، ۸، ۱۱، ۱۲، ۱۳، ۱۴، ۱۶، ۱۷، ۱۸، ۲۰، ۲۲، ۲۵، ۲۶، ۲۷، ۲۸، ۲۹، ۳۰ و ۳۷). این نظریه توسط کین و رافا (۳۱) توسط داده داده است و به عقیده بسیاری از محققین از جمله بالستروف و رومزرو (۸) و گومبلون و بریل (۲۱) و گومبلون و رایگرگو (۲۳) و گومبلون و مارنریز (۲۴) به عنوان مناسب ترین روش در میان مدل‌های نویسندگان معرفی در فرآیند تصمیم‌گیری و انتخاب بین مجموعه‌های از اهداف مستجاب شناخته شده است. با این حال، استفاده از این روش نیاز به استخراج و استنباط توانای مطلوبیت دارد که این امر مشکلاتی از

امداد مربوط به حفظ محیط زیست می‌تواند با تجربیات جامعه، مجدها توزیع شود. تخصیص مجدد منابع آب می‌تواند موجب افزایش کارایی استفاده از آن شود (۲۰ و ۲۱).

مقدمه در این مقاله رویش تجزیه و تحلیل اثر سیاست قسمت گذاری آب در کشاورزی بر نقش‌های مختلف به‌روزرسانی عرضی، توسیع و کاربرد آن ارائه شده است. در این بین شیبی‌سازی (Simulation) برای اجرای مدلهای برنامه‌ریزی ریاضی در قالب روش (Multi-Criteria Decision Making) تصمیم‌گیری چند مبهری مطرح شده است. این مطالعات در نشان دهنده از مناطق تحت پوشش آن سر در مدت فارس انجام شده است.

می‌شود:

\[U_i = U(x_1, x_2, ..., x_n) \]

(Multi-attribute Utility function, MAUF)

که T مطلوبیت چند مشخص می‌باشد.

\[U = f(u_1(x_1), u_2(x_2), ..., u_6(x_6)) \]

که شکل جمعی یک تابع ضریبی (Additive)

\[U_1(x_1, x_2, ..., x_n) = \sum w_i u_i(x_i) \]

با شکل جمعیتی (Multiplicative)

\[k = 1 \]

که \[k = f(w_i) \]

و تابع مطلوبیت بیشتری است. در حالی که اگر \[k \]

باشد، آنگاه \[k = 0 \]

و تابع مطلوبیت بیشتری است. در حالی که اگر \[k \]

باشد، آنگاه \[k = 0 \]

و تابع مطلوبیت بیشتری است. در حالی که اگر \[k \]

باشد، آنگاه \[k = 0 \]

و تابع مطلوبیت بیشتری است. در حالی که اگر \[k \]

باشد، آنگاه \[k = 0 \]

و تابع مطلوبیت بیشتری است. در حالی که اگر \[k \]

باشد، آنگاه \[k = 0 \]

و تابع مطلوبیت بیشتری است. در حالی که اگر \[k \]

باشد، آنگاه \[k = 0 \]

و تابع مطلوبیت بیشتری است. در حالی که اگر \[k \]

باشد، آنگاه \[k = 0 \]

و تابع مطلوبیت بیشتری است. در حالی که اگر \[k \]

باشد، آنگاه \[k = 0 \]

و تابع مطلوبیت بیشتری است. در حالی که اگر \[k \]

باشد، آنگاه \[k = 0 \]

و تابع مطلوبیت بیشتری است. در حالی که اگر \[k \]

باشد، آنگاه \[k = 0 \]

و تابع مطلوبیت بیشتری است. در حالی که اگر \[k \]

باشد، آنگاه \[k = 0 \]

و تابع مطلوبیت بیشتری است. در حالی که اگر \[k \]

باشد، آنگاه \[k = 0 \]

و تابع مطلوبیت بیشتری است. در حالی که اگر \[k \]

باشد، آنگاه \[k = 0 \]
در مورد استفاده قرار گرفتن یک هدف در هر رابطه محاسبه شود. بنابراین جمله‌هایی که هدف از این بهینه‌سازی سیستم تکنیک استفاده می‌شود، به صورت زیر می‌باشد.

\[\sum_{i=1}^{q} w_i f_{ij} = f_i \quad i = 1, 2, ..., q \]

در آمادور و همکاران (۵)، افزایش (۱۶) و هیبریدین (۱۳) و هارداکر (۲۷) شاخص داندک، که اگرچه این مطابقت جمع‌آوری یک توجهه‌ای به مشتری می‌کند اما اعلام کرده‌اند، نتیجه‌ای صحیح نسبت به مجموعه سیستم بی‌زیستی است. همچنین نتایج حاصل از مطالعه فیشرن (۱۸) و هارداکر و همکاران (۲۴) نشان داد که حتی اگر شرایط استقلال مطابقت در تاریخ استفاده از روش جمع‌آوری مطافی تزئینی بی‌رای

تابع مطابقت واقع به‌دست خواهد آمد.

به بارور هوانگ و پو (۲۹)، روش جمع‌آوری از یک طرف تهیه شده و یکی یا دو تکنیک برای شکل‌های غیرخطی مطابقت بی‌رای و این شرایط، راهنمای قابل تجاربی می‌باشد. بهترین نتایج می‌باشد. به‌طور مثال، گودالیون و همکاران (۲۳) و گودالیون و مارتنزی (۲۲) در این مقاله از رابطه زیر که تعریف رابطه ۳ است برای تخمین تابع مطابقت به‌دلیل استفاده

شده است:

\[U_j = \sum_{i=1}^{n} w_i f_{ij} \quad i = 1, ..., n \]

که \(w_i \) ارزش ویژگی مورد استفاده برای آن‌ها است. رابطه لایه‌های مطافی (Utility indifference Curves) قرار دارد و به‌طور آمادور (۱۶) و هارداکر (۲۷) در آن می‌توان به عنوان تکنیک مناسب برای تابع مطافی واقع به‌دلیل استفاده نتام.

MAUF تکنیک استخراج تابع مطافی چند معیاری

MAUF سامسی و همکاران (۷) روی‌شی را برای تخمین جمع‌بندی کردن که توسط آمادور و همکاران (۵) توصیه شده و توسط بارور و ویژگی‌های (۹)، گودالیون و بارور
ب) حداقل کرون ریسک
در این مطالعه یکی از اهداف مدل‌پیش‌بینی کرونا ریسک، به‌یاد آوردن شایع‌ترین ریسک‌های مراجعه‌کننده به نقش زیادی دارد.

کرون ریسک در این مطالعه به‌صورت فیزیولوژی، کرونا ریسک و کرونا ریسک با ویروس‌های سلولی و اکسل هستند. در این مطالعه به‌صورت فیزیولوژی، کرونا ریسک و کرونا ریسک با ویروس‌های سلولی و اکسل هستند.

تغییرات محصولات در طول دوره 5 سال

ب) حداقل کرون ریسک

U = \sum_{i=1}^{n} w_i \frac{f_i(x)}{f_i^*}

\

\text{ندارد. لذا، ریسک از ریسک (TGM) در نظر گرفته شد. بنابراین، می‌توان از نشان‌گیری در بازه‌بندی}

TGM = \sum \varepsilon (GMI, X_1 - f_i)

\[(10)\]

U = \sum_{i=1}^{n} w_i \frac{f_i(x) - f_i^*}{f_i^* - f_i}

\[(9)\]

100 برای قیمت برداشتی فعالی بهره برداران

\[(8)\]

\[(7)\]

\[(6)\]

\[(5)\]

\[(4)\]

\[(3)\]

\[(2)\]

\[(1)\]
که W_j کل آب قابل دسترس در هر دوره می‌باشد. در این رابطه

با انتزاع گذِری گیم آب در هر دوره بر حسب مرمکعب بر تالیه

و مدت زمان آب قابل دسترس در مزرعه، کل آب قابل دسترس

در هر دوره محاسبه گردیده است.

3. محضیت سرمایه

با توجه به عرضه و فروش محصولات در دو مقطع از سال و

در نتیجه، تأمین بهره‌برداری از حریزه‌های مربوط به کشت

محصولات بعد از فرود آنها، دو محضیت برای سرمایه به

تحیز زیر در مدل لحاظ گردید:

$$
\Sigma C_i X_i - R_i - l_i \leq K_i, \quad i = 1, 2, \ldots, n, \quad j = 1, 2
$$

$$
R_j = \Sigma GM_i X_i, \quad i = 1, 2, \ldots, n, \quad j = 1, 2
$$

که C_i هزینه تولید یک هکتار محصول X_i. نمایانگر انتقال

یک واحد از درآمده حاصل از فروش محصولات در هر یک از

دو مقطع عرضه محصول به بازار تأمین حریزه‌های تولیدی

در طول سال. K_i میزان سرمایه موجود مزرعه در هر یک از دو

مقطع عرضه محصول در طول سال و یا مقدار واحد وام از

منابع اعتباری قابل دسترس است.

4. محضیت تکاپ و ملاحظات زراعی

برای رعایت این محضیت و عدم کم‌کردن محصولات

زراعی از قبیل محصولات گروه غلات در یک قطعه زمین از

مزرعه محضیت زیر لحاظ شد:

$$
\Sigma (X_i - X_j) \leq 0, \quad i = 1, 2, \ldots, n, \quad j = 1, 2, \ldots, m
$$

که X_i به ترتیب، نمایانگر محصولاتی است که به طور

میانوب کشت می‌شوند.

5. محضیت‌های بالاز

در این مطالعه برای هر یک از محصولات گروه فراغتی، یک

کلم، هرچند که در این مطالعه در مزرعه های به

تحیز زیر در مدل لحاظ شد:

$$
X_i \leq M_i, \quad i = 1, 2, \ldots, 5
$$

91

ج) حداقل کرون تبریز کار (TL)

محصولات کاری نیاز به هزینه توسط مدیر مزرعه

دارند. افزون بر آن، در بعضی از ماه‌های سال نیز به دلیل تراکم

فعایت‌های زراعی نقش برای تبریز نقش کار افزایش یافته و عدم

یک دسترسی به موقع به تبریز کار انجام عملیات زراعی مانند

کشت شاهد برق، و چگی سکن. آب‌های محصولات مختلف

و میزان و بیماری‌ها نیز می‌تواند تأثیر منفی بر عملکرد

محصولات داشته باشد. لذا، یکی از اهداف زراعی‌های می‌تواند

انتخاب ترکیبی از محصولات با حداقل نیاز به تبریز کار

بصورت زیر می‌باشد:

$$
\text{Min: } TL = \Sigma TL_i X_i, \quad i = 1, 2, \ldots, n
$$

محضیت‌های مدل شاهد موارد زیر است:

1. محضیت زمین

در این رابطه، با توجه به تقسیم زمانت در دوره کاشت تا

برداشت هر یک از محصولات، در طول سال سه دوره مشخص

گردید. دوره اول از ابتدا آبان تا آخر بهمن ماه، دوره دوم از

اول اسفند تا آخر خرداد ماه و دوره سوم از ابتدا تیر تا آخر

مهر ماه است. برای هر دوره حضور زیر یک محضیت زمین

در نظر گرفته شد:

$$
X_i \leq A_j, \quad i = 1, 2, \ldots, n, \quad j = 1, 2, 3
$$

4. محضیت دیگر

تشکیل دهنده مقدار زمین قابل کشت در این دوره و

نمایانگر A_i تعداد محصولات موجود در هر دوره است.

6. محضیت آب

با توجه به سه دوره منظور شده برای محضیت زمین، سه

محضیت برای آب به حساب نیاز به تبریز این آب هر

هکیار از محصولات مختلف (REQ) در مدل لحاظ شد:

$$
\Sigma \text{REQ}_i X_i \leq W_j, \quad i = 1, 2, \ldots, n, \quad j = 1, 2, 3
$$
خودکاران برای عبرت مفصل شیبی‌سازی شده لازم به ذکر است که اعتبار مدل اشاره به طراحی صحیح مدل در بطریکی که اثبات کند مدل به صطلاب قابل قبولی از دقت در پیش‌بینی‌های نابی شده است (24). در عمل بیشتر تلاش‌ها در مورد بررسی اعتبار مدل به صورت مقایسه نتایج مدل‌های بیشتری به استدلال شده و سیستم واقعی به مبنا بستگی تیک تیک تیک یکی از انواع صدایی به ذکر است که در پایان و جووجلد می‌باشد (11).

در نهایت مجسمه‌دیده در 18 محدودیت در مدل منتظر گردید.

\[
X_{\text{TH}} \leq L_i, \ i = 1, 2
\]

\[
X_{\text{TH}} \geq 0.05 A_i
\]

در نهایت مجموعه‌دیده این 18 محدودیت در مدل منتظر گردید.

\[
\text{Max} \quad U(X) = W_{\text{TGM}} \cdot \mathbf{K}_{\text{TGM}} \cdot \text{TGM}(X) - W_{\text{VAR}} \cdot \mathbf{K}_{\text{VAR}} \cdot \text{VAR}(X) - W_{\text{TL}} \cdot K_{\text{TL}} \cdot \text{TL}(X)
\]

[17]

[11]
مراجعه برای انجام آنالیز خوشه از نرم افزار 11.5 SPSS

قاب ملاحظه بین نتایج مدل شبیه سازی و مقادیر واقعی، فراشند
معتبر شدن مدل تا زمان حصول اطمینان کننده در مدل برای
استفاده از آن برای مقادیر عملی ادامه می‌باشد. برای این که این
مقایسه باید باشد، نتایج مدل شبیه سازی شده و سیستم
واقعی باید تحت سیاست‌های مدیریتی مشابه و در شرایط
یکسانی از نظر ریسک و عدم حتمیت مورد بررسی قرار گیرند.

(11, 19, 36, 32 و 37)

در رابطه با موضوع ارتبات کلی، تجزیه خوشه‌ی (Cluster Analysis) لازم به توضیح است که
مدل‌های مسیم سخت‌کاریی در برای مجموعه‌ی از موارد
دست داشته که در یک مدل برانه‌ی ریاضی
و در مورد میان‌های واحدهای تولید را بر اساس
در شبایویت واقعی، ممکن بیش در انتظار
مقدار تابع هدف را به سمت بالاراهی نموده و در نتیجه
مقدار متعارفی تیمیم در شرایط واقعی قابل دسترس
نخواهد.

بود(77).

برای اجتناب از ارتبات کلی تاپی از قرار دادن کشاورزان با
توابع هندسی نمایی در یک مدل برانه‌ی ریاضی، طبقه‌بندی کشاورزان متعلقه به گروه‌های هم‌گن با رفتار
تصمیم‌گیری مشابه (توابع هندسی) ضروری است. بریل و
روودیگور(6) تعیین کرد که گزارندهای روش برای طبقه‌بندی
کشاورزان روش تجزیه خوشه‌ی این که در آن بردارهای
تصمیم واقعی کشاورزان (ترکیب واقعی محصولات) به‌عنوان
معیار طبقه‌بندی استفاده می‌شود. در این مطالعه به معنی تجزیه
خوشه از روش وارد (Wards method) استفاده شد. به طوری که
با اساس طبقه‌بندی محصولات کشت شده کشاورزان
گروه‌های هم‌گن شناسایی و میان‌گرایی محصولات مورد نظر از
جمله انتزاع مزروع، میزان سوابق، سنج‌های کشاورزان و
درجه مکانیزاسیون در داخل هر خوشه محاسبه گردید، با
استفاده از این روش سطه‌های هم‌گن از کشاورزی شناسایی و
مشاهدات با موارد در هر خوشه نیز مشخص گردیدند. در این

393
نتایج
جدول 1 و یزگنی مراعات و کشاورزان در هر خوش‌های ناشناصین می‌دهد. در این رابطهگی، کشت محصولات در خوش‌های اول شامل گندم، جو، هرهی، کلم، شلوک، ذرت، پاژ، چغندر و چمن هر گونه فرگی است. در خوش‌های دوم، تکیه کشت محصولات با حذف شلوک شباهت به خوش‌های اول است. در خوش‌های سوم، تکیه کشت محصولات گندم، ذرت، گوجه فرنگی، کلم و هرهی می‌باشد.

خوش‌های اول
مقادیر و رنگ‌ها برای اهداف مختلف حذف کرد کل بیان‌های برناشکی، حداقل کرد رنگ و نریو کار مورد نیاز به تریب به‌صورت W1 = 0.91 و W2 = 0.009 از مدل استخراج شده با استفاده از مقادیر و رنگ‌ها برای اهداف مذکور کشاورزان در خوش‌های اول تابع مولفیت‌بادیر واخadapter کننده:

Max: MAUF1 = 69.4 (TGM) - 0.00000142 (VAR) [23]

خوش‌های دوم
مقادیر و رنگ‌ها برای اهداف مورد نظر این گروه‌های کم از کشاورزان به‌صورت W1 = 0.83 و W2 = 0.917 از Mدل استخراج شده با استفاده از مقادیر و رنگ‌ها برای اهداف مذکور کشاورزان در خوش‌های دوم تابع مولفیت‌بادیر را حاکم می‌کنند:

Max: MAUF2 = 12.45 (TGM) - 0.0000003587 (VAR) [24]

خوش‌های سوم
مقادیر و رنگ‌ها برای اهداف مورد نظر این گروه‌های کم از کشاورزان به‌صورت W1 = 1.288 و W2 = 0.037 از استخراج گردید. با توجه به مقادیر و رنگ‌های به‌دست آمده برای اهداف مذکور، کشاورزان در خوش‌های سوم نسبت مولفیت‌بادیر را حاکم می‌کنند:

Max: MAUF3 = 36.688 (TGM) - 0.000008475 (VAR) [25]
جدول 1. مشخصات خوشه‌ها (گردهای هم‌گن کشاورز)

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تعداد بهره برداران = 16</th>
<th>تعداد بهره برداران = 9</th>
<th>تعداد بهره برداران = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>حداقل حداکثر میانگین</td>
<td>60</td>
<td>140</td>
<td>80</td>
</tr>
<tr>
<td>حداکثر حداکثر میانگین</td>
<td>169.72</td>
<td>169.72</td>
<td>139</td>
</tr>
<tr>
<td>اندازه مزرعه‌های (هکتار)</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>سطح تحقیقات کشاورز (تعداد سال‌های آموزشی) سن کشاورز (سال)</td>
<td>10/66</td>
<td>10/45</td>
<td>10/66</td>
</tr>
<tr>
<td>تجربه کشاورز (سال)</td>
<td>45/17</td>
<td>50/67</td>
<td>45/17</td>
</tr>
<tr>
<td>درجه مکانیازیسیون</td>
<td>20</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>عملیات زراعی با مانند آبات</td>
<td>20</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>الگوی کشت</td>
<td>20</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>کندم، جو، هواچ، کلم، شلوک، سنگتراش و گوجه فرنگی</td>
<td>20</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>هواچ</td>
<td>20</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>کندم، جو، هواچ، کلم، شلوک، سنگتراش و گوجه فرنگی</td>
<td>20</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>گوجه فرنگی</td>
<td>20</td>
<td>35</td>
<td>20</td>
</tr>
</tbody>
</table>

متأسفانه، آمار جمع‌آوری شده و بافت‌هاي تحت عقاب با افزایش نرخ آب‌ها تا مقدار 15 برای نرخ آب‌های موجود تغییر نمی‌کند. اما با افزایش نرخ آب‌ها از 15 برای نرخ فعلی میزان تلاقی آب آب‌یاری در این دو خوشه نیز به مقدار قابل ملاحظه‌ای کاهش می‌یابد.

با توجه به مقادیر تلاقی آب آب‌یاری تخمینی در جدول 3، در داده‌های تراکم کشت پیش‌بینی، شده حاصل از اجرای سناریوهای مختلف در مدل‌های شبیه‌سازی، مقدار متوسط مصرف آب در هر هکتار در خوشه طی این آزمون انجام شد. همچنین مقدار متوسط مصرف آب به‌طور قابل ملاحظه‌ای کمتر از مقادیر آبی است که در اختیار دارند (مقادیر متوسط مصرف آب در هر هکتار در خوشه اول). این موضوع می‌تواند ناشی از رفتار پیش‌گرایی این دو گروه از
جدول ۲: بررسی اعتبار مدل‌های شیمیایی شده در خوشه‌های مختلف (گروه‌های همگن کشاورزان)

<table>
<thead>
<tr>
<th>اهداف</th>
<th>مقدار مشاهده</th>
<th>مقدار پیش‌بینی</th>
<th>شده</th>
<th>بینی شده</th>
<th>احرازه</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیماره برنامه‌ای کل (1000)</td>
<td>1037/8/5</td>
<td>1037/8/5</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تومان</td>
<td>54/53</td>
<td>54/53</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>گنجینه (y%)</td>
<td>54/53</td>
<td>54/53</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ماده: محاسبات تحقیق
جدول 3. مقادیر تفاوت‌های آب ایپاری در نرخ‌های مختلف آب‌های در خوش‌های مختلف (گروه‌های همگن کشاورزی)

<table>
<thead>
<tr>
<th>نرخ آب‌های</th>
<th>تفاوت‌های آب</th>
<th>نرخ موجود</th>
<th>نرخ سه‌تایی</th>
<th>نرخ سه‌تایی علی-卤</th>
<th>نرخ فعلی</th>
<th>نرخ فعلی علی-卤</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>100 برابر نرخ</td>
<td>20 برابر نرخ</td>
<td>50 برابر نرخ</td>
<td>فعلي</td>
<td>فعلي علی-卤</td>
<td>2235800</td>
</tr>
<tr>
<td></td>
<td>11648400</td>
<td>2046128</td>
<td>2355800</td>
<td>2235800</td>
<td>2235800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3270729/1/16</td>
<td>159934</td>
<td>2027480</td>
<td>2235800</td>
<td>2235800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2885241/47</td>
<td>5965000</td>
<td>9256700</td>
<td>10283650</td>
<td>10283650</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1872569/278</td>
<td>202116</td>
<td>2234419</td>
<td>2755675/55</td>
<td>2755675/55</td>
<td></td>
</tr>
</tbody>
</table>

مأخوذ: محاسبات تحقیق

جدول 4. مقادیر متوسط تفاوت‌های آب ایپاری در هر هکتار در نرخ‌های مختلف آب‌های در خوش‌های مختلف (گروه‌های همگن کشاورزی)

<table>
<thead>
<tr>
<th>نرخ آب‌های</th>
<th>متوسط تفاوت‌های آب در هکتار</th>
<th>نرخ صفر</th>
<th>نرخ فعلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 برابر</td>
<td>30 برابر</td>
<td>20 برابر</td>
<td>15 برابر</td>
</tr>
<tr>
<td>1992</td>
<td>1270899</td>
<td>12882/5</td>
<td>12882/5</td>
</tr>
<tr>
<td>702</td>
<td>8511/9</td>
<td>11424/5</td>
<td>11424/5</td>
</tr>
<tr>
<td>650</td>
<td>3787</td>
<td>8388/4</td>
<td>8388/4</td>
</tr>
</tbody>
</table>

مأخوذ: محاسبات تحقیق
بحث
نتایج حاصل از این مطالعه نشان داد که گروه‌های مهگن کشاورزان در خوشه‌های مختلف حساسیت‌های مختلفی نسبت به افزایش نرخ آب‌به‌آبی دارند. همچنین، آستانه تأثیرگذاری افزایش نرخ آب‌به‌آبی در خوشه‌های مختلف حساسیت، در این رابطه مشابه می‌باشد. قسمت‌های کشنده‌تر دارای حساسیت‌های تغییر آب‌به‌آبی آب‌به‌آبی‌تر از کشورهای دیگر می‌باشد.

مصرف آب در هر تولیدکننده آبیالتر آب‌به‌آبی است که کشاورزان از طریق تغییر کلسیم کشت (الکتریکی) جایگزین مصرف‌های آبیالتر با توجه به نتایج تحقیق می‌توان این مطالعه گزین از کشورهای مهگن کشاورزان را برای استفاده در این مطالعه بر (MAUF) جمعیت تغییر نمود. در این مطالعه بر اساس توصیبات تولید واقعی کشاورزان، وزن‌های اهداف مختلف برای هر کیلو از گروه‌های کشاورزان تعیین و ناب مطالعی آن‌ها فرموله گردید. این توانایی به عنوان توانایی هدف در مدل‌های شیب‌سازی به کار برده شدند. در این رابطه، ملاحظه شد که نرخ تحقیق بکار رفته بر اساس تشریح مطالعاتی مورد عبارت (MAUF) موجود بکار رای شیب‌سازی، که کنش‌های افزایش گزارش‌ها در کشورهای مختلف کشاورزان که مواجه با بی‌سیستم‌گرایی‌های مختلف از جمله سیاست‌های قطعی‌گرایی آب‌به‌آبی مبادل

دریافت در ایران بسیار پایین و از ارتفاع آب سیستم سطح (پرکشت) بیشتر می‌شود. امکان نبود از این ناحیه با توجه به تحقیق که در این ناحیه از این ناحیه گزارش شده است، به طور مزمن از منافع حاصل از تخصیص و کاهش مصرف آب خوراک به‌همه‌شده شود. در نتیجه روش‌های مذکور مانع از کاهش و کاهش مصرف آب سطح اجرا شده است. بر این دلیل که نکته کشاورز در طیف کاهش مصرف آب (مطروح مختلف کم‌آبی) بی‌طرفی مقدار آب دریافتی را به عنوان انتخاب دریافتی به پیش از یک میزان انتخاب داده می‌باشد.

نتایج اکنون موجود، آب‌به‌آبی‌ها را می‌توان با افزایش سطح زیرکشت و هم مقدار حجم آب مورد استفاده از آب دریافتی می‌کند. نتیجه کشاورزان دارای بی‌کشت، گزارش‌ها و درخواست کمبود بارهای نسبت به کشت ترکیبی از مراحل معمول در سیستم تغییر چسبانی کشاورزی بزرگ بارهای کم می‌باشد.

افزون بر این، همان‌گونه که نشان دادیم،

گزارش‌ها در این مطالعه تغییرات آب‌به‌آبی در خوشه‌های مختلف تغییر می‌کند. در این رابطه، قسمت‌های کشنده‌تر دارای حساسیت‌های تغییر آب‌به‌آبی آب‌به‌آبی‌تر از کشورهای دیگر می‌باشد.

مصرف آب در هر تولیدکننده آب‌به‌آبی‌تر از کشورهای دیگر می‌باشد.

مصرف آب در هر تولیدکننده آب‌به‌آبی‌تر از کشورهای دیگر می‌باشد.
نمودار 1. منحیه های تقاضای آب آبیاری در خوزستان مختلف

این گونه نرخ گذاری افزایش مصرف که منافق با سیاست‌های پایدار منابع آب است. به این جهت که میزان قابل ملاحظه‌ای از آب آبیاری به صورت تبخیر و تعرق و جاری شدن در سطح خاک هدر می‌رود. اگر چه نتایج مطالعات انجم شده نیز نشان می‌دهد که در بهترین حالت، میزان آب‌های تمیز شده به این روش فقط می‌تواند تا حدودی هزینه‌های نگهداری و بهره‌برداری شبکه‌های آب را تأمین کند و ممکن است تا حدودی به نفع عملکرد سیستم مانند بهره‌برداری آب باشد اما چون منکشی بر تحویل حجمی نیست انگیزه‌های از ارائه صرفه‌جویی آب فراهم نمی‌گردد در نتیجه عملکرد اقتصادی آن رضایت بخش نیست (۲ و ۳).

با توجه به نتایج تحقیق پیشنهاد می‌گردد که از طریق روش نرخ کاذب علمی و منطقی آب‌های اورشلی استفاده از تکنولوژی‌های آب انداز فراهم گردد و اجازه داده شود که کشاورزان آب مازاد بر مصرف‌ران را نیز در کشت‌های اضافی و فعالیت‌های اقتصادی با ارزش تر به کار برد. از طریق کاهش تقاضا، آب مازاد بر مصرف‌ران را فروشند. البته هر چند به منظور پایداری سیستم شبکه آب‌های سطحی افزایش می‌کند آب ضروری است اما با توجه به نتایج بدست آمده از این تحقیق به‌طور کامل ناشی از این تحقیق به‌طور کامل ناشی از این تحقیق

۱- اصلاح قوانین آب از جمله ایشان شیکهوی که به تعیین نرخ آب‌های بی‌بی

۲- تلاش در جهت تعیین بی‌کاهش بسیاری مناسب بزرگتر آب

۳- ایجاد و ترویج مکانیزم بی‌بی به منظور مبادله آب بین مصرف‌ران مختلف و بهره‌برداران

۴- اصلاح مصرف آب و برنامه‌ریزی توزیع منابع آب (آب‌های پک)

۵- تلاش در جهت تلاش به حذف کارایی و راکدی انتقال و مصرف
آب در کشاورزی از جمله پرورش آناتوری و ترویج استفاده
از روش‌ها و فناوری‌های نوین آب‌پردازی
- آموزش و کلاس‌های ترویجی در رابطه با برنامه‌ریزی
مزیت‌های نسبی در مناطق مختلف کشور

منابع مورد استفاده

1. ترکماني، ج. غ. سلطانی و ه. اسدی. 1377. تعیین آب‌و برق بر اساس ارزش‌های نهایی آب کشاورزی. آب و توسه. فصلنامه امور آب و زاریت نیرو. 5: 10-13.
2. سلطانی، غ. و م. زریابی. 1375. تحقیق در مورد گزارش آب کشاورزی. آب و توسه. فصلنامه امور آب و زاریت نیرو. 5: 24-25.
3. سلطانی، غ. 1375. تحقیق در مورد گزارش آب کشاورزی. آب و توسه. فصلنامه امور آب و زاریت نیرو. 5: 24-25.
4. صدری، س. ک. 1375. بیانی بررسی کارکرد و عادات آب، آب و توسه. فصلنامه امور آب و زاریت نیرو. 5: 24-25.